
John von Neumann Institute for Computing

A Load Balancing Framework in Multithreaded
Tomographic Reconstruction

José Antonio Álvarez, Javier Roca Piera,
José Jesús Fernández

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 165-172, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Load Balancing Framework in Multithreaded
Tomographic Reconstruction

José Antonio Álvarez, Javier Roca Piera, and José Jesús Fernández

Departamento de Arquitectura de Computadores y Electrónica
Universidad de Almerı́a, 04120 Almerı́a, Spain

E-mail: {jaberme, jroca, jose}@ace.ual.es

Clusters are, by now, one of most popular architectures. Hiding latencies as well as getting
an optimal assignment of processors, are two issues for many scientific applications, specially
if non dedicated clusters are used. Traditionally, high performance scientific applications are
parallelized using MPI libraries. Typical implementations of MPI, minimize dynamic features
required to face latencies or shared resource usage. Switching from the MPI process model
to a threaded programming model in the parallel environment, can help to achieve efficient
overlapping and provide abilities for load balancing. Gains achieved byBICAV (our research
group’s tomographic reconstruction software) in a multithreaded framework, are exposed.

1 Introduction

Multithreaded programming1 provides a way to divide a program into different separated
pieces that can run concurrently. Using user level threads2, 3 in places where concurrence
can be exploited, would allow us to achieve latency hiding, better scalability, skills to avoid
overhead on processors due to faster context switching and, also, key abilities to migrate
threads for load balancing purposes. In the design of a parallel and multithreaded strategy
for applications related to image processing, such as 3D tomographic image reconstruc-
tion algorithms4, data distributions have to be carefully devised so locality is preserved as
much as possible. Specially in systems like non-dedicated clusters, where the workload
needs to be dynamically reassigned. The strategy presented, RakeLB (inspired on Rake5

algorithm), has been implemented following a centralized scheme and seizes the facilities
provided by AMPI 6, 7, which is the top level layer of the Charm 8 framework. AMPI
embeds MPI processes into user level threads (virtual processors or VPs in Charm frame-
work), allowing more than one active flow of control within a process, therefore aspects
like context switching and migration of tasks are possible with a relative efficiency. Ap-
plications likeBICAV can run on non-dedicated clusters without significant performance
loss, if latency hiding and adaptability are achieved and combined.

This work presents and analyzes results obtained by BICAV 9 when it was ported to
a multithreaded environment. Section 2 describes BICAV , Section 3 exposes gains for
the multithreaded version of BICAV due to latency hiding. Section 4, describes the load
balancing strategy, RakeLB, compared to more general load balancing strategies. Section 5
evaluates RakeLB and finally, conclusions are presented in Section 6.

2 Iterative Reconstruction Methods: BICAV

Series expansion reconstruction methods assume that the 3D object, or function f , can be
approximated by a linear combination of a finite set of known and fixed basis functions,

165



with density xj . The aim is to estimate the unknowns, xj . These methods are based on an
image formation model where the measurements depend linearly on the object in such a
way that yi =

∑J
j=1 li,j · xj , where yi denotes the ith measurement of f and li,j the value

of the ith projection of the jth basis function. Under those assumptions, the image recon-
struction problem can be modeled as the inverse problem of estimating the xj’s from the
yi’s by solving the system of linear equations aforementioned. Assuming that the whole
set of equations in the linear system may be subdivided into B blocks, a generalized ver-
sion of component averaging methods, BICAV, can be described. The processing of all the
equations in one of the blocks produces a new estimate. All blocks are processed in one
iteration of the algorithm. This technique produces iterates which converge to a weighted
least squares solution of the system. A volume can be considered made up of 2D slices.
The use of the spherically symmetric volume elements, blobs10, makes slices interdepen-
dent because of blobs’ overlapping nature. The main drawback of iterative methods are
their high computational requirements. These demands can be faced by means of parallel
computing and efficient reconstruction methods with fast convergence.

An adaptive parallel iterative reconstruction method is presented. The block iterative
version of the component averaging methods, BICAV , has been parallelized following
the Single Program Multiple Data (SPMD) approach9. The volume is decomposed into
slabs of slices that will be distributed across the nodes (for MPI) or across the threads (for
AMPI). Threads can, thereby, process their own data, however, the interdependence among
neighbour slices due to the blob extension makes necessary the inclusion of redundant
slices into the slabs. In addition, there must be a proper exchange of information between
neighbour nodes. These communication points constitute synchronization points in every
pass of the algorithm in which the nodes must wait for the neighbors. The amount of
communications is proportional to the number of blocks and iterations. Reconstruction
yields better results as the number of blocks is increased.

3 Latency Hiding with User Level Threads for BICAV

An analysis on the application’s communication pattern has been carried out. Such analysis
provides estimations on improvements to be achieved if the concurrence is really effective.
Concurrence using AMPI user level threads offers the advantage of having more virtual
processors than physical processors. Therefore more than one virtual processor can co-
exist in a physical processor efficiently. Tests carried out showed gains obtained by the
multithreaded version of BICAV compared to those obtained by the MPI version where
latency hiding technique was included with non blocking Sends/Recvs. Scaling experi-
ences were also performed for both versions, varying the number of threads/processor and
the number of processors. It is important to note that forBICAV , as the number of blocks
(K) increases, the convergence of the algorithm is faster, but the amount of communica-
tions also increases. This scenario harms the MPI version whereas AMPI is expected to
keep good performance. Two volumes were used for testing BICAV , a 256 volume and a
512 volume.

All experiences were performed on Vermeer, our research cluster. This cluster runs a
Gentoo Linux, Kernel version was 2.4.32 SMP. Each of its 32 computing nodes have two
Pentium IV xeon 3.06 Ghz with 512 KB L2 Cache and 2 GB of ecc ddr sdram. Nodes
were connected with 1 Gb Ethernet links.

166



Table 1. % Relative differences between CPU and WALL times for k 256 and k 512

K 256 (volume 256) K 512 (volume 512)
MPI AMPI MPI AMPI

Procs % % % %

2 2.9 0.1 2.8 0.0
4 3.5 0 3.2 0.0
8 5.6 0 4.7 0.3
16 17.1 0.8 9.7 0.7
32 62.4 1.5 32.3 0.2

The relative differences between cpu and wall times are shown in Table 1, for both
problem sizes, using the higher possible value for K, for each case. For AMPI, wall and
cpu times are alike, which means that cpu was mostly in use, in contrast to the MPI version
in which differences turn out to be significant. Taking into account that there are neither
I/O operations nor function/method calls apart from those related to the algorithm itself, it
can be said that for our multithreaded version, the concurrency is maximized. To further
analyze the gains obtained by the multithreaded version of BICAV , the speedup was
computed for the tests carried out for Table 1, see Fig. 1.

(a) 256 volume (b) 512 volume

Figure 1. Speedup in Vermeer cluster for 256 volume (left) and 512 volume (right)

In Fig. 1, wall times for MPI and AMPI (128 vps) versions are shown, for several
numbers of blocks K and for 256 and 512 volume sizes. It can be observed that below
a threshold of K=64 both versions seem to behave similarly, showing slight improvement
in AMPI. But above that threshold, and as K increases, AMPI behaves better than MPI
especially for more than 16 processors. BICAV ’s AMPI version is getting benefits from
the hidden concurrency. This means that the amount of communications needed due to a
high value of K can be overlapped efficiently. These speedup curves show that with MPI,
BICAV loses the linear speedup when using more than eight processors. However, AMPI

167



keeps its speedup almost linear.
Once an optimal number of processors is found, an optimal number of threads per pro-

cessor is also desirable, for both volumes. It was found that a number of threads ranging
from four to eight were optimal. This means that having fewer threads than four, con-
currency may not be exploited, on the other side, having a higher number than advised,
performance can be degraded due to thread management overheads.

For non-dedicated clusters, concurrency, if exploited correctly, can play an important
role for performance. Therefore, this criteria is implemented as a complement to the load
balancing strategy. AMPI offers a threaded framework in which latencies due to commu-
nications can be handled. The following section shows how the load balancing strategy,
RakeLB, takes advantage of latency hiding.

4 Adaptability

In general, load balancing strategies do not take into consideration data locality. Conse-
quently, pieces of work sharing data can be placed on different processors. The strategy
for preserving locality, RakeLB5, was implemented as a centralized load balancer. For
RakeLB, two processors are neighbours if each one has, at least, one thread with data in
common. RakeLB has been implemented taking advantage of facilities provided by AMPI
where the migration of workload among nodes is carried out in terms of threads. Em-
ploying user level threads make load balancing issues easier in SPMD applications. Each
thread owns an universal ID, the rank. This rank establishes an order relationship between
them. When computation is ignited, each thread picks up a chunk of data to work on,
thereby threads with consecutive ranks will need, at some point in time to communicate
one another. Therefore, thread migration decisions should conserve as much as possible
the established thread relationship. To maintain the aforementioned order, a FIFO class
structure has been devised. When threads migration is advised, those with the minimal
data locality restrictions in the node will be migrated.

RakeLB behaviour has been contrasted with standard centralized, dynamic load balanc-
ing strategies, like Refine and Greedy11. Greedy strategy does not consider any previous
thread-processor assignment, simply builds two queues, processors and threads, and reas-
signs load to reach average. Refine, in contrast, only migrates threads from overloaded
processors until the processor load is pushed under average.

4.1 Implementation

The purpose of this load balancing algorithm is to redefine the initial threads distribution
by applying a certain strategy, sensible to the criteria stated in Section 3. Inputs for strategy
evaluation are provided by Charm (threads per processor, load per processor, cpu and wall
time per thread,. . .). For preserving data locality, RakeLB has to determine the set of avail-
able processors in the cluster to create logical links between processors that host correlative
sets of threads (according to the established order relationship). RakeLB determines, for
each processor, its previous and next available processors, from a logical point of view. A
procedure called LinkProcs has been developed to provide such a facility. LinkProcs
is responsible of maintaining processors virtually linked, providing therefore, a consistent
way to prevent migrations between sets of non correlative threads. This procedure also

168



Algorithm 3 : RakeLB
1. for i = 1 to numAvail −Resd First phase: numAvail −Resd iterations
2. for j = 1 to NP Compute total load as
3. Burdj = PRCSj .bkgLoad+ PRCSj .cmpLoad; bg load + threads’ load
4. endfor
5. for j = 1 to NP
6. while (Burdj > AvLoad & numThreadsj > 0) while proc is overloaded
7. deAssign(THRD.id, PRCSj); move away threads, preserving locality
8. Assign(THRD.id, PRCSj .next); to next processor
9. numThreadsj = numThreadsj − 1; update #threads

10. Burdj = Burdj − THRD.cmpLoad; update load
11. endwhile
12. endfor
13. endfor
14. for i = 1 to Resd Second phase: Resd iterations
15. for j = 1 to NP
16. Burdj = PRCSj .bkgLoad+ PRCSj .cmpLoad;
17. endfor
18. for j = 1 to NP
19. while (Burdj > AvLoad + ∆Load &numThreadsj > 0) note ∆Load
20. deAssign(THRD.id, PRCSj);
21. Assign(THRD.id, PRCSj .next);
22. numThreadsj = numThreadsj − 1;
23. Burdj = Burdj − THRD.cmpLoad;
24. endwhile During migrations, Assign and Deassign methods
25. endfor together with LinkProcs and the FIFO structure
26. endfor devised, preserved data locality for threads

maintains useful information such as the number of available processors (numAvail), the
average load (AvLoad) which is worked out accumulating all the load in each available
processor. Hence AvLoad is the main parameter concerning thread migration, together
with Resd, which is the remainder obtained when calculating AvLoad. Another impor-
tant parameter is the total number of BICAV threads, NThreads.

RakeLB convergence is assured in numAvail iterations. These numAvail iterations
are performed in two main steps. The first step consists of numAvail − Resd iterations,
the second step consists of Resd iterations. At the first step, RakeLB examines processors
whose load is over the average (AvLoad) and determines which threads migrate to next
processor. For every iteration, the total load in each processor is re-computed and stored in
the variableBurd. There is an upper-bound limit, numThreads, to the number of threads
that can be migrated from an overloaded processor. Note that the total number of threads
in the application is given by NThreads =

∑numAvail
i=1 numThreadsi. At the second

step only those processors whose load is over AvLoad+∆ Load are involved. ∆ Load is
set, during these experiences, to the minimum thread load.

169



5 Evaluation of Load Balancing Strategies

Preserving data locality and minimizing latencies are two issues that the RakeLB strategy
exploits. In this section, a study of RakeLB, GreedyLB and RefineLB (Non-Locality Load
Balancing Algorithms) behaviour is presented. GreedyLB and RefineLB are implementa-
tions for Greedy and Refiner strategies.

BICAV is used to evaluate the dynamic load balancing algorithms. BICAV exhibits
strong data dependence and hence emphasizes the influence of data locality preservation
on the performance. Load balancer will be invoked just once.

(a) Background (max and min values) per processor. (b) Threads after RefineLB and RakeLB strategies

Figure 2. Background load and resulting data redistribution after load balancing.

Background load scenarios were prepared using threads from a secondary application,
in order to create a controlled imbalance. Fig. 2(a) exposes the number of background
threads placed per processor. The background load evolution simulates other user’s inter-
actions with the cluster. For every experiment, the maximum value for the background ac-
tivity is controlled by a parameter, maxback, adapted to the current number of BICAV ’s
threads per processor, that is, NThreads÷ numAvail. Background load is assigned ran-
domly to a processor, having a minimum value of zero and a maximum value ofmaxback,
see Fig. 2(a). At the beginning, computing threads for the application are evenly distributed
among nodes.

Fig. 2 shows how the strategies under study react to load imbalanced scenarios. As
discussed in Section 3, from sixteen processors BICAV show significant divergences
between the AMPI version and the MPI version. A number ranging from 4 to 8 vps per
processor was advised. Thus the sixteen processors and sixty four threads (NThreads =
64) case is selected for testing load balancing strategies.

After migration, see Fig. 2(b), RakeLB and RefineLB reacted alike. The decision that
GreedyLB took follows the trend established by RakeLB and RefineLB, although its distri-
bution diverges slightly from that taken by its counterpart strategies. What can be deduced
from these figures is that all three strategies react in a very similar way to the effect of the
background load. There’s a key point, viz. data dependency. An analytical proof for what
is asserted in Fig. 2 was performed employing the standard deviation of the whole system
load, normalized to the average load, σ. The initial imbalance value reflected by σ was
over 0.5. After applying the balancing strategies a similar σ value (0.051 for GreedyLB

170



(a) Disorder after RefineLB (b) Locality preservation after RakeLB

Figure 3. Placement of threads

Table 2. Walltime ratio and overlap ratio for BICAV

Greedy Refine Rake

Cputime / Walltime ratio 0.34 0.52 0.70
Master’s Walltime (% relative to Greedy) 100 66.59 50.29

and 0.045 for RakeLB and RefineLB) was achieved, but there’s a key point data depen-
dency.

In Fig. 2(b), it can be seen that after the load balancer is done, a complete homogeneous
load distribution is achieved (σ almost zero). Although load balancers strategies achieve
an almost equal load distribution (alike for RakeLB and Refine) it is important to note that
these distributions are completely different in terms of data locality, see Fig. 3, aspect that
turns out to be an issue for BICAV ’s performance. Only RefineLB and RakeLB figures
are shown to state that although both σ values are similar, data distributions are different.
GreedyLB distribution was remarkably messy.

Maintaining the advisable number of neighboring threads in the same processor as
RakeLB does, leads to a performance improvement in the application. This performance
improvement begins to be much more significant for BICAV when balanced with the
RakeLB strategy in contrast with the cases where it is balanced with Refine or Greedy
strategies, from the case where sixteen processors are used, see Table 2. This is the reason
why in general terms, with RakeLB, BICAV , is faster on vermeer cluster. This is found
in the combination of both issues under study. With RakeLB, latencies are lower than with
any of the other two strategies, having enough computation to overlap communication,
which is not the case with RefineLB and GreedyLB. This overlap is seized by threads
sharing the same processor to advance computation.

6 Conclusions

Two concepts, adaptability and latency hiding abilities, were studied together, holding the
hypothesis that for scientific applications where data is under a tight data locality rela-

171



tionship, both could be combined in such a way that executions on non dedicated clusters
could obtain good results indeed in contrast to not considering these concepts. On the
one hand, the use of user level threads allowed multiple flows of control in one proces-
sor, this characteristic together with their fast context switching operation times, makes it
very easy to hide communication operations with other thread computations. On the other
hand, load balancing with strategies that maintains a thread’s neighbourhood -regarding
data locality- avoids overloaded processors that harm the performance of the applications.
If such strategies, as shown, maintain data locality, then latencies to be hidden are reduced,
having as only handicap the possible overhead caused by the thread’s management. The
dynamic load balancing strategy which preserves data locality, was proved to be efficient
for applications like BICAV .

Acknowledgements

This work has been supported by grants MEC-TIN2005-00447 and JA-P06-TIC01426.

References

1. C. M. Pancake, Multithreaded Languages for Scientific and Technical Computing,
Proceedings of the IEEE, 81, 2, (1993).

2. S. Oikawa, H. Tokuda, Efficient Timing Management for User-Level Real-Time
Threads, in: Proc. IEEE Real-Time Technology and Applications Symposium, 27–
32, (1995).

3. G. W. Price, D. K. Lowenthal, A comparative analysis of fine-grain threads packages,
Parallel and Distributed Computing, 63, 1050–1063, (2003) College Station, Texas.

4. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, (SIAM
Society for Industrial and Applied Mathematics, 2001).

5. C. Fonlupt, P. Marquet, J. L. Dekeyser, Data-parallel load balancing strategies, Par-
allel Computing, 24, 1665-1684, (1998).

6. Ch. Huang, O. Lawlor, L. V. Kale, Adaptive MPI, in: Proc. 16th International Work-
shop on Languages and Compilers for Parallel Computing (LCPC 03), College Sta-
tion, Texas, 306–322, (2003).

7. Ch. Huang, G. Zheng, S. Kumar, L. V. Kale, Performance evaluation of Adaptive
MPI in: Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, (2006).

8. L. V. Kale, S. Krishnan, Charm++: a portable concurrent object oriented system
based on C++, in: Proc. Eighth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, ACM Press, 91–108, (1993).

9. J. Fernández, A. F. Lawrence, J. Roca, I. Garcı́a, M. H. Ellisman, J. M. Carazo, High
performance electron tomography of complex biological specimens, Journal of Struc-
tural Biology, 138, 6–20, (2002).

10. S. Matej, R. Lewitt, G. Herman, Practical considerations for 3-D image reconstruc-
tion using spherically symmetric volume elements, IEEE Trans. Med. Imag., 15,
68–78, (1996).

11. G. Aggarwal, R. Motwani, Zhu, The load rebalancing problem, Journal Algorithms,
60, 42–59, (2006).

172


