
John von Neumann Institute for Computing

Formal Semantics Applied to the
Implementation of a Skeleton-Based Parallel

Programming Library

Joel Falcou, Jocelyn Sérot

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 243-252, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal Semantics Applied to the Implementation
of a Skeleton-Based Parallel Programming Library

Joel Falcou and Jocelyn Sérot

LASMEA, UMR6602 UBP/CNRS, Campus des Cézeaux, 63177 Aubière, France
E-mail: {joel.falcou, jocelyn.serot}@lasmea.univ-bpclermont.fr

1 Introduction

In a previous paper1, we described QUAFF, a skeleton-based parallel programming li-
brary which main originality is to rely on C++ template meta-programming2, 3 techniques
to significantly reduce the overhead traditionally associated to object-oriented implemen-
tations of such libraries. The basic idea is to use the C++ template mechanism so that
skeleton-based programs are actually run at compile-time and generate a new C+MPI code
to be compiled and executed at run-time. The implementation mechanism supporting this
compile-time approach to skeleton-based parallel programming was only sketched mainly
because the operational semantics of the skeletons was not stated in a formal way, but
“hardwired” in a set of complex meta-programs. As a result, changing this semantics
or adding a new skeleton was difficult. In this paper, we give a formal model for the
QUAFF skeleton system, describe how this model can efficiently be implemented using
C++ meta-programming techniques and show how this helps overcoming the aforemen-
tioned difficulties. It relies on three formally defined stages. First, the C++ compiler
generates an abstract syntax tree representing the parallel structure of the application, from
the high-level C++ skeletal program source. Then, this tree is turned into an abstract pro-
cess network by means of a set of production rules; this process network encodes, in a
platform-independent way, the communication topology and, for each node, the schedul-
ing of communications and computations. Finally the process network is translated into
C+MPI code. By contrast to the previous QUAFF implementation, the process network
now plays the role of an explicit intermediate representation. Adding a new skeleton now
only requires giving the set of production rules for expanding the corresponding tree node
into a process sub-network. The paper is organized as follows. Section 2 briefly recalls the
main features of the QUAFF programming model. Section 3 presents the formal model we
defined to turn a skeleton abstract syntax tree into a process network. Section 4 shows how
template meta-programming is used to implement this model. We conclude with experi-
mental results for this new implementation (Section 5) and a brief review of related work
(Section 6).

2 The QUAFF Library

The programming model of QUAFF is a classical skeleton-based one. Skeletons are defined
as follows:

Σ ::= Seq f | Pipe Σ1 . . .Σn| Farm n Σ | Scm n fs Σ fm | Pardo Σ1 . . .Σn

f, fs, fm ::= sequential, application-specific user-defined C++ functions
n ::= integer ≥ 1

243

All user-defined functions take at most one argument and return at most one result.
The skeleton set is classical. Intuitively, Seq encapsulates sequential user-defined func-
tions in such a way they can be used as parameters to other skeletons; Pipe and Farm are
the usual task-parallel skeletons (with computations performed in stages and under a mas-
ter/workers scheme respectively); Scm models data-parallel computations: fs decomposes
the input data into a set of (possibly) overlapping data subsets, the inner skeleton processes
each subset in parallel and the fm function merges the sub-results; Pardo models parallel,
independent computations, where n distinct tasks are run on n distinct processors. The
parallel structure of an application can then be represented by a tree with nodes corre-
sponding to skeletons and leaves to user-defined sequential functions. A distinctive feature
of QUAFF – compared to other skeleton-based parallel programming libraries4–6 – is that
this structure is completely described by means of type definitions. This, of course, is the
key point allowing optimized message-passing code to be produced at compile-time, as
will be explained in Section 4. Considering a simple application like:

A = Pipe(Seq f1, Farm(4, Seq w), Seq f2)

It’s implemented via the the following code using QUAFF:

Listing 1. Sample QUAFF application

1t y p e d e f t a s k<f1 , v o i d , i n t > F1 ;
2t y p e d e f t a s k<w , i n t , double> W;
3t y p e d e f t a s k<f2 , double , v o i d > F2 ;
4
5run (p i p e l i n e (seq (F1) , farm<4>(seq (W)) , seq (F2))) ;

Lines 1–3 register user-defined C functions as tasks used into skeleton definitions. A
QUAFF task is defined by specifying a function and a pair of input/output types. The
function itself can be either a C-style function or a C++ functor. On line 5, the skeleton
structure is defined using the pipeline and farm skeleton constructors and executed
through the run function.

With QUAFF , the same language is used for describing the parallel structure of the
application, writing application-specific sequential functions and as the target implemen-
tation language. This method has two advantages. First, programmers do not have to
learn a separate language for describing this structure (as is the case with several existing
skeleton-based parallel programming systems such as P3L5 or Skipper7). Second, it makes
insertion of existing sequential functions into skeletons easier and more efficient since no
special foreign function interface is required: they just need to conform to the generic
t result f(t arg) prototype.

3 Formal Model

The implementation model of QUAFF is CSP-based. A parallel program is described as a
process network, i.e. a set of processes communicating by channels and executing each a
sequence of instructions. In this section, we describe how such a process network can be
built from the skeleton tree describing an application by means of a simple process algebra
formalized by a set of production rules.

244

3.1 Process Network Description

Formally, a process network (PN) is a triple π = 〈P, I,O〉 where

• P is a set of labeled processes, i.e. pairs (pid , σ) where pid is a (unique) process
id and σ a triple containing: a lista of predecessors (pids of processes p for which a
communication channel exists from p to the current process), a list of successors (pids
of processes p for which a communication channel exists from the current process to
p) and a descriptor ∆. We note L(π) the set of pids of a process network π. For a
process p, its predecessors, successors and descriptor will be denoted I(p), O(p) et
δ(p) respectively.

• I(π) ⊆ L(π) denotes the set of source processes for the network π (i.e. the set of
processes p for which I(p) = ∅)

• O(π) ⊆ L(π) denotes the set of sink processes for the network π (i.e. the set of
processes p for which O(p) = ∅)

The process descriptor ∆ is a pair (instrs, kind) where instrs is a sequence of (ab-
stract) instructions and kind a flag (the meaning of the kind flag will be explained in
Section 3.2).

∆ ::= 〈instrs, kind〉
instrs ::= instr1, . . . , instrn

kind ::= Regular | FarmM

The sequence of instructions describing the process behaviour is implicitly iterated
(processes never terminate). Instructions use implicit addressing, with each process hold-
ing four variables named vi, vo, q and iws. The instruction set is given below. In the
subsequent explanations, p designates the process executing the instruction.

instr ::= SendTo | RecvFrom | CallFn fid | RecvFromAny | SendToQ |
Ifq instrs1 instrs2 | GetIdleW | UpdateWs

The SendTo instruction sends the contents of variable vo to the process whose pid is
given inO(p). The RecvFrom instruction receives data from the process whose pid is given
in O(p) and puts it in the variable vi. The CallFn instruction performs a computation by
calling a sequential function. This function takes one argument (in vi) and produces one
result (in vo). The RecvFromAny instruction waits (non-deterministically) data from the
set of processes whose pids are given in I(p). The received data is placed in variable
vi and the pid of the actual sending process in the variable q. The SendToQ instructions
sends the contents of variable vo to the process whose pid is given by variable q. The
Ifq instruction compares the value contained in variable q to the first pid listed in I(p).
If case of equality, the instruction sequence instrs1 is executed; else instrs2 is executed.
The UpdateWs instruction reads variable q and updates the variable iws accordingly. The
variable iws maintains the list of idle workers for FARM master processes. The GetIdleW
retrieves a process id from the iws list and places it in the variable q. Together, these two
instructions encapsulate the policy used in a FARM skeleton to allocate data to workers.
They are not detailed further here.

aNote that this is really a list, and not a set, since the order is relevant.

245

3.2 A Basic Process Network Algebra

The following notation will be used. If E is a set, we denote by E [e← e′] the set obtained
by replacing e by e′ (assuming E [e ← e′] = E if e /∈ E). This notation is left-associative:
E [e ← e′][f ← f ′] means (E [e ← e′])[f ← f ′]. If e1, . . . , em is an indexed subset of
E and φ : E → E a function, we will note E [ei ← φ(ei)]i=1..m the set (. . . ((E [e1 ←
φ(e1)])[e2 ← φ(e2)]) . . .)[em ← φ(em)]. Except when explicitly indicated, we will note
I(πk) = {i1k, . . . , imk } and O(πk) = {o1k, . . . , on

k}. For concision, the lists I(oj
k) et O(ijk)

will be noted sj
k et dj

k respectively. For lists, we define the a concatenation operation ++ as
usual : if l1 = [e11, . . . , e

m
1] and l2 = [e12, . . . , e

n
2] then l1++l2 = [e11, . . . , e

m
1 , e

1
2, . . . ; e

n
2].

The empty list is noted []. The length of list l (resp. cardinal of a set l) is noted |l|.

The d.e operator creates a process network containing a single process from a process
descriptor, using the function NEW() to provide “fresh” process ids :

δ ∈ ∆ l = NEW()
dδe = 〈{(l, 〈[], [], δ〉)}, {l}, {l}〉

(SINGL)

The • operation “serializes” two process networks, by connecting outputs of the first to
the inputs of the second :

πi = 〈Pi, Ii, Oi〉 (i = 1, 2) |O1| = |I2| = m

π1 • π2 = 〈(P1 ∪ P2)[(o
j
1, σ) � φd((o

j
1, σ), ij2)]j=1...m[(ij2, σ) � φs((i

j
2, σ), oj

1)]j=1...m,
I1, O2〉

(SERIAL)

This rule uses two auxiliary functions φs and φd defined as follows :

φs((p, 〈s, d, 〈δ,Regular〉〉), p′) = (p, 〈[p′]++s, d, 〈[RecvFrom]++δ,Regular〉〉)
φd((p, 〈s, d, 〈δ,Regular〉〉), p′) = (p, 〈s, d++[p′], 〈δ++[SendTo],Regular〉〉)
φs((p, 〈s, d, 〈δ,FarmM〉〉), p′) = (p, 〈[p′]++s, d, 〈δ,FarmM〉〉)
φd((p, 〈s, d, 〈δ,FarmM〉〉), p′) = (p, 〈s, d++[p′], 〈δ,FarmM〉〉)

The function φs (resp. φd) adds a process p′ as a predecessor (resp. successor) to
process p and updates accordingly its instruction list. This involves prepending (resp.
appending) a RecvFrom (resp. SendTo) instruction) to this instruction list, except for FARM
masters (identified by the FarmM kind flag), for which the instruction list is not modified.

The ‖ operation puts two process networks in parallel, merging their inputs and outputs
respectively.

πi = 〈Pi, Ii, Oi〉 (i = 1, 2)
π1 ‖ π2 = 〈P1 ∪ P2, I1 ∪ I2, O1 ∪O2〉

(PAR)

The 1 operation merges two process networks by connecting each input and output of
the second to the output of the first :

246

πi = 〈Pi, Ii, Oi〉 (i = 1, 2) |O1| = 1 |I2| = m |O2| = n

π1 1 π2 = 〈(P1 ∪ P2)[(o1, σ) � Φ((o1, σ), I(π2), O(π2))][(i
j
2, σ) � φs((i

j
2, σ), o1)]j=1...m

[(oj
2, σ) � φd((ij2, σ), o1)]j=1...n,

I1, O1〉
(JOIN)

where Φ(p, pss, psd) = Φs(Φd(p, psd), pss) and Φs (resp. Φd) generalizes the function
φs (resp. φd) to a list of processes :

Φs(p, [p1, . . . , pn]) = φs(. . . , φs(φs(p, p1), p2), . . . , pn)
Φd(p, [p1, . . . , pn]) = φd(. . . , φd(φd(p, p1), p2), . . . , pn)

Skeletons can now be defined in terms of the operations defined above, using the fol-
lowing conversion function Cb :

C[[Seq f]] = dfe
C[[Pipe Σ1 . . .Σn]] = C[[Σ1]] • . . . • C[[Σn]]

C[[Farm n Σ]] = dFarmMe 1 (C[[Σ]]1 ‖ . . . ‖ C[[Σ]]n)
C[[Scm m fs Σ fm]] = C[[Seq fs]] / (C[[Σ]]1 ‖ . . . ‖ C[[Σ]]m) . C[[Seq fm]]
C[[Pardo Σ1 . . .Σn]] = C[[Σ1]] ‖ . . . ‖ C[[Σn]]

where FarmM is a process descriptor predefined as :

∆(FarmM) = 〈[RecvFromAny; Ifq [GetIdleW;SendToQ] [UpdateWs;SendTo]],FarmM〉

4 Implementation

We now explain how the production rules and the conversion function C introduced in
the previous section can be implemented as a compile-time process. The process itself is
sketched on Fig. 1.

C++

PIPE

FARM3φ1 φ3

φ2
φ1 φ3

φ2

φ2

f

φ2

Skeleton tree
Generation

Process network
Production

C+MPI Code
Generation C

MPI

Figure 1. QUAFF code generation process

It consists of three steps: generating the skeleton tree, turning this structure into a
process network and producing the C+MPI target code. These three steps are carried out at

bThe production rules for the operators / and ., used in the definition of the Scm skeleton have been omitted due
to space constraints.

247

compile-time. The key idea is that each object of the formal semantics defined in Section 3
is encoded as a type in the implementation language. Production rules, in particular, are
encoded as meta-programs taking arguments and producing results as C++ types. The
whole process is illustrated with a very simple application consisting of a two-stages
pipeline. Using QUAFF, this application is written:

run(pipeline(seq(F1),seq(F2)));

where F1 and F2 are registered sequential functions, as illustrated in Listing 1.

4.1 Generating the Skeleton Tree

For each skeleton, the corresponding function at the API level returns a value which type
is a compile-time representation of the skeleton. Here’s, for example, the definition of the
seq and farm functions:

Listing 2. Skeleton constructors for SEQ and FARM

t e m p l a t e<c l a s s F>
Seq<F> seq (c o n s t F&) { re turn Seq<F>() ; }

t e m p l a t e<i n t N, c l a s s W>
Farm<N,W> farm (c o n s t W&) { re turn Farm<N,W>() ; }

In the two-stages pipeline example, the call run() at the API level need to call the
pipeline function, and therefore the seq function. This will generate the following
residual code, in which the argument to the run function is an instance of a type encoding
of the skeleton tree:

run(Serial< Seq<F1>, Seq<F2> >());

This template now carries informations about the skeleton tree in a form usable by our
meta-functions.

4.2 Producing the Process Network

We first give, in Listing 3, the type encoding of process network, labeled process and
process descriptor objects. Each of these types is defined as a simple template container,
with arguments statically encoding the aggregated objects. In the process network
type, the P, I and O fields are compile-time lists of process IDs. Technically speaking,
process IDs themselves are encoded as type-embedded integral constants and type lists
are built and manipulated using the BOOST::MPL library3. In the process type, the
input type and output type encode the argument and return type of the associated
user-defined function. In the descriptor type, the i pids and o pids fields encode
the list of successors and predecessors respectively and the instrs field encodes the list
of instructions executed by the process.

248

Listing 3. process network, process and descriptor related data types

t e m p l a t e<c l a s s P , c l a s s I , c l a s s O> s t r u c t p r o c e s s n e t w o r k
{

t y p e d e f P p r o c e s s ;
t y p e d e f I i n p u t s ;
t y p e d e f O o u t p u t s ;

} ;

t e m p l a t e<c l a s s ID , c l a s s DESC, c l a s s IT , c l a s s OT> s t r u c t p r o c e s s
{

t y p e d e f ID p i d ;
t y p e d e f DESC d e s c r i p t o r ;
t y p e d e f IT i n p u t t y p e ;
t y p e d e f OT o u t p u t t y p e ;

} ;

t e m p l a t e<c l a s s IPID , c l a s s OPID , c l a s s CODE, c l a s s KIND> s t r u c t d e s c r i p t o r
{

t y p e d e f IPID i p i d s ;
t y p e d e f OPID o p i d s ;
t y p e d e f CODE i n s t r s ;
t y p e d e f KIND kind ;

} ;

Listing 4. The run function

t e m p l a t e<c l a s s SKL> void run (c o n s t SKL&)
{

t y p e d e f typename c o n v e r t<SKL> : : t y p e p n e t ;
p n e t : : Run () ;

}

The run function now has to convert the type describing the skeleton tree produced by
the previous step into a type describing the corresponding process network (i.e. to imple-
ment the C function specified in Section 3.2).

This code show that run simply extracts type informations from its template parameter
and pass it through the convert meta-function. This function is statically overloaded for
each skeleton constructor. Listing 5 shows the overloaded meta-function for the pipeline
skeleton.

Listing 5. pipeline template conversion

t e m p l a t e<c l a s s S0 , c l a s s S1 , c l a s s ID> s t r u c t c o n v e r t<S e r i a l <S0 , S1>,ID>
{

t y p e d e f S e r i a l <S1 , mpl : : vo id > t a i l ;
t y p e d e f typename c o n v e r t<S0 , ID > : : t y p e p roc1 ;
t y p e d e f typename c o n v e r t<S0 , ID > : : new id n e x t i d ;
t y p e d e f typename c o n v e r t<t a i l , n e x t i d > : : new id new id ;
t y p e d e f typename c o n v e r t<t a i l , n e x t i d > : : t y p e p roc2 ;
t y p e d e f typename r u l e s e r i a l <proc1 , proc2 > : : t y p e t y p e ;

} ;

The convert meta-function extracts the skeleton sub-trees from S0 and S1, converts

249

them into process networks, computes a new process ID and apply the appropriate
production rule (SERIAL) to generate a new process network embedded in the type
typedef.

The production rules are also implemented as meta-programs. The template equiva-
lent of the rule SERIAL defined in Section 3.2, for example, is given in Listing 6. This
template takes as parameters the types encoding the two process networks to serialize.
The type encoding the resulting process network is then built incrementally, by means of
successive type definitions, each type definition precisely encoding a value definition of
the formal production rule and by using MPL meta-function like transform which is
a meta-programmed iterative function application or copy which is used in conjunction
with the back inserter manipulator to concatenates two lists of process networks.

Listing 6. The meta-programmed (SERIAL) rule

t e m p l a t e<c l a s s P1 , c l a s s P2> s t r u c t r u l e s e r i a l
{

/ / Get l i s t o f p r o c e s s e s and I /O from P1 and P2
t y p e d e f typename P1 : : p r o c e s s p roc1 ;
t y p e d e f typename P2 : : p r o c e s s p roc2 ;
t y p e d e f typename P1 : : i n p u t s i 1 ;
t y p e d e f typename P2 : : i n p u t s i 2 ;
t y p e d e f typename P1 : : o u t p u t s o1 ;
t y p e d e f typename P2 : : o u t p u t s o2 ;

/ / Add new p r o c e s s graph i n t o t h e new p r o c e s s ne twork
t y p e d e f typename mpl : : t r a n s f o r m< proc1 , ph i d< 1 , o1 , i2> >:: t y p e np1 ;
t y p e d e f typename mpl : : t r a n s f o r m< proc2 , p h i s< 1 , i2 , o1> >:: t y p e np2 ;
t y p e d e f typename mpl : : copy<np2 , mpl : : b a c k i n s e r t e r <np1> >:: t y p e p r o c e s s ;

/ / P r o c e s s ne twork d e f i n i t i o n
t y p e d e f p r o c e s s n e t w o r k<p r o c e s s , i1 , o2> t y p e ;

} ;

4.3 Generating Parallel Application Code

The last step consists in turning the process network representation into C+MPI code.
This transformation is triggered at the end of the run function. The Run method of the
process network class created by the application of convert sequentially instanti-
ates and executes each macro-instructions of its descriptor. The actual process of turning
the macro-instructions list into an C+MPI code is based on tuple generation similar to the
one used in the previous QUAFF implementation1. Each instance is then able to check if
its PID matches the actual process rank and executes its code. For our two-stages pipeline,
the residual code looks like as shown in Listing 7

5 Experimental Results

We have assessed the impact of this implementation technique by measuring the overhead
ρ introduced by QUAFF on the completion time over hand-written C+MPI code for both

250

Listing 7. Generated code for the two stage pipeline

i f (Rank () == 0)
{

do {
o u t = F1 () ;
MPI Send(& out , 1 , MPI INT , 1 , 0 ,MPI COMM WORLD) ;

} whi le (i s V a l i d (o u t))
}
e l s e i f (Rank () == 1)
{

do {
MPI Recv(& in , 1 , MPI INT , 0 , 0 ,MPI COMM WORLD,& s) ;
F2 (i n) ;

} whi le (i s V a l i d (i n))
}

single skeleton application and when skeletons are nested at arbitrary level. For single
skeleton tests, we observe the effect of two parameters: τ , the execution time of the inner
sequential function and N , the ”size” of the skeleton (number of stages for PIPELINE,
number of workers for FARM and SCM). The test case for nesting skeletons involved
nesting P FARM skeletons, each having ω workers. Results were obtained on a PowerPC
G5 cluster with 30 processors and for N = 2− 30 and τ = 1ms, 10ms, 100ms, 1s.

For PIPELINE, ρ stays under 2%. For FARM and SCM, ρ is no greater than 3% and
becomes negligible for N > 8 or τ > 10ms. For the nesting test, worst case is obtained
with P = 4 and ω = 2. In this case, ρ decreases from 7% to 3% when τ increases from
10−3s to 1s.

6 Related Work

The idea of relying on a process network as an intermediate representation for skeletal
programs is not new; in fact, several implementations of skeleton-based parallel program-
ming libraries, such as P3L5, implicitly rely on such a representation. But, the process
of translating the skeleton tree into such a network has never been formalized before.
Aldinucci8 proposed a formal operational semantics for skeleton-based programs but,
contrary to QUAFF , the actual implementation relies on a dynamic runtime. Thus, to
our best knowledge, our work is the first to both rely on a formal approach to skeleton
compilation while offering performances on par with hand-coded C+MPI implementations.

On the other hand, using generative programming and meta-programming for imple-
menting parallel applications and libraries is currently an upcoming trend. Works by Czar-
necki and al.9,Puschel and al.10, Hammond11, Langhammer and Hermann12 uses meta-
programming in MetaOCaml13 or Template Haskell to generate parallel domain
specific languages for solving problem like signal processing optimizations or parallel
processes scheduling on MIMD machines thus making generative programming a valid
technique to solve realistic problems. Our work can be viewed as a specific application of
these general techniques.

251

7 Conclusion

In this paper, we have the shown how generative and meta-programming techniques can
be applied to the implementation of a skeleton-based parallel programming library . The
resulting library, QUAFF , both offers a high level of abstraction and produces high perfor-
mance code by performing most of the high to low-level transformations at compile-time
rather than run-time. The implementation is derived directly from a set of explicit produc-
tion rules, in a semantic-oriented style. It is therefore formally sounded and much more
amenable to proofs or extensions.

References

1. J. Falcou, J. Sérot, T. Chateau and J.-T. Lapresté, QUAFF: Efficient C++ Design for Parallel
Skeletons, Parallel Computing, 32, 604–615, (2006).

2. T. Veldhuizen, Using C++ template metaprograms, C++ Report, 7, 36–43, (1995). Reprinted
in C++ Gems, ed. Stanley Lippman.

3. D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and Tech-
niques from Boost and Beyond C++ in Depth Series, (Addison-Wesley Professional, 2004).

4. H. Kuchen, A skeleton library, in: Euro-Par ’02: Proc. 8th International Euro-Par Conference
on Parallel Processing, pp. 620–629, London, UK, (Springer-Verlag, 2002).

5. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti and M. Vanneschi, P3l: A structured high level
programming language and its structured support, Concurrency: Practice and Experience, 7,
225–255, (1995).

6. M. Cole, Research Directions in Parallel Functional Programming, Chapter 13, Algorithmic
skeletons, (Springer, 1999).

7. J. Sérot and D. Ginhac, Skeletons for parallel image processing: an overview of the skipper
project, Parallel Computing, 28, 1685–1708, (2002).

8. M. Aldinucci and M .Danelutto, Skeleton based parallel programming: functional and parallel
semantic in a single shot, in: Computer Languages, Systems and Structures, (2006).

9. K. Czarnecki, J.T. O’Donnell, J. Striegnitz and W. Taha, Dsl implementation in metaocaml,
template haskell and C++, in: C. Lengauer, D. Batory, C. Consel, and M. Odersky, eds.,
Domain-Specific Program Generation, Lecture Notes in Computer Science, vol. 3016, pp. 51–
72, (Springer-Verlag, 2004).

10. M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson and N. Rizzolo, SPIRAL: Code Generation
for DSP Transforms, in: Proc. IEEE Special Issue on Program Generation, Optimization, and
Adaptation, (2005).

11. K. Hammond, R. Loogen and J. Berhold, Automatic Skeletons in Template Haskell, in: Proc.
2003 Workshop on High Level Parallel Programming, Paris, France, (2003).

12. Ch. A. Herrmann and T. Langhammer, Combining partial evaluation and staged interpreta-
tion in the implementation of domain-specific languages, Sci. Comput. Program., 62, 47–65,
(2006).

13. MetaOCaml. A compiled, type-safe multi-stage programming language. Available online from
http://www.metaocaml.org/, (2003).

252

