
John von Neumann Institute for Computing

Parallel Jacobian Accumulation

Ebadollah Varnik, Uwe Naumann

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 311-318, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Jacobian Accumulation

Ebadollah Varnik and Uwe Naumann

Department of Computer Science
RWTH Aachen University, D-52056 Aachen, Germany

E-mail: {varnik, naumann}@stce.rwth-aachen.de

The accumulation of the Jacobian matrix F ′ of a vector function F : IRn → IRm implemented
as a computer program can be regarded as a transformation of its linearized computational
graph into a subgraph of the directed complete bipartite graph Kn,m. This transformation can
be performed by applying a vertex elimination technique. We report on first results of a parallel
approach to Jacobian accumulation.

1 Introduction

In automatic differentiation1–3 we consider implementations of vector functions

F : IRn ⊇ D → IRm, y = F (x) ,

as computer programs written in some imperative programming language, that map a vec-
tor x ≡ (xi)i=1,...,n of independent variables onto a vector y ≡ (yj)j=1,...,m of dependent
variables. We assume that F has been implemented as a computer program. Following
the notation in Griewank’s book4 we assume that F can be decomposed into a sequence of
p single assignments of the value of scalar elemental functions ϕi to unique intermediate
variables vj . The code list of F is given as

(IR 3) vj = ϕj(vi)i≺j , (1.1)

where j = n + 1, . . . , q and q = n + p + m. The binary relation i ≺ j denotes a direct
dependence of vj on vi. The variables v = (vi)i=1,...,q are partitioned into the sets X
containing the independent variables (vi)i=1,...,n, Y containing the dependent variables
(vi)i=n+p+1,...,q , and Z containing the intermediate variables (vi)i=n+1,...,n+p. The code
list ofF can be represented as a directed acyclic computational graphG = G(F) = (V,E)
with integer vertices V = {i : i ∈ {1, . . . , q}} and edges (i, j) ∈ E if and only if i ≺ j.
Moreover, V = X ∪ Z ∪ Y, where X = {1, . . . , n}, Z = {n + 1, . . . , n + p}, and
Y = {n + p + 1, . . . , q}. Hence, X , Y, and Z are mutually disjoint. We distinguish
between independent (i ∈ X), intermediate (i ∈ Z), and dependent (i ∈ Y) vertices.
Under the assumption that all elemental functions are continuously differentiable in some
neighbourhood of their arguments all edges (i, j) can be labeled with the partial derivatives
cj,i ≡ ∂vj

∂vi
of vj w.r.t. vi. This labelling yields the linearized computational graph G of F .

Eq. (1.1) can be written as a system of nonlinear equation C(v) as follows4.

ϕj(vi)i≺j − vj = 0 for j = n+ 1, . . . , q .

Differentiation with respect to v leads to

C ′ = C ′(v) ≡ (c′j,i)i,j=1,...,q =


cj,i if i ≺ j
−1 if i = j

0 otherwise .

311

The extended Jacobian C ′ is lower triangular. Its rows and columns are enumerated as
j, i = 1, . . . , q. Row j of C ′ corresponds to vertex j of G and contains the partial deriva-
tives cj,k of vertex j w.r.t. all of its predecessors. In the following we refer to a row i
as independent for i ∈ {1, . . . , n}, as intermediate for i ∈ {n + 1, . . . , n + p}, and as
dependent if i ∈ {n+ p+ 1, . . . , q}.

The Jacobian matrix F ′ = F ′(x) =
(

∂yj

∂xi
(x)
)j=1,...,m

i=1,...,n
∈ IRm×n of F at point

x can be computed on the linearized computational graph by elimination5, 6 of all in-
termediates vertices as introduced in Griewank et al.7 resulting in a bipartite graph
G′ = ({X, ∅, Y }, E′) with labels on the edges in E′ representing exactly the nonzero
entries of F ′. Following the chain rule an intermediate vertex j ∈ Z can be eliminated
by multiplying the edge labels over all paths connecting pairwise the predecessors i and
successors k followed by adding these products. The result is the label of the edge (i, j).

The elimination of intermediate vertex j can be also understood as elimination of all
non-zero entries in row/column j of C ′8. Therefore one has to find all those rows k with
j ≺ k and eliminate this dependency according to the chain rule. Our implementation
is based on a Compressed Row Storage (CRS)9 representation of C ′. However we believe
that an explanation in terms of the computational graph will be easier to follow. References
to the CRS representation are included where necessary or useful.

Example: Consider a vector function f : IR2 → IR2 with the code list given in Fig. 1 (a).
The corresponding G and C ′ are shown in Fig. 1 (b) and (c), respectively. The vertices
[rows] 1 and 2 represent independent, 6 and 7 dependent, and 3, 4, and 5 intermediate
vertices [rows]. Consider row 4 in Fig. 1 (c) containing the partials c5,3 and c5,4. These are
labels of incoming edges (3, 5) and (4, 5) of vertex 5 in Fig. 1 (b). Column 5 contains the
partial derivatives c6,5 and c7,5 that are the labels of the outgoing edges (5, 6) and (5, 7) of
vertex 5.

v1=x1

v2=x2

v3=v1 · v2
v4=sin(v3)
v5=v3+v4
v6=exp(v5)
v7=cos(v5)
y1=v6
y2=v7

4

c43

c32

c21

2

c20

c54 c64

6

3

0

5

c42

1

0BBBBBBBB@

1
0 2
c3,1 c3,2 3
0 0 c4,3 4
0 0 c5,3 c5,4 5
0 0 0 0 c6,5 6
0 0 0 0 c7,5 0 7

1CCCCCCCCA

(a) (b) (c)

Figure 1. Code list (a), linearized computational graph G (b) and extended Jacobian C′ (c) of f . The diagonal
entries of C′ mark the row index.

Eliminating c6,5 in C ′ as shown in Fig. 2 (b) is equivalent to back-elimination10 of
(5, 6) as shown in Fig. 2 (a). Fill-in is generated as c6,3 [(3, 6)] and c6,4 [(4, 6)] since row

312

[vertex] 6 has a non-zero [incoming edge] in [from] column [vertex] 5. The elimination of
row [vertex] 5 on C ′ [G] can be considered as elimination [back-elimination] of all partial
derivatives [outedges] ck,5 with 5 ≺ k [(5, k)]. Further elimination of intermediate rows
[vertices] 4 and 3 on C ′ [G] as shown in Fig. 3 (b) [(a)] yield the Jacobian entries in [as]
the first two column’s [labels of the incoming edges] of the dependent rows [vertices] 6
and 7.

2

c21

0

c20

65

3
c62

c52

c63

c53

c32

1

0BBBBBBBB@

1
0 2
c3,1 c3,2 3
0 0 c4,2 4
0 0 0 0 5
0 0 c6,3 c6,4 0 6
0 0 c7,3 c7,4 0 0 7

1CCCCCCCCA
c6,3=c6,5 · c5,3

c6,4=c6,5 · c5,4

c7,3=c7,5 · c5,3

c7,4=c7,5 · c5,4

(a) (b) (c)

Figure 2. Computational graph G (a) and extended Jacobian C′ (b) of f after elimination of vertex and row 5,
respectively.

�
�
�
�

��
��
��
��

c50

c51

c61

c60

65

0 1

0BBBBBBBB@

1
0 2
0 0 3
0 0 0 4
0 0 0 0 5

c6,1 c6,2 0 0 0 6
c7,1 c7,2 0 0 0 0 7

1CCCCCCCCA

c6,3+=c6,4 · c4,3

c7,3+=c7,4 · c4,3

c6,1=c6,3 · c3,1

c6,2=c6,3 · c3,2

c7,1=c7,3 · c3,1

c7,2=c7,3 · c3,2

(a) (b) (c)

Figure 3. Bipartite graph G (a) and extended Jacobian C′ after elimination of all intermediate vertices and rows,
respectively.

2 Parallel Algorithms

In order to parallelize the Jacobian accumulation by vertex elimination, we decompose
the computational graph G of F into k subgraphs Gp = (Vp, Ep) with p ∈ {1 · · · k},
Vp ∈ V and Ep = {(i, j) ∈ E|vi, vj ∈ Vp}, where V = ∪k

p=1Vp and E = ∪k
p=1Ep with

Ep ∩ Eq = ∅ for p, q ∈ {1, · · · , k}. Moreover, Vp = Xp ∪ Yp ∪ Zp, with vertex cuts Xp

and Yp representing the local independent and local dependent vertices of the subgraph
Gp, respectively. Zp represents the set of local intermediate vertices k, which lie on a
path from a vertex i ∈ Xp to a vertex j ∈ Yp, with k ∈ Vp − {Xp ∪ Yp}. Hence, Xp,

313

Yp, and Zp are mutually disjoint. We call subgraphs Gi and Gj neighbors, if Yi=Xj with
i, j ∈ 1, k − 1 and this is only the case, if j = i + 1. Whenever we talk about interface
vertices, we mean the common vertices of two neighbors. We refer to subgraphs Gp as
atomic subgraphs in the sense that all edges (i, j) ∈ Ep are between vertices i, j ∈ Vp of
the same subgraph.

+

c94

*

*
sin

c97

c107
c108

c74
c75 c86

8

4 5 6

0 1 2 3

7

11 12 13

II

III

I

109 + *

c95c94

c105

c104

c106

11 12 13

4 5 6

0 1 2 3

9 10

V 2*3

3*3

24

18 48

54

3*2

3*4

3*42*4

3*4

(12)

(10) (28)

(26)

(a) (b) (c)

Figure 4. Graph decomposition (a), local Jacobians by vertex elimination (b), optimal matrix product (c).

In this step the main focus is on having balanced subgraphs to optimize the computa-
tional and communication effort in concurrent processes. Applying the vertex elimination
technique to a subgraph Gp yields the local Jacobian matrix F ′p. Considering the subgraph
G2 in Fig. 4 (a) the elimination of vertices 8 and 9 yields the corresponding bipartite graph
G′2 as shown in Fig. 4 (b). The edge labels of G′2 correspond to the entries of the local
Jacobian

F ′2 =
(
c10,5 c10,6 0
c11,5 c11,6 c11,7

)
.

The reduction to the Jacobian matrix F ′ =
k∏

p=1
F ′p can be considered as the chained product

of k local Jacobian matrices. For the decomposed computational graph in Fig. 4 (b) with
k = 3 the Jacobian F ′ = F ′3

3∗2 ×F ′2
2∗3 ×F ′1

3∗4 is the chained product of local Jacobians
F ′3,F ′2, and F ′1. Dynamic programming can be used to optimize the number of floating
point multiplications (FLOPS) arising in the chained matrix product as shown in Fig. 4 (c),
and described in Griewank et al.11.

Our implementation uses OpenMP12, 13. It runs on the shared memory system Solaris
Sun Fire E6900 with 16 Ultra Sparc VI 1.2 GHz Dual Core processors and 96 GByte

314

a b c d

g11

g12

g21

l0

l2

l3

l1

g3

g4

g2

g1

Figure 5. Parallel Jacobian accumulation by vertex elimination using Pyramid strategy.

Memory. In the following we present two ideas for parallelizing the process of Jacobian
accumulation by vertex elimination on the computational graph.

2.1 Pyramid Approach

The pyramid approach realizes a level-based parallel vertex elimination illustrated with an
example in Fig. 5. At the lowest level l = 0 (Fig. 5 (a)) the computational graphG consists
of 4 atomic subgraphs. The gray coloured vertices represent the local intermediate vertices
of subgraphs. For example the subgraph G0

3 has 2 local intermediate, 3 local independent,
and 2 local dependent vertices, respectively. Applying the vertex elimination on all 4
subgraphs in parallel yields the computational graph as shown in Fig. 5 (b) at level l = 1.
G gets decomposed into 2 subgraphs, namely G1

1 and G1
2. The decomposition at level

l > 0 is nothing else than merging two neighboring subgraphs into one. The interface
vertices of two neighbors become local intermediates of the current subgraph. For instance
G1

1 Fig. 5 (b) at level l = 1 results from merging G0
1 and G0

2 after elimination of their
local intermediate vertices. Repeating this process for G1

1 and G1
2 yields G2 as shown

in Fig. 5 (c). After elimination of 3 local intermediates of G2
1 we get the bipartite graph

G3 shown in Fig. 5 (d). It is obvious that the elimination process at level l = 2 proceeds
serially.

2.2 Master-Slave Approach

The master-slave approach14 consists of two steps: elimination and reduction. The former
is the same as the vertex elimination on subgraph Gp yielding the local bipartite graph that
corresponds to local Jacobian F ′p. This step is performed by the slaves in parallel. The
latter multiplies the local Jacobians and is performed by the master. In graphical terms the

315

s2
s1

Master

ge3 ge4gr1

g1 g2 g3 g4

ge1 ge2

gr2

E

R

R

E

Figure 6. Parallel Jacobian accumulation by vertex elimination using Master-Slave strategy.

reduction step can be understood as the elimination of interface vertices of two neighboring
local bipartite graphs. The underlying computational graph and its decomposition as shown
in Fig. 6 are the same as in Fig. 5 (a). The example in Fig. 6 illustrates the master-slave idea
using 2 slaves s1 and s2. The slaves s1 and s2 apply vertex elimination to the subgraph
G1 and G1, respectively. Each slave, for instance s1, gets the next job (subgraph) G3

immediately after termination of the previous job. The local bipartite graphs Ge
1 and Ge

2

shown in Fig. 6 are the result of previous elimination. They are reduced by the master to
Gr

1.

Conclusion and Numerical Results

Our implementation consists of two main steps: symbolic and accumulation. The sym-
bolic step proceeds on a bit pattern8 and detects the fill-in generated during the accumula-
tion process on CRS. Different elimination techniques can yield different fill-in schemes,
which have a big impact on both memory and runtime requirement of the Jacobian ac-
cumulation. Fig. 7 presents first numerical results of parallel Jacobian accumulation on
CRS of the extended Jacobian of a 2D discretization of the Laplace equation compar-
ing the pyramid (PYRAMID) and master-slave (MASTERSLAVE) approaches with the
serial (SERIAL) version. The serial version computes the Jacobian by applying reverse
elimination to the entire CRS of the underlying problem. Using two threads our parallel
approaches are roughly three times faster than the serial version for large problem sizes.
Partly this speedup is caused by the difference in the generated fill-in as shown in Fig. 8,

316

 0

 50

 100

 150

 200

 250

 300

 350

 0 50000 100000 150000 200000 250000

R
u
n
ti
m

e
 [
s
e
c
o
n
d
s
]

CRS Rows

MASTERSLAVE
PYRAMID

SERIAL

Figure 7. Runtime analysis of parallel Jacobian accumulation on CRS in reverse order against the serial version.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 0 50000 100000 150000 200000 250000

F
ill

-i
n

CRS Rows

MASTERSLAVE
PYRAMID

SERIAL

Figure 8. Fill-in comparison between SERIAL, MASTERSLAVE, and PYRAMID approaches.

which has a big impact on the runtime and memory requirement of the elimination pro-
cess. The real runtime contribution of the fill-in is the subject of ongoing research. Our
first results show that for parallelizing the Jacobian accumulation on CRS fill-in has to be
taken into account, which makes the parallelization an even more complex task. Further
work will focus on optimizing both fill-in generation and parallelization approaches thus
aiming for better memory and runtime behaviour.

317

References

1. M. Berz, C. Bischof, G. Corliss, and A. Griewank, (Eds.), Computational Differenti-
ation: Techniques, Applications, and Tools, Proceedings Series, (SIAM, 1996).

2. G. Corliss and A. Griewank, (Eds.), Automatic Differentiation: Theory, Implementa-
tion, and Application, Proceedings Series, Philadelphia, (SIAM, 1991).

3. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, (Eds.), Automatic
Differentiation of Algorithms – From Simulation to Optimization, (Springer, New
York, 2002).

4. A. Griewank, Evaluating Derivatives. Principles and Techniques of Algorithmic Dif-
ferentiation, Number 19 in Frontiers in Applied Mathematics, (SIAM, Philadelphia,
2000).

5. A. Griewank and S. Reese, On the calculation of Jacobian matrices by the Markowitz
rule, in: Automatic Differentiation of Algorithms: Theory, Implementation, and Ap-
plication, pp. 126–135, (SIAM, Philadelphia, PA, 1991).

6. U. Naumann, Optimal accumulation of Jacobian matrices by elimination methods on
the dual computational graph, Math. Prog., 99, 399–421, (2004).

7. A. Griewank and S. Reese, On the calculation of Jacobian matrices by the Markovitz
rule, in: Automatic Differentiation of Algorithms: Theory, Implementation, and Ap-
plication, A. Griewank and G. F. Corliss, (Eds.), pp. 126–135, (1991).

8. E. Varnik, U. Naumann, and A. Lyons, Toward low static memory Jacobian accumu-
lation, WSEAS Transactions on Mathematics, 5, 909–917, (2006).

9. I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, (Clarendon
Press, Oxford, 1986).

10. U. Naumann, Efficient Calculation of Jacobian Matrices by Optimized Application of
the Chain Rule to Computational Graphs, PhD thesis, Technical University of Dres-
den, (1999).

11. A. Griewank and U. Naumann, Accumulating Jacobians as chained sparse matrix
products, Math. Prog., 3, 555–571, (2003).

12. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, Parallel
programming in OpenMP, (Morgan Kaufmann, San Francisco, 2001).

13. M. J. Quinn, Parallel Programming in C with MPI and OpenMP, (McGraw-Hill Ed-
ucation, ISE Editions, 2003).

14. C. H. Bischof, H. M. Bücker, and P.T. Wu, Time-parallel computation of pseudo-
adjoints for a leapfrog scheme, International Journal of High Speed Computing, 12,
1–27, (2004).

318

