
John von Neumann Institute for Computing

Comparative Study of Concurrency Control on
Bulk-Synchronous Parallel Search Engines

Carolina Bonacic, Mauricio Marin

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 389-396, 2007.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparative Study of Concurrency Control
on Bulk-Synchronous Parallel Search Engines

Carolina Bonacic1 and Mauricio Marin2

1 ArTeCS, Complutense University of Madrid, Spain
CEQUA, University of Magallanes, Chile

E-mail: cbonacic@fis.ucm.es

2 Yahoo! Research, Santiago, Chile
E-mail: mmarin@yahoo-inc.com

In this paper we propose and evaluate the performance of concurrency control strategies for
a parallel search engine that is able to cope efficiently with concurrent read/write operations.
Read operations come in the usual form of queries submitted to the search engine and write
operations come in the form of new documents added to the text collection in an on-line manner,
namely the insertions are embedded into the main stream of user queries in an unpredictable
arrival order but with query results respecting causality.

1 Introduction

Web Search Engines use the inverted file data structure to index the text collection and
speed up query processing. A number of papers have been published reporting experi-
ments and proposals for efficient parallel query processing upon inverted files which are
distributed on a set of P processor-memory pairs1–5. It is clear that efficiency on clus-
ters of computers is only achieved by using strategies devised to reduce communication
among processors and maintain a reasonable balance of the amount of computation and
communication performed by the processors to solve the search queries.

An inverted file is composed of a vocabulary table and a set of posting lists. The
vocabulary table contains the set of relevant terms found in the collection. Each of these
terms is associated with a posting list which contains the document identifiers where the
term appears in the collection along with additional data used for ranking purposes. To
solve a query, it is necessary to get the set of documents ids associated with the query
terms and then perform a ranking of these documents so as to select the top K documents
as the query answer.

Query operations over parallel search engines are usually read-only requests upon the
distributed inverted file. This means that one is not concerned with multiple users attempt-
ing to write information on the same text collection. All of them are serviced with no
regards for consistency problems since no concurrent updates are performed over the data
structure. Insertion of new documents is effected off-line in Web search engines. However,
it is becoming relevant to consider mixes of read and write operations. For example, for
a large news service we want users to get very fresh texts as the answers to their queries.
Certainly we cannot stop the server every time we add and index a few news into the text
collection. It is more convenient to let write and read operations take place concurrently.
This becomes critical when one think of a world-wide trade system in which users put
business documents and others submit queries using words like in Web search engines.

389

The concurrency control algorithms we propose in this paper are designed upon a par-
ticular way of performing query processing. In Section 2 we describe our method for
read-only queries and in Section 3 we extend it to support concurrency control under read-
/write operations. Section 4 presents an evaluation of the algorithms and Section 5 presents
concluding remarks.

2 Query Processing

The parallel processing of queries is basically composed of a phase in which it is necessary
to fetch parts of all of the posting lists associated with each term present in the query, and
perform a ranking of documents in order to produce the results. After this, additional
processing is required to produce the answer to the user. At the parallel server side, queries
arrive from a receptionist machine that we call the broker. The broker machine is in charge
of routing the queries to the cluster processors and receiving the respective answers. For
each query the method produces the top-K documents that form the answer.

The processor in which a given query arrives is called the ranker for that query since
it is in this processor where the associated document ranking is performed. Every query
is processed using two major steps: the first one consists on fetching a K-sized piece of
every posting list involved in the query and sending them to the ranker processor. In the
second step, the ranker performs the actual ranking of documents and, if necessary, it asks
for additional K-sized pieces of the posting lists in order to produce the K best ranked
documents that are passed to the broker as the query results. We call this iterations. Thus
the ranking process can take one or more iterations to finish. In every iteration a new
piece of K pairs (doc id, frequency) from posting lists are sent to the ranker for every term
involved in the query.

Under this scheme, at a given interval of time, the ranking of two or more queries
can take place in parallel at different processors along with the fetching of K-sized pieces
of posting lists associated with other queries. We assume a situation in which the query
arrival rate in the broker is large enough to let the broker distribute QP queries onto the P
processors.

The search engine is implemented on top of the BSP model of parallel computing6

as follows. In BSP the computation is organized as a sequence of supersteps. During a
superstep, the processors may perform computations on local data and/or send messages
to other processors. The messages are available for processing at their destinations by
the next superstep, and each superstep is ended with the barrier synchronization of the
processors. The underlying communication library ensures that all messages are available
at their destinations before starting the next superstep.

Thus at the beginning of each superstep the processors get into their input message
queues both new queries placed there by the broker and messages with pieces of posting
lists related to the processing of queries which arrived at previous supersteps. The process-
ing of a given query can take two or more supersteps to be completed. All messages are
sent at the end of every superstep and thereby they are sent to their destinations packed into
one message per destination to reduce communication overheads. In addition, in the input
message queues are requests to index new documents and merge them into the distributed
inverted file the resulting pairs (id doc,frequency).

The total running time cost of a BSP program is the cumulative sum of the costs of

390

its supersteps, and the cost of each superstep is the sum of three quantities: w, hG and
L, where w is the maximum of the computations performed by each processor, h is the
maximum of the messages sent/received by each processor with each word costing G units
of running time, and L is the cost of barrier synchronizing the processors. The effect of
the computer architecture is included by the parameters G and L, which are increasing
functions of P .

The two dominant approaches to distributing the inverted file onto P processors are
(a) the document partitioned strategy in which the documents are evenly distributed onto
the processors and an inverted file is constructed in each processor using the respective
subset of documents, and (b) the term partitioned strategy in which a single inverted file
is constructed from the whole text collection to then distribute evenly the terms with their
respective posting lists onto the processors.

In the document partitioned approach the broker performs a broadcast of every query
to all processors. First and exactly as in the term partitioned approach, the broker sends
one copy of the query to their respective ranker processors. Secondly, the ranker sends a
copy of every query to all other processors. Next, all processors send K/P pairs (doc id,
frequency) of their posting lists to the ranker which performs the documents ranking. In
the case of one or more query terms requiring another iteration, the ranker sends messages
to all processors asking for additional K/P pairs of the respective posting lists.

In the term partitioned approach we distribute the terms and their posting lists in an uni-
formly at random manner onto the processors (we use the rule id term mod P to determine
in which processor is located a given term). In this scheme, for a given query, the broker
sends the query to its ranker processor which upon reception sends messages to the other
processors holding query terms, to get from them the first K pairs (doc id, frequency) of
every term present in the query. After the ranking of these pieces of posting lists, new itera-
tions (if any) are processed in the same way. Similar to the document partitioned index, the
ranker is selected in a circular manner and without paying attention in which processors
are located the query terms. Notice that the effect of imbalance due to frequent terms in
queries is minimized because the ranking computations (which is most costly component
in the running time) are well balanced and disk accesses for frequent terms are reduced by
LRU disk caching of the posting list segments being required by iterations.

3 Concurrency Control Strategies

Timestamp protocol. A first point to note is that the semantics of supersteps tell us that all
messages are in their target processors at the start of each superstep. That is, no messages
are in transit at that instant and all the processors are barrier synchronized. If the broker
assigns a correlative timestamp to every query and document that it sends to the processors,
then it suffices to process all messages in timestamp order in each processor to avoid R/W
conflicts. To this end, every processor maintains its input message queue organized as a
priority queue with keys given by id query integer values (timestamps). The broker selects
the processors to send documents and queries in a circular manner. Upon reception of a
document, the respective processor parses it to extract all the relevant terms.

In the document partitioned inverted file the posting lists of all the parsed terms are
updated locally in the same processor. However, this is not effected in the current superstep
but in the next one in order to wait for the arrival of broadcast terms belonging to queries

391

placed in the same superstep, which can have timestamps smaller than the one associated
with the current document insertion operation. To this end, the processor sends to itself a
message in order to wait one superstep to proceed with the updating of the posting lists.

In the term partitioned inverted file the arrival of a new document to a processor is
much more demanding in communication. This because once the document is parsed a
pair (id doc,frequency) for each term has to be sent to the respective processor holding the
posting list. However, insertion of a new document is expected to be comparatively less
frequent than queries in real-life settings.

A complication arises from the fact that the processing of a given query can take several
iterations (supersteps). A given pair (id doc,frequency) cannot be inserted in its posting list
by a write operation with timestamp larger than the query being solved throughout several
iterations. We solve this by keeping aside this pair for those queries and logically including
the pair in the posting list for queries with timestamps larger than the one associated with
the pair. In practice the pair is physically inserted in the posting list in frequency descend-
ing order but it is not considered by queries with smaller timestamps. Garbage collection
can be made periodically every certain number of supersteps by performing a parallel pre-
fix operation in order to determine the largest timestamp among the fully completed query
timestamps at the given superstep.

Exclusive write supersteps. Another strategy is to let the broker control the order
in which the queries and documents are sent to the cluster processors. Write operations
associated to each new document are granted exclusive use of the cluster. That is, upon
reception of a new document, the broker waits for the current queries in the cluster to be
completed and queues up all new arriving queries and documents. Then it sends the new
document to the cluster where it is indexed and the respective posting lists are updated.
Once these write operations have finished the broker let the next set of queued read opera-
tions to be processed in the cluster until the next document and so on.

Two-phases locks protocol. Concurrent access to terms and their respective posting
lists can be protected by using read and write locks3. We employ a distributed version of
the locks protocol in which every processor is in charge of administering a part of the lock
and unlock requests associated with the processing of queries and documents. To this end,
we assume terms evenly distributed onto the processor using the rule id term % P . To
insert a new document it is necessary to request a write lock for every relevant term. This
is effected by sending to the respective processors messages with the lock requests. Once
that these locks are granted and modifications to the inverted file are finished the locks
are released by sending unlock messages. Similar procedure is applied for read operations
required by queries but in this case one or more read locks can be granted for each term.
Write locks are exclusive.

Optimal protocol. For comparison purposes we use this hope-for-the-best protocol.
This is a case in which we assume that queries and documents are submitted to the search
engine in a way in which read/write conflicts never takes place. To this end, we process the
queries and documents without including extra-code and messages to do any concurrency
control. This represents the best a protocol can do in terms of total running time.

3.1 Tradeoff Between the Term and Document Partitioned Indexes
To motivate the comparative study presented in the next section we describe the BSP cost
of the timestamp protocol. This to expose the tradeoff of using either of these distributed

392

inverted files.
Let us assume that at the beginning of a superstep i there is a certain average number

Q of new queries per processor per superstep and tq terms per query on the average. The
average length of posting lists is `. Also an average ofD new documents arrive per proces-
sor per superstep containing on average td relevant terms. The steps followed by the term
and document partitioned indexes are the following.

[Term partitioned index]

Superstep i Each processor obtains from its input message queue the arriving
messages in timestamp order where messages can be queries or documents.

• For each document send all its terms to the processors holding the respec-
tive posting lists. Cost tdD (1 +G) + L.

• For each query send its terms to the processors holding the respective post-
ing lists. Cost tq Q (1 +G) + L.

Superstep i+ 1 Each processor obtains the new messages in timestamp order
from its input queue.

• For each message containing the triplet (id term, id doc, freq) update the
posting list associated with the term. Cost tdD updateListCost(`).

• For each message containing a query term retrieve from disk the respective
posting list to obtain the best K pairs (id doc, freq) and send them to the
ranker processor. Cost tq Q [diskCost(`) +KG] + L.

Superstep i+ 2 In each processor and for each query started in the superstep
i get the messages containing the K pairs (id doc, freq), effect the final rank-
ing (we assume queries with one iteration) and report to the broker the top-K
documents. Cost Q rankingCost(tq, K) + L.

On the other hand, in the document partitioned index the timestamp strategy works as
follows.

[Document partitioned index]

Superstep i Each processor obtains from its input message queue the arriving
messages in timestamp order where messages can be queries or documents.

• Store each document and wait to the next superstep.

• Send each query to all the processors (broadcast). Cost tq Q (1+P G)+L.

Superstep i+ 1 Each processor obtains the new messages in timestamp order
from its input queue.

• For each message containing a document extract all its relevant terms and
update the respective posting lists. Cost tdD updateListCost(`/P).

• For each message containing a query obtain the posting lists associated
with its terms and get the bestK/P documents and send them to the ranker
processor. Cost tq QP [diskCost(`/P) + (K/P)G] + L.

393

Superstep i+ 2 Each processor and for each query started in the superstep
i, obtain the P messages per query with K/P pairs (id doc, freq) and per-
form the final ranking and report to the broker the top-K documents. Cost
Q rankingCost(tq, K) + L.

Basically the difference between the two strategies is given by the tradeoff in communica-
tion arising in the first superstep. That is, the tradeoff is given by the factors tdDG and
tq QP G in the cost of the term and document partitioned indexes respectively.

4 Evaluation

For the performance evaluation we used a text database which is a 12 GB sample of the
Chilean Web taken from the www.todocl.cl search engine. Using this collection we
generated an index structure with 1,408,447 terms. Queries were selected at random from
a set of 127,000 queries taken from the todocl log. The query log contains 33,000 terms.
The experiments were performed on a cluster with dual processors (2.8 GHz) that use NFS
mounted directories. This system has 2 racks of 6 shelves each with 10 blades to achieve
120 processors. All the results were obtained using 4, 8, 16 and 32 processors as we
found this to have a practical relation between the size of the inverted file and the number
of processors. With 32 processors we observed significant imbalance in some cases. In
addition, the number of queries available for experimentation makes 32 processors large
enough. On average, the processing of every query finished with 0.6K results after 1.5
iterations. Before measuring running times and to avoid any interference with the file
system, we load into main memory all the files associated with queries and the inverted
file. To evaluate the effect of write operations on the inverted files we inserted documents
taken at random from the same text sample. On average documents contain 200 relevant
terms which are also in the query log. We observed a large number of read/write conflicts
during execution of query and document operations.

In the experiments the first fact to become clear is the poor performance achieved by the
locks protocol. We observed that its throughput was too small causing an increasingly large
queue of pending operations. The assignment of a write lock to each relevant term of the
document being inserted/updated restrains significantly the rate of user queries processed
per unit time. Figure 1 shows the percentage of scheduled write/read operations that are
completed in each superstep considering that in each superstep new queries and documents
are injected using P= 4 processors. In this experiment the total number of document
insertion operations is a 22% of the total number of operations (queries plus documents).
The figure shows that on the average a 16% of the queries and a 8% of the document
insertions are completed which lead to an average of 10% of unlock operations completed
per superstep.

In Fig. 2 we show results for the timestamp (TS) and exclusive supersteps (ES) pro-
tocols for both the term and document partitioned indexes. We also show results for the
optimal protocol. Also the results are for different query traffic Q and different number K
of documents presented to the user as the answer for each query, and number of processors
P= 4, 8, 16 and 32. The curves are labeled “R” for the case in which 80,000 queries are
distributed uniformly at random onto the P processors and no documents are inserted in
the inverted file, and “W” for the case in which the 80,000 queries are randomly mixed
with other 80,000 operations of insertion of new documents.

394

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60

P
er

ce
n

ta
g

e
 o

f
 f

in
is

h
ed

o

p
er

at
io

n
s

Supersteps

% Reads

% unLocks

% Writes

Figure 1. Locks protocol. The curves show the percentage of read, write and unlock operations finished.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

321684321684321684

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of processors per strategy

Q=8

K=128

Optimum TimeStamps Excl. SSteps

Term-R
Term-W

Doc-R
Doc-W

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

321684321684321684

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of processors per strategy

Q=32

K=128

Optimum TimeStamps Excl. SSteps

Term-R
Term-W

Doc-R
Doc-W

 0

 100

 200

 300

 400

 500

 600

321684321684321684

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of processors per strategy

Q=8

K=1024

Optimum TimeStamps Excl. SSteps

Term-R
Term-W

Doc-R
Doc-W

 0

 100

 200

 300

 400

 500

 600

321684321684321684

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of processors per strategy

Q=32

K=1024

Optimum TimeStamps Excl. SSteps

Term-R
Term-W

Doc-R
Doc-W

Figure 2. Running times for the timestamp and exclusive supersteps protocols.

The results in Fig. 2 show that the performance of both protocols is fairly similar to
the performance of the optimal protocol. This indicates that overheads are small. The term

395

partitioned index performs slightly better than the document partitioned index. Even for the
case with large number of write operations the term partitioned index performs efficiently.
The ratio tdDG/ tq QP G is not detrimental to the term partitioned index. This is because
the cost of ranking queries can be more significant than the cost of indexing and updating
the posting lists. This is seen in the Fig. 2 when one compares the difference between the
results for K= 128 and K= 1024. Low traffic Q = 8 tends to produce higher running
times as this causes imbalance across processors. For the case K= 1024 the ES protocol
tends to be noticeably less efficient than the TS protocol. In this case imbalance is more
significant for two reasons: each document is indexed in one processor during the write-
only supersteps and posting lists are updated in parallel, and ranking of queries is split in
several supersteps which reduces the average number of ranking operations per processor
per superstep.

5 Conclusions

We have presented a comparison of different protocols to perform concurrency control
in distributed inverted files. The particular manner in which we organize query processing
and insertion of new documents allows a suitable bulk-synchronous organization of parallel
computation. This provides a simple but very efficient timestamp protocol for controlling
concurrency. The empirical results show a performance similar to the optimal protocol.

We have also found that the write exclusive supersteps protocol achieves competitive
performance. In this case it is not necessary to barrier synchronize the processors as it
only requires to detect when all current queries have been finished to send the document
insertion operation and then detect when all associated write operations have finished to
start a new set of queries and so on. This scheme can be implemented in message-passing
asynchronous implementations of inverted files in which case operation termination must
be handled using extra messages. Even in this case it is clear that this scheme is more effi-
cient than the locks protocol since this protocol requires similar number of extra messages
and our results show that it is not efficient because it achieves a very low throughput.

Acknowledgement: Partially funded by CWR Grant P04-067-F, Mideplan, Chile.

References

1. A. Arusu, J. Cho, H. Garcia-Molina, A. Paepcke and S. Raghavan, Searching the web,
ACM Trans., 1, 2–43, (2001).

2. A. Barroso, J. Dean and U. H. Olzle, Web search for a planet: The google cluster
architecture. IEEE Micro, 23, 22–28, (2002).

3. A. A. MacFarlane, S. E. Robertson and J. A. McCann, On concurrency control for
inverted files, in: 18th BCS IRSG Annual Colloquium on Information Retrieval Re-
search, pp. 67–79, (1996).

4. W. Moffat, J. Webber, Zobel and R. Baeza-Yates, A pipelined architecture for dis-
tributed text query evaluation, Information Retrieval, (2006).

5. S. Orlando, R. Perego and F. Silvestri, Design of a parallel and distributed web search
engine, in: Proc. 2001 Parallel Computing Conf., pp. 197–204, (2001).

6. L. G. Valiant, A bridging model for parallel computation, Comm. ACM, 33, 103–111,
(1990).

396

