
John von Neumann Institute for Computing

Parallel Redistribution of Multidimensional Data

Tore Birkeland, Tor Sørevik

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 433-440, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Redistribution of Multidimensional Data

Tore Birkeland and Tor Sørevik

Dept. of Mathematics, University of Bergen, Norway
E-mail: {tore.birkeland, tor.sorevik}@math.uib.no

On a parallel computer with distributed memory, multidimensional arrays are usually mapped
onto the nodes such that only one or more of the indexes becomes distributed. Global computa-
tion on data associated with the reminding indexes may then be done without communication.
However, when global communication is needed on all indexes a complete redistribution of the
data is needed. In higher dimension (d > 2) different mappings and subsequent redistribution
techniques are possible. In this paper we present a general redistribution algorithm for data of
dimension d mapped on to a processor array of dimension r < d.

We show by a complexity analysis and numerical experiments that while using a 1D processor
grid is the most efficient for modest number of processors, using 2D processor grid has better
scalability and hence work best for higher number of processors.

1 Introduction

A common situation in parallel computation on multidimensional data is to perform calcu-
lations which involve all data along a specific dimension, while the calculations are com-
pletely decoupled along the other dimensions. For such problems it is possible to simplify
the parallel algorithms by keeping at least one dimension local, while distributing the other
dimensions among the processors. In most cases, however, it is necessary to perform cal-
culations along all dimensions sequentially, which introduces the problem of redistributing
the data among the processors. A prime example of this problem is the multidimensional
fast Fourier transforms (FFT), where the full FFT can be calculated by performing 1D
FFTs along all dimensions sequentially1–4.

The standard way of dealing with problems of this type, is to distribute only one di-
mension of the data set at a given time. Redistribution can then be performed with the calls
to the MPI function MPI Alltoall. As other authors have pointed out5, 6, this approach has
limited scalability as the number of processors, P , is limited by the smallest dimensional
grid size P < minNi. Furthermore, many massively multiprocessor computers utilizes
special network topologies (i.e. toroidal), which this technique is not able to exploit.

In this paper we describe a generalized algorithm for data redistribution and its imple-
mentation using the MPI. We also analyse the computational complexity of the algorithm,
and discuss in which cases it is favourable over the standard approach.

2 Problem Definition and Notation

Consider a d-dimensional dataset of size N0 ×N1 × · · · ×Nd−1 which is mapped onto an
r-dimensional processor array of size P0 × P1 × · · · × Pr−1. 1 ≤ r < d. The mapping
is done by splitting the data set along r dimensions in equal pieces. We get different

splittings depending on which dimensions we choose to split. There is of course
(
d
r

)

433

i i i

j

j

j

kkk

S={0,1} S={0,2}
S={1,2}

Life on Proc(0,0)

Figure 1. This figure shows the 3 different slices of 3D data onto 2D processor array. The slice of the data shown
here is the local data to P0,0. The shaded part is the portion of the local data that is invariant for all 3 different
slices. Thus it does not have to be moved whenever a redistribution is needed.

possible mappings. In a computation, as exemplified by the d-dim FFT, the mapping will
have to change during the computation.

For convenience we assume that Ni mod Pj = 0 for all i = 0, · · · , d − 1 and j =
0, · · · , r−1. This requirement is easy to overcome in practise, but it simplifies the notation
significantly in this paper. In practise we have some control over r and the Pj’s, while d and
Ni are defined by the problem. A straight forward way to deal with the Ni mod Pj = 0
requirement is to set P1 = P2 = · · · = Pr = P and pad the data array with zeroes to
satisfy Ni mod P = 0. Another way (which we have used in our implementation) is to
modify the algorithm slightly so that it can work with different amounts of data residing
on each processor.

Let S = {i0, i1, ..., ir} be an index set where 0 ≤ ij < d for j = 0, · · · , r − 1
Then Snow denotes the dimensions which are distributed among the r-d processor array.
A dimension can only be distributed over one set of processors, which gives ij 6= ik, if
j 6= k. If we want to do computation on dimension k, where k ∈ Snow, a redistribution is
required.

Let Snext be a distribution where k /∈ Snext. The dimensions Snow\Snext will be
distributed, while the dimensions Snext\Snow will be gathered.

3 Algorithm

3.1 Redistribution of One Dimension

We will now assume that the difference between Snow and Snext is exactly one index, i.e.
the operation to be performed is an all-to-all along one dimension. For such an operation,
the processors can be organised in groups, where a processor only communicates with
other processors in the same group. For redistribution along different dimensions in the
processor grid, different groups will have to be formed. In general, one set of groups
will be formed for each dimension in the processor array. A processor Pα, where α =
(α0, α1, ..., αr−1), will be a part of the groups Gj

αj
, for j = 0, 1, ..., r − 1 (Figure 3.1).

434

Figure 2. A 3x3 processor array. The processors are organised into one group for each dimension in the pro-
cessor array. For redistributing the pth dimension in the processor array, processors in the Gp groups will
communicate internally.

For communication within one group, an algorithm similar to the standard implemen-
tation of all-to-all is used. Below is an implementation of this algorithm in simplified
Python-like syntax. inData and outData are the input and output data arrays lo-
cal to the current processor. fullShape() returns the shape of the global array, and
shape(x) returns the local size the array x. inDistrib and outDistrib are the
dimensions of the data set which is distributed at the beginning and end of the algorithm
respectively. groupSize is the number of processors in the communication group.

s e n d S i z e = f u l l S h a p e (i n D i s t r) / g r o u p S i z e
r e c v S i z e = f u l l S h a p e (o u t D i s t r) / g r o u p S i z e

f o r i i n r a n g e (g r o u p S i z e) :
s e n d P r o c = (groupRank + i) % g r o u p S i z e
r e c v P r o c = (groupRank + g r o u p S i z e − i) % g r o u p S i z e

s e n d S l i c e = shape (i n D a t a)
s e n d S t a r t = s e n d P r o c∗ s e n d S i z e
sendEnd = (s e n d P r o c +1)∗ s e n d S i z e
s e n d S l i c e [i n D i s t r] = s e n d S t a r t : sendEnd
sendBlock = i n D a t a [s e n d S l i c e]

r e c v S l i c e = shape (o u t D a t a)
r e c v S t a r t = r e c v P r o c∗ r e c v S i z e
recvEnd = (r e c v P r o c +1)∗ r e c v S i z e
r e c v S l i c e [o u t D i s t r] = r e c v S t a r t : recvEnd
r e c v B l o c k = o u t D a t a [r e c v S l i c e]

i r e c v (f romProc , r e c v B l o c k)
i s e n d (t oP roc , sendBlock)
wait ()

A test implementation of the above algorithm has been made in C++. To set up the
processor groups we have used the Cartesian topology routines in MPI, and set up a com-
municator for each processor group. This is an easy way to set up a r-dimensional processor
grid, and allows for optimised MPI implementations to exploit locality in the underlying
network topology without user interaction.

435

For handling multidimensional data in C++ we have used the excellent blitz++ library7.
Using blitz++ and MPI datatypes we have been able to hide the details of sending and
receiving a strided hyperslab, which has simplified the implementation of the redistribution
considerably.

3.2 Redistribution of Several Dimensions

If r = 1 or r = d−1 the above algorithm cover all possibilities. However, for 1 < r < d−1
one might pose the problem of how to redistribute more than one dimension at the time.
One alternative is to apply the above algorithm several times. Assume that Snow → Snext

is a simple redistribution, that is if snow
i 6= snext

i → snow
i /∈ Snext s

next
i /∈ Snow. For

such a redistribution, the following simple algorithm will change distribution from sNow
to sNext.

f o r i i n r a n g e (r) :
i f sNow [i] != sNext [i] :

r e d i s t r i b u t e (da t a , g r o u p I n d e x = i , \
i n D i s t r i b =sNow [i] o u t D i s t r i b = sNext [i])

4 Lower Dimensional Projections

An alternative method for redistributing several dimensions simultaneously, is to map the
data set to a lower dimensional data set, and distribute that array on a low dimensional
processor array. In the extreme, one could map the data to a 2 dimensional data set and
use a 1 dimensional processor array. However, if Ni mod Pj 6= 0, one risks splitting up
a dimension in the data set in an unpredicted way, and one must therefore take care to use
the correct indexes in such situations.

In our previous work this method has been deployed with great success8,9. It is simple
and in many cases efficient. It does however has restricted scalability. The reason for this
is twofold. First there is a theoretical limit on the number of processors used which require
us to have min(N1, N2) ≥ P . The prime example of this is for d = 3 and the data array
is of the size N × N × N . In that case we will have N3 data and only being able to use
P ≤ N processors.

Secondly when all processors are involved in the same all-to-all communication this is
a more severe stress for the bisectional bandwidth than when they are divided into smaller
groups, each group doing an internal all-to-all simultaneously. This effect is increasing
with P and may also dependent on the network topology.

5 Complexity Analysis

This analysis is not meant as a detailed analysis, suitable for accurate prediction of the
communication time. It only indicates the pro- and con’s of the different strategies, and
their dependence on the actual parameters.

For simplicity we assume that N0 = N1 = · · · = Nd−1 = N and P0 = P1 = · · · =
Pr−1 = P and N mod P = 0. Then each processor will store Nd/P r data items. The

436

algorithm of Section 3.1 will send pieces of Nd/P r+1 data in each of the P − 1 steps.
With latency ts and reciprocal bandwidth tw the complexity of this algorithm becomes:

(P − 1)(ts + tw
Nd

P r+1
) (5.1)

Initially d− r directions are not splitted, and local work in these dimensions can be carried
out. Then, in each step, the algorithm provides one new direction for local computation.
Thus to get data associated with the remaining r indexes to appear locally, the redistribution
algorithm needs to be repeated r times. Thus for a complete sweep of local computation
in all d direction the total work becomes:

W1 = r(P − 1)(ts + tw
Nd

P r+1
) ≈ r(Pts + tw

Nd

P r
) (5.2)

Alternatively we might map the data to a 2D data set and the processor array to a 1D
array of P r processors. Each processors will still have the same total amount of data.
However when applying our algorithm the piece of data to be sent is now only Nd/P 2r

and the number of loop iterations becomes P r − 1. However the upside is that only one
redistribution is needed for a full sweep. The complexity becomes

W2 = (P r − 1)(ts + tw
Nd

P 2r
) ≈ P rts + tw

Nd

P r
(5.3)

The amount of data transferred is less in the second case, but the number of start-ups
might be much higher. We notice that the problem parameters (N, d), system parame-
ters related to processors configuration (P, r) as well as those related to communication
network (ts, tw) all play a role in determining the fastest communication mode.

We would like to caution about using the above formula for predicting the fastest way
of organising your computation. Additional factors such as network topology as well as
system and communication software will also be of importance. Note also that when ar-
ranging the processors as a 1D-array one more easily get significant load imbalance when
the N mod P = 0 condition is violated.

6 Numerical Experiments

We have performed several numerical experiments to determine the properties of the redis-
tribution algorithms. The implementation has been tested on different platforms with dif-
ferent network topologies to determine if we are able to effectively exploit special topolo-
gies more efficiently than with the previously used algorithm. For measuring efficiency, we
have used the wall clock time it takes to complete two complete sweeps of redistribution.
That is 2r + 1 redistributions with the algorithm presented in 3.1.

In order to minimise any effect of function calls to the timer, the process has been
repeated 10 times and the averaged time is recorded. Each of these tests was run 10 times
and to minimise the effect background processes in the operating system, we report the
minimal time. Furthermore the complete test was run twice with several days separation in
order to detect if any of the tests were influenced by other jobs running on the computer.

The main performance test is to redistribute a 3D data set of size N ×N ×N = N3,
on processor grid of P × P = P 2 processors. The test is run for several values of P and
N , comparing the time it takes to redistribute the data set on a 2D vs. a 1D processor grid.

437

Platform 1 Platform 2
Provider NTNU Argonne National Lab
System IBM p575+ IBM Blue Gene/L
CPU IBM Power5+ 1.9 GHz PowerPC 440 700 MHz
Cores pr. node 16 2
Total nodes 56 1024
Interconnect HPS Blue Gene/L Torus
Topology Fat tree 3D Torus

Table 1. The platforms used for testing the redistribution algorithms

(a) 1D processor grid (b) 2D processor grid

Figure 3. Platform 1 redistribution time as a function of number of processors P 2 plotted for different grid sizes.
The left panel shows wall time using a 1D processor grid, and the right panel shows the results for a 2D processor
grid.

To our disposal we have had 2 different platforms. The key hardware features of these
are described in Table 1.

Platform 1 uses a high speed HPS interconnect. We have not detected any significant
dependence on how the processor grid is mapped onto the physical processors, suggesting
that the network topology is not an important factor for this platform. In Figure 3 the
results for the main performance test is shown both for a 1D and a 2D processor grid.
As expected, for few processors, the 1D processor grid is superior. However, the 2D
configuration gives better scaling and eventually becomes faster then the 1D configuration.
The crossover-point appears to be P r ≈ N/4. The jagged form of the curves in left figure
is a consequence of the fact that when the data can not be distributed evenly among the
processors, the performance will be dictated by the processor with most data rather than
any of the latency effects described in Section 5. The case N = 256 and r = 1 illustrate
this explanation. Here we observe local minima for P = 128 and P = 256.

Platform 2 is an IBM Blue Gene/L system, and uses a special 3D toroidal network for
bulk data transfer. The network topology is interesting as it should fit well to a logical 2D
configuration of the processors, and by carefully mapping the logical 2D processor grid
onto the physical 2D toroidal node grid, one might expect some performance improvement
compared to the 1D processor grid. In order to test this hypothesis, we have run four test
cases. One reference test using a 1D processor grid, and three tests with a 2D processor
grid. Using the 2D processor grid, we have varied the mapping of the processor grid on the

438

(a) Platform 2 redistribution time as a function of
number of processors P r plotted for grid size N =
256 for a 1D and 2D processor grid.

(b) Relative performance of a 2D processor grid
compared to 1D. N = P r for different values of
N . Values larger than 1 means the 2D processor
grid is faster

Figure 4. Numerical results from Platform 2

physical nodes in order to detect if the performance is dependent on the topology. However,
through all our tests, we have not been able to observe any difference in performance
between the three 2D processor grids used.

Figure 4 shows results from Platform 2. In essence, the results are similar results to
that of Platform 1. For a given N , a 1D processor grid performs best for few processors,
but a 2D processor grid scales better. Interrestingly, we observe that for P r = N (Figure
4(b) (Which is the highest possible processor count for the 1D processor grid) the 2D
processor grid performs better, even though twice the amount of data is being transferred.
This means that not only does the 2D processor grid allow one to use more processors, it
also enables more efficient utilization of the the network, most likely due to larger blocks
of data being sent at each step in the redistribution. The relative decrease in efficiency of
the 2D processor grid seen for increasing values of N and P r, can be explained from the
fact that block blocksize increases cubically with N , and decreases linearly with P r. As
the blocksize increase, we expect the startup effects for the 1D processor grid to decrease.
In virtual processor mode, the performance of the 2D processor grid suffers most, because
the bandwidth of each process is effectively halved compared to co processor mode.

7 Concluding Remarks

We have designed and implemented and algorithm for redistribution of multidimensional
arrays. Complexity analysis and experiments show that our algorithm has better scalability
than the standard algorithm which view the processors organised as a 1D-grid. As the
current trend in design of HPC-system is that number of processors increases much faster
than their individual speed, sustained petaflop computing can only be achieved through
highly scalable algorithms.

Our implementation is a generalization of the standard algorithm, making it easy to
change the dimension of the processor grid at runtime depending on the size of the problem
and the number of processors available at runtime.

439

Acknowledgement

We gratefully acknowledge the support of NOTUR, The Norwegian HPC-project, for ac-
cess to their IBM p575+ at NTNU, and to Argonne National Laboratory for access to their
Blue Gene/L System.

References

1. H. Q. Ding, R. D. Ferraro and D. B. Gennery, A Portable 3D FFT Package for
Distributed-Memory Parallel Archite ctures, in: PPSC, pp. 70–71, (1995).

2. M. Frigo and S. G. Johnson, FFTW: An adaptive Software Architecture for the FFT,
in: Proc. IEEE International Conference on Acoustics, Speech and signal Processing
(ICASSP), pp. 1381–1394, (1998).

3. C. E. Cramer and J. A. Board, The development and integration of a distributed 3D
FFT for a cluster of workstations, in: Proc. 4th Annual Linux Showcase and Confer-
ence, pp. 121–128, (2000).

4. P. D. Haynes and M. Cote, Parallel fast fourier transforms for electronic structure
calculations, Comp. Phys. Commun., 130, 132–136, (2000).

5. M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward and R. S. Germain, Scal-
able framework for the 3D FFTs on the Blue Gene/L supercomputer: Implementation
and early performance measurements, IBM J. Res. & Dev., 49, 457–464, (2005).

6. A. Dubey and D. Tessera, Redistribution strategies for portable parallel FFT: a case
study, Concurrency and Computation: Practice and Experience, 13, 209–220, (2001).

7. T. L. Veldhuizen, Arrays in Blitz++, in: Proc. 2nd International Scientific Computing
in Object-Oriented Parallel Environments (ISCOPE’98), (Springer-Verlag, 1998).

8. T. Sørevik, J. P. Hansen and L. B. Madsen, A spectral method for integration of the
time-dependent Schrödinger equation in hyperspherical coordinates, Phys. A: Math.
Gen., 38, 6977–6985, (2005).

9. T. Matthey and T. Sørevik, Performance of a parallel split operator method for the
time dependent Schrödinger equation, in: Computing: Software Technology, Algo-
rithms, Architectures and Applications, pp. 861–868, (2004).

440

