
John von Neumann Institute for Computing

A Framework for Performance-Aware
Composition of Explicitly Parallel Components

Christoph W. Kessler, Welf Löwe

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 227-234, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Framework for Performance-Aware Composition of
Explicitly Parallel Components

Christoph W. Kessler1 and Welf Löwe2

1 PELAB, IDA, Linköpings universitet, S-58183 Linköping, Sweden
E-mail: chrke@ida.liu.se

2 MSI, Växjö universitet, Växjö, Sweden
E-mail: welf.lowe@msi.vxu.se

We describe the principles of a novel framework for performance-aware composition of explic-
itly parallel software components with implementation variants. Automatic composition results
in a table-driven implementation that, for each parallel call of a performance-aware component,
looks up the expected best implementation variant, processor allocation and schedule given the
current problem and processor group sizes. The dispatch tables are computed off-line at com-
ponent deployment time by interleaved dynamic programming algorithm from time-prediction
metacode provided by the component supplier.

1 Introduction

The multicore revolution in microprocessor architecture has just begun. Programmers will
soon be faced with hundreds of hardware threads on a single-processor chip. Exploiting
them efficiently is the only way to keep up with the performance potential that still follows
the exponential development predicted by Moore’s Law. This makes the introduction of
parallel computing inevitable even in mainstream computing. Automatic parallelization is
often not applicable due to the lack of static information or not efficient due to the principle
overhead. Hence, explicit parallel programming is likely to become a dominating program-
ming paradigm for the foreseeable future. This constitutes a challenge for programmers: in
addition to the ever growing complexity of software, they now ought to master parallelism
in an efficient and effective way, which creates a whole new problem dimension.

Current component technology fits well the domain of sequential and concurrent
object-oriented programming. However, existing component models and composition
techniques are poorly suited for the performance-aware composition of components for
massively parallel computing. Classical component systems allow composition of func-
tionality beyond language and platform boundaries but disregard the performance aspect.
The HPC domain (and, as argued, very soon even mainstream computing) requires com-
position systems with explicitly parallel components. In particular, a performance-aware
component model and composition technique are necessary to build complex yet efficient
and scalable software for highly parallel target platforms.

In this paper, we propose a new approach for performance-aware composition of ex-
plicitly parallel components. We require that all parallel and sequential components subject
to performance-aware composition adhere to a specific performance interface recognized
by a special performance-aware composition tool. Performance-aware composition re-
quires the component provider to supply metacode for each performance-aware method f .
We focus on terminating methods f ; the metacode is used to predict the execution time

227

of f . The metacode includes a float-valued function time f depending on the number
p of processors available and some selected parameters of f ; time f approximates the
expected runtime of f used for local scheduling purposes. It is supplied by the component
provider instead of computed by static analysis of f . In practice, it may interpolate entries
in a precomputed table or use a closed form function but rather not simulated execution.

Functional and performance signatures are exposed by the component provider. Differ-
ent substitutable component variants implementing the same functionality f inherit from
the same interface. In general, different variants have different time f functions. Dy-
namic composition chooses, for each call, the variant expected to be the fastest .

Parallel implementations may additionally exploit nested parallelism, marked explic-
itly by a parallel composition operator, putting together independent subtasks that could be
executed in parallel or serially. Different schedules and processor allocations are precom-
puted, depending on static information like the characteristics of the hardware platform
and the variants of subtasks available. They are then selected dynamically for different
runtime configurations of problem sizes and processor group sizes.

2 Example: Parallel and Sequential Sorting Components

In the following example, we use pseudocode with object-oriented syntax and a shared-
memory programming model similar to Fork4 where statements and calls are executed in
SPMD style, i.e., by a group of processors synchronized at certain program points. Note
that our framework is by no means restricted to SPMD or object-oriented paradigms. In
particular, it should work equally well with modular languages that provide the interface
concept. Moreover, it would work equally well with a message passing programming
model such as MPI, as we exemplified for parallel composition in earlier work3.

We consider sorting as an example of functionality supported by several parallel and/or
sequential components. We picked sorting since alternative sequential and parallel sorting
algorithms such as quicksort, mergesort, or bitonic sort are well-known. Moreover, there
are variants highly depending on the actual input (quicksort) and others that are less input-
independent (mergesort). Hence, sorting comprises properties of a broad range of potential
applications. All component variants conform to the same interface:

/∗@performance aware ∗ / i n t e r f a c e S o r t {
/∗@performance aware ∗ / void s o r t (f l o a t ∗ a r r , i n t n) ; }

The performance aware qualifier marks the interface and its method sort for the
composition tool. It expects a performance-aware implementation variant of sort and a
time function time sort with a subset of the parameters of sort in all implementation
variants, e.g., a parallel quicksort:
The operator compose parallel marks independent calls to the performance-aware
method sort; these may be executed in parallel or serially, in any order. The composition
tool will replace this construct with a dynamic dispatch selecting the approximated opti-
mum schedule (serialization of calls, parallel execution by splitting the current group of
processors into subgroups, or a combination of thereof) and implementation variant.

Within a time_sort function, the component designer specifies a closed formula, a
table lookup, or a recurrence equation for the expected runtime of this variant. This meta-

228

/∗@performance aware ∗ / component ParQS v a r i a n t O f S o r t {
f l o a t f i n d p i v o t (f l o a t ∗ a r r , i n t n) { . . . }
i n t p a r t i t i o n (f l o a t ∗ a r r , i n t n , f l o a t p i v o t) { . . . }

/∗@performance aware ∗ / void s o r t (f l o a t ∗ a r r , i n t n) {
i f (n ==1) re turn ;
f l o a t p i v o t = f i n d p i v o t (a r r , n) ;
i n t n1 = p a r t i t i o n (a r r , n , p i v o t) ;
/∗@co mpos e par a l l e l ∗ /

/∗@1∗ / s o r t (a r r , n1) ;
/∗@2∗ / s o r t (a r r +n1 , n−n1) ;

/∗@ e n d c o m p o s e p a r a l l e l ∗ /
}

/∗@time metadata ∗ / / / pa r se d and used by c o m p o s i t i o n t o o l
/ / aux . f o r t i m e s o r t , f ound e m p i r i c a l l y a t d e p l o y m e n t t i m e
c o n s t f l o a t T t e s t 1 = . . . / / t i m e f o r r e c u r s i o n end
c o n s t f l o a t T f i n d p i v o t = . . . / / t i m e f o r f i n d p i v o t
c o n s t f l o a t [] [] T p a r t i t i o n = . . . / / t a b l e o f p a r t i t i o n t i m e s
. . . / / benchmark metacode o m i t t e d
f l o a t t i m e s o r t (i n t p , i n t n) {

i f (n == 1) re turn T t e s t 1 ;
f l o a t a c c t i m e = 0 . 0 ;
f o r (i n t n1 =1; n1<n ; n1 ++)

a c c t i m e += TIMEpar (sort@1 , n1 , sort@2 , n−n1 , p) ;
f l o a t exp t ime = a c c t i m e / (f l o a t) (n−1) ;
re turn T t e s t 1 + T f i n d p i v o t + T p a r t i t i o n [n] [p] + exp t ime ;

}
/∗@end t ime metada ta ∗ /

}

code is used to generate the dynamic dispatch tables. The operator TIMEpar computes the
time for a parallel composition referring to independent calls, e.g., sort@1 and sort@2,
and the number p of processors available. It is the approximation of the makespan of the
schedule found in optimization, cf. Section 3.

Below the sort and time sort functions of a performance-aware sequential sorting
component SeqQS, which simply wraps a (non-performance-aware) sequential quicksort
library routine. For brevity, we omit the code of a parallel merge sort variant ParMS,
which is also used in our example implementation, cf. Section 4.

/∗@performance aware ∗ / void s o r t (f l o a t ∗ a r r , i n t n) {
seq q s o r t (a r r , n) ; / / done on 1 p r o c e s s o r o n l y

}
/∗@time metadata ∗ / / / used by c o m p o s i t i o n t o o l

c o n s t f l o a t [] T q s o r t = . . . / / Tab le o f seq . s o r t i n g t i m e s
f l o a t t i m e s o r t (i n t P , i n t n) { re turn T q s o r t [n] ; }

/∗@end t ime metada ta ∗ /

3 Performance-Aware Composition

The optimization problem for composition is to determine (i) for each call to a
performance-aware function, the (expected) best implementation variant, (ii) for each par-
allel composition operator in a performance-aware function, the number of processors to
spend on the calls of each subtask, and a schedule for these subtasks.

The optimization problem may be reduced to the independent malleable task schedul-
ing problem. A malleable task can be executed on p = 1 . . . P processors. Its execution

229

time is described by a non-increasing function τ in the number of processors p actually
used. A malleable task tf corresponds to a call to a performance-aware interface function
f , resp. its implementation variants. For each malleable task tf , the τf -function is approx-
imated using the time f functions. Then, compose parallel is replaced by selecting
a schedule of independent malleable task.

Even without the choice between different variants, this scheduling problem is known
to be NP-hard in the general case, but good approximations exist: for instance, k inde-
pendent malleable tasks can be scheduled in time O(P · k2) on P processors such that
the completion time of the resulting schedule is at most

√
3 times the optimum6. More-

over, k identical malleable tasks can be scheduled optimally to P processors in time
O(max(log(k) · t3P , k · (2t)P) where t is the sequential execution time of a task2.
Dispatch table generation The composition tool does not directly create the customized
code. Instead, it generates (i) a variant dispatch table Vf for each interface function f
and (ii) a schedule lookup table S for each parallel composition operator, listing the (ex-
pected) best processor allocation and the corresponding schedule. The table lists entries
with the best decision for a range of problem sizes (ranging from 1 to some maximum
tabulated problem size, suitably compacted) and a number of processors (ranging from 1
to the maximum number of processors available in the machine, suitably compacted). For
our example above, Vsort(n, p) contains a pointer to the expected best sort function for
problem size n and processor group size p, – see Fig. 1 (right). S(n1, n2, p) for the parallel
composition operator in ParQS yields a processor allocation (p1, p2), where p1 + p2 ≤ p,
and a pointer to the expected best schedule variant, here only one of two variants: parallel
or serial execution of the two independent calls to sort.

The tables Vf and S are computed by an interleaved dynamic programming algorithm
as follows. Together with Vf and S, we will construct a table τf (n, p) containing the
(expected) best execution times for p processors.

For a base problem size, e.g. n = 1, we assume the problems to be trivial and the
functions not to contain recursive malleable tasks, i.e., no recursive calls to performance-
aware functions. Hence, τf (1, p) can be directly retrieved from the corresponding timef

functions and Vf (1, p) selected accordingly as the variant with minimum timef .
For p = 1, parallel composition leads to a sequential schedule, i.e., the entries S(..., 1)

point to sequential schedules where each task uses 1 processor. Hence, no performance-
aware function contains alternative schedules for p = 1 and TIMEpar reduces to a simple
addition of execution times of the subtasks. Accordingly, the τf (n, 1) and Vf (n, 1) for
n = 1, 2, ... can be derived iteratively from the timef functions: τf (n, 1) is set to the
minimum timef of all variants of f and Vf (n, 1) is set to the variant with minimum
timef . Usually, the sequential variants (not containing a parallel composition at all) out-
perform the serialized parallel variants.

Then, we calculate the remaining table entries stepwise for p = 2, 3, For each p, we
consider successive n = 1, 2, For each such n, we determine τf (n, p), Vf (n, p), and the
schedules of sub-problems S(n1, n2, . . . , nk, p). Hence, for n > 1, p > 1, we have already
computed τf (n′, p′), Vf (n′, p′) and S(n1, n2, . . . , nk, p

′) with n′, n1, n2, . . . , nk < n and
p′ ≤ p.

First, we calculate the schedules S(n1, n2, . . . , nk, p) for the compose parallel
constructs: Since τf is defined for each call contained, we simply apply an approximation
to the independent malleable task problem leading to a schedule and processor allocations

230

(p1, p2, . . . , pk), where all pi ≤ p. In our example, we do not even need to approximate
the optimum since there is only the parallel schedule with finitely many parallel allocations
(p1, p− p1) and the sequential one.

Second, we compute τf (n, p) and Vf (n, p): We replace the TIMEpar construct with
the makespan of the schedule derived and evaluate the timef functions for each variant.
Again, τf (n, p) is set to the minimum timef of all variants of f and Vf (n, p) is set to the
variant with minimum timef .
Composition Auxiliary performance functions and tables as needed for the timef func-
tions are determined at component deployment time. Accordingly, a component variant
provider needs to provide benchmark metacode executed before optimization.

All performance-aware components for the same interface should be deployed together
to get meaningful table entries. Encapsulation is still preserved as third-party component
providers need not know about other performance-aware components that co-exist.

After optimization, the composition tool patches each call to f in all component im-
plementations with special dispatch code that looks up the variant to call by inspecting
the Vf table at runtime, and generates dispatch code at each parallel composition operator
looking up its S table at runtime with the current subproblem and group size to adopt the
(expected) best schedule.

The example code for ParQS after composition is sketched below:

component ParQS {
f l o a t f i n d p i v o t (f l o a t ∗ a r r , i n t n) { . . . }
i n t p a r t i t i o n (f l o a t ∗ a r r , i n t n , f l o a t p i v o t) { . . . }

e x t er n c o n s t i n t [] [] V s o r t ; / / The V t a b l e
c o n s t i n t [] [] [] [] S s o r t = . . . / / The S t a b l e
c o n s t vo id (∗ S c h e d s o r t [2]) (f l o a t ∗ , i n t) = { s 1 s o r t , s 2 s o r t } ;

void s o r t (f l o a t ∗ a r r , i n t n) {
i f (n ==1) re turn ;
f l o a t p i v o t = f i n d p i v o t (a r r , n) ;
i n t n1 = p a r t i t i o n (a r r , n , p i v o t) ;
/ / S c h e d u l e d i s p a t c h − l o o k up f u n c t i o n p o i n t e r i n S and c a l l :
i n t p = g r o u p s i z e () ; / / number o f e x e c u t i n g p r o c e s s o r s
S c h e d s o r t [S [n1] [n−n1] [p] [0]]

(a r r , n1 , n−n1 , S [n1] [n−n1] [p] [1] , S [n1] [n−n1] [p] [2]) ;
}
/ / s e r i a l i z e d s c h e d u l e :
void s 1 s o r t (f l o a t ∗ a r r , i n t n1 , i n t n2 , i n t p1 , i n t p2) {

V s o r t [n1] [p1] (a r r , n1 , p1) ;
V s o r t [n−n1] [p2] (a r r +n1 , n2 , p2) ;

}
/ / p a r a l l e l s c h e d u l e :
void s 2 s o r t (f l o a t ∗ a r r , i n t n1 , i n t n2 , i n t p1 , i n t p2) {

s p l i t g r o u p (p1 , p2) { V s o r t [n1] [p1] (a r r , n1) ; }
{ V s o r t [n2] [p2] (a r r +n1 , n2) ;}

}
}

The table entry S sort[n1][n2][p][0] contains the precomputed schedule vari-
ant, the entry S sort[n1][n2][p][i] the processor allocation for the i-th call.
groupsize() returns the number of processors in the executing group. Any other call
to sort(a,n) would be patched to V_sort[n][groupsize()](a,n). Techni-
cally, the composition tool could be based on COMPOST1 or a similar tool for static meta-

231

Table V[N][P]:
P=1 2 3 4

N= 1: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 2: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 3: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 4: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 5: 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1
N= 6: 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1
N= 7: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 8: 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 9: 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1
N=10: 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
N=11: 3 3 1 1 1 1 1 1 2 2 1 1 1 1 1 1
N=12: 3 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2
N=13: 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
N=14: 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2
N=15: 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
N=16: 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2
N=17: 3 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1
N=18: 3 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2
N=19: 3 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2
N=20: 3 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
N=21: 3 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1
N=22: 3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
N=23: 3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
N=24: 3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
N=25: 3 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
N=26: ...

Figure 1. Execution times (in SBPRAM clock cycles) of the composed sorting program, applied to N = 500
numbers on up to P = 32 SBPRAM processors, compared to the times needed when using each component
exclusively. The dispatch tables were precomputed by dynamic programming for N = 1...64 and P = 1...32.
— Right-hand side: The top-left-most entries (1..25×1..16) in the variant dispatch table V indicating the expected
best variant, where 1 denotes a call to ParQS, 2 to ParMS, and 3 to SeqQS.

programming that enables fully programmable program restructuring transformations.

4 Implementation and First Results

A proof-of-concept implementation uses the C-based parallel programming language
Fork4 for three sorting components, parallel recursive quicksort, parallel recursive merge-
sort, and sequential quicksort. The time parameters for the functions find pivot,
partition, qsort etc. used in time sort were obtained by measuring times for
example instances. Times depending on input data were averaged over several instances.
To record the best schedules for parallel composition in the schedule table, a brute-force
enumeration approach was chosen, as the best constellation of subgroup sizes can be de-
termined in linear time for a parallel divide degree of 2, as in ParQS and ParMS.

As a fully automatic composition tool interpreting metacode syntax is not yet available,
we simulated the effect of composition by injecting the the dispatch tables and lookups by
hand into the appropriate places in the source code. For evaluation purposes, the resulting
Fork source code can be configured to either use the schedule and variants as given in the
computed dispatch tables or the original component implementations without modification.
The code is compiled to the SBPRAM4 and executed on its cycle-accurate simulator, run
on a SUN Solaris server.

Figure 1 shows average times for sorting 500 numbers on up to 32 PRAM processors
(left) and a section of the variant dispatch table V (right). We can observe that all parallel
variants outperform sequential quicksort. Among the former, adaptive parallel quicksort
and our performance-aware composition perform best. That these two variants perform
almost equivalent comes at no surprise when looking the V table entries: except for small
problem sizes, quicksort is selected.

232

The performance improvements of the composed function (up to a factor of 10 com-
pared to sequential sorting and up to a factor of 4 and 5 compared to the parallel quicksort
and mergesort only, resp.) are due to schedule lookup. The gain increases with N because
the general case of two recursive subtasks gets more common.

5 Related Work

Various static scheduling frameworks for malleable parallel tasks and task graphs of mod-
ular SPMD computations with parallel composition have been considered in the litera-
ture7–9. Most of them require a formal, machine-independent specification of the algorithm
that allows prediction of execution time by abstract interpretation. In our work, we sepa-
rated the actual implementation from the model of its execution time. Scheduling methods
for distributed memory systems also need to optimize communication for data redistribu-
tion at module boundaries. This can be added to our framework as well. To the best of
our knowledge, none of them considers the automatic composition of different algorithm
variants at deployment time and their automatic selection at runtime.

As we do not consider heterogeneous or distributed systems here, additional inter-
operability support by parallel CORBA-like systems is not required. However, such an
extension would be orthogonal to our approach.

Our earlier work explores the parallel composition operator for dynamic local load
balancing in irregular parallel divide-and-conquer SPMD computations3. We balanced
the trade-off between group splitting for parallel execution of subtasks and serialization,
computing—off-line by dynamic programming—tables of the expected values of task size
ratios, indexed by n and p, where scheduling should switch between group splitting and
serialization. Our schedule lookup table above can be seen as a generalization of this.

6 Conclusions and Future Work

The paper proposes a composition framework for SPMD parallel components. Compo-
nents are specified independently of the specific runtime environment. They are equipped
with metacode allowing to derive their performance in a particular runtime (hardware)
environment at deployment time. Based on this information, a composition tool automati-
cally approximates optimal partial schedules for the different component variants and pro-
cessor and problem sizes and injects dynamic composition code. Whenever the component
is called at runtime, the implementation variant actually executed is selected dynamically,
based on the actual problem size and the number of processors available for this compo-
nent. Experiments with two parallel and one sequential sorting component prototypically
demonstrate the speed-up compared to statically composed parallel solutions.
Static agglomeration of dynamic composition units is an optimization of our approach.
We could consider the trade-off between the overhead of dynamic composition vs. the
(expected) performance improvement due to choosing the (expected) fastest variant and
schedule. We could consider units for dynamic composition that have a larger granularity
than individual performance-aware function calls. A possible approach could be to vir-
tually in-line composition operator “expressions” (which may span across function calls,
i.e., define contiguous subtrees of the call graph) that will be treated as atomic units for dy-
namic composition. The composition tool would compose these units statically including

233

a static composition of the time functions. This will usually somewhat decrease accuracy
of predictions and miss some better choices of variants within these units but also saves
some dynamic composition overhead.
Table compression techniques need to be investigated. For instance, regions in the V
or S tables with equal behaviour could be approximated by polyhedra bounded by linear
inequalities that could result in branching code instead of the table entry interpolations for
dynamic dispatch and scheduling. Compression techniques for dispatch tables of object-
oriented polymorphic calls could be investigated as well.
Adaptation of time data parameters In the sorting example, we used randomly gen-
erated problem instances to compute parameter tables with average execution times for
qsort, partition etc. used in optimization. In certain application domains or de-
ployment environments, other distributions of input data could be known and exploited.
Moreover, expected execution times could be adjusted dynamically with new runtime data
as components are executed, and in certain time intervals, a re-optimization may take place
such that the dispatch tables adapt to typical workloads automatically.
Domains of application In scientific computing as well as non-numerical applications,
there are many possible application scenarios for our framework. For instance, there is
a great variation in parallel implementations of solvers for ODE systems that have equal
numerical properties but different time behaviour5.
Acknowledgements Research funded by Ceniit 01.06 at Linköpings universitet, Vetenskapsrådet,
SSF RISE, Vinnova SafeModSim and AdaptiveGRID, and the CUGS graduate school.

References

1. U. Aßmann, Invasive Software Composition, (Springer, 2003).
2. T. Decker, T. Lücking and B. Monien, A 5/4-approximation algorithm for scheduling

identical malleable tasks, Theoretical Computer Science, 361, 226–240, (2006).
3. M. Eriksson, Ch. Kessler and M. Chalabine, Load Balancing of Irregular Parallel

Divide-and-Conquer Algorithms in Group-SPMD Programming Environments, in:
Proc. 8th Workshop on Parallel Systems and Algorithms (PASA’06), GI Lecture Notes
in Informatics (LNI), vol. P-81, pp. 313–322, (2006).

4. J. Keller, Ch. Kessler and J. Träff, Practical PRAM Programming, (Wiley Inter-
science, 2001).

5. M. Korch and Th. Rauber, Optimizing locality and scalability of embedded Runge-
Kutta solvers using block-based pipelining, J. Par. and Distr. Computing, 66, 444–
468, (2006).

6. G. Mounie, C. Rapine and D. Trystram, Efficient approximation algorithms for
scheduling malleable tasks, in: Proc. 11th ACM Symposium on Parallel Algorithms
and Architectures (SPAA’99), ACM Press, pp. 23–32, (1999).

7. Th. Rauber and G. Rünger, Compiler Support for Task Scheduling in Hierarchical
Execution Models, J. Systems Architecture, 45, 483–503, (1998).

8. L. Zhao, S. Jarvis, D. Spooner and G. Nudd, Predictive Performance Modeling of Par-
allel Component Composition, in: Proc. 19th IEEE Int. Parallel and Distr. Processing
Symposium (IPDPS-05), (IEEE Press, 2005).

9. W. Zimmermann and W. Löwe, Foundations for the integration of scheduling tech-
niques into compilers for parallel languages, Int. J. Comp. Sci. Eng., 1, 3/4, (2005).

234

