
John von Neumann Institute for Computing

Computational Force: A Unifying Concept for
Scalability Analysis

Robert W. Numrich

published in

Parallel Computing: Architectures, Algorithms and Applications ,
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Computational Force:
A Unifying Concept for Scalability Analysis

Robert W. Numrich

Minnesota Supercomputing Institute
University of Minnesota

Minneapolis, MN 55455 USA
E-mail: rwn@msi.umn.edu

Computational force, also called computational intensity, is a unifying concept for understand-
ing the performance of parallel numerical algorithms. Dimensional analysis reduces a formula
for execution time, from a paper by Stewart, to an exercise in differential geometry for a single
efficiency surface. Different machines move on the surface along different paths defined by
curvilinear coordinates that depend on ratios of hardware forces to software forces.

1 Introduction

In an early paper on the scalability of parallel machines1, Stewart reported formulas for
execution time for eight different algorithms. The one algorithm he described in detail
yielded the formula,

t = αn3/p+ 2n
√
p(σ + τ) + (

√
p+mn)(σ + nτ/(m

√
p)) . (1.1)

Table 3 of Stewart’s paper displayed the quantities involved in his formula and the units he
used to measure them. The quantity t was the execution time; α was the reciprocal of the
computational power of a single processor; σ was a startup time; τ was the reciprocal of
bandwidth; nwas the matrix size; mwas a block size; and pwas the number of processors.
He measured length in units of eight-byte words (l0 = 1 word), work in the units of eight-
byte floating-point operations (e0 = 1 flop), and time in units of seconds (t0 = 1 s). The
details of the algorithm are not important for the purpose of this paper. The interested
reader should consult Stewart’s original paper.

2 Dimensional Analysis

Dimensional analysis is based on the algebraic properties of the matrix of dimensions2–7.
In the system of units used by Stewart, the quantities involved in formula (1.1) have the
matrix of dimensions,

l0 e0 t0 t α σ τ n m p
L(word) 1 0 0 0 0 0 −1 0 0 0
E(flop) 0 1 0 0 −1 0 0 0 0 0
T (s) 0 0 1 1 1 1 1 0 0 0

(2.1)

The entries for each quantity are the powers for each unit that correspond to its dimension.
For example, reciprocal bandwidth τ is measured in units (s/word) with entries (-1,0,1),
and reciprocal power α is measured in units (s/flop) with entries (0,-1,1).
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From matrix (2.1), it is clear that formula (1.1) is not dimensionally consistent. Stew-
art’s analysis, along with many others like it, lacks a clear distinction between the unit
of length l0 and the unit of work e0. The problem size, which is dimensionless, enters
into the calculation of both the number of operations performed and the number of words
moved. Because the work grows like the cube of the problem size, the first term in formula
(1.1) should be written as (αn3/p)e0 to give it the correct dimension of time. Further-
more, adding together the startup time σ and the reciprocal bandwidth τ makes no sense
unless we multiply τ by the length of the transfer. In the first appearance of the quantity
τ in formula (1.1), the length is presumably a single word of length l0, and in the second
appearance, it is nl0.

To make the formula dimensionally consistent and to simplify it for the next step in the
analysis, we define the square root of the number of processors,

q =
√
p , (2.2)

and the work done per processor,

w = n(n/q)2e0 . (2.3)

We also define the dimensionless quantity,

s = n+ 2nq + q , (2.4)

and the length,

l = (2nq + (n/q)(n+ q))l0 , (2.5)

noting that Stewart sets the parameter m = 1. Execution time then obeys the formula,

t = αw + sσ + lτ , (2.6)

Rewriting the formula in correct dimensional form is not a pedantic quibble. It is an essen-
tial step in dimensional analysis2–7.

We need, therefore, to consider execution time as a function of six dependent variables,

t = t(α,w, s, σ, l, τ) . (2.7)

For the next step in the analysis, we switch to a system of measurement based on length,
force, and time as primary units. Computational force, measured in the unit,

f0 = e0/l0 = 1 flop/word , (2.8)

is also called computational intensity8–12. It is recognized as an important quantity in
performance analysis, and we show, in what follows, that it provides a unifying concept
for scalability analysis. In this new system of units, the quantities involved have the matrix
of dimensions,

l0 f0 t0 t α w σ τ l s
L(word) 1 0 0 0 −1 1 0 −1 1 0
F (flop/word) 0 1 0 0 −1 1 0 0 0 0
T (s) 0 0 1 1 1 0 1 1 0 0

(2.9)

The fundamental assumption of dimensional analysis is that relationship (2.7) is in-
dependent of the system of units we use2–7. Under this assumption, we may pick three
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parameters, αL, αF , αT , one for each primary unit, and scale each quantity in the relation-
ship, using the entries in the matrix of dimensions (2.9), such that

αT t = t(α−1
L α−1

F αTα, αLαFw, s, αTσ, αLl, α
−1
L αT τ) . (2.10)

We can pick these scale factors in such a way to establish a new system of units where the
number of parameters reduces from six to three and all quantities are scaled to dimension-
less ratios. Indeed, if we pick them such that

α−1
L α−1

F αTα = 1 , αLαFw = 1 , αLl = 1 , (2.11)

we can solve for the three parameters to find

αL = 1/l , αF = l/w , αT = 1/(αw) . (2.12)

In this new system of units, formula (2.10) becomes

t/(αw) = t(1, 1, s, σ/(αw), 1, lτ/(αw)) . (2.13)

We recognize the time,

t∗ = αw , (2.14)

as the minimum time to complete the computation. The left side of formula (2.13) is,
therefore, the reciprocal of the efficiency,

t/t∗ = 1/e . (2.15)

Scaling (2.6) with the parameters from (2.12), we find the efficiency function,

e = [1 + sσ/(αw) + lτ/(αw)]−1
. (2.16)

3 Computational Forces and the Efficiency Surface

The efficiency formula (2.16) depends on ratios of computational forces. To recognize this
fact, we first observe that the efficiency formula assumes the simple form,

e =
1

1 + u+ v
, (3.1)

in terms of the two variables,

u = sσ/(αw) v = lτ/(αw) . (3.2)

Each of these variables is the ratio of opposing computational forces. Using the quan-
tities defined by equations (2.3)-(2.5), we find the first variable,

u(n, q) =
φH

1

φS
1 (n, q)

, (3.3)

is the ratio of a hardware force,

φH
1 = (σ/l0)/α , (3.4)

to a software force,

φS
1 =

n(n/q)2

n+ 2nq + q
f0 . (3.5)
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In the same way, the second variable is the ratio of two other opposing forces,

v(n, q) =
φH

2

φS
2 (n, q)

, (3.6)

with a second hardware force,

φH
2 = τ/α , (3.7)

and a second software force,

φS
2 (n, q) =

n(n/q)2

2nq + (n/q)(n+ q)
f0 . (3.8)

The two hardware forces are independent of the problem size and the number of pro-
cessors. The first one is determined by the ratio of the startup time to the reciprocal of the
computational power, and the second one is determined by the ratio of the reciprocal of the
bandwidth to the reciprocal of the computational power. The two software forces, on the
other hand, are functions of problem size and the number of processors, independent of the
hardware. They are determined by this particular algorithm.

For fixed problem size, n = n∗, the curvilinear coordinates,

u∗(q) = u(n∗, q) v∗(q) = v(n∗, q) , (3.9)

define paths along the surface,

e∗(q) =
1

1 + u∗(q) + v∗(q)
, (3.10)

as the number of processors changes. Similarly, for fixed number of processors, q = q∗,
the curvilinear coordinates,

u∗(n) = u(n, q∗) v∗(n) = v(n, q∗) , (3.11)

define paths along the surface,

e∗(n) =
1

1 + u∗(n) + v∗(n)
, (3.12)

as the problem size changes. Different machines follow different paths determined by their
particular values of the hardware forces φH

1 and φH
2 .

4 Discussion

If we use the same numerical algorithm, the software forces have not changed in the decade
and a half since the publication of Stewart’s paper. But the hardware forces have changed
as shown in the following table,

Machine 1 ca. 1990 Machine 2 ca. 2007
1/α 106 flop/s 109 flop/s
σ 10−4 s 10−6 s

1/τ 106 word/s 109 word/s
φH

1 102 flop/word 103 flop/word
φH

2 1 flop/word 1 flop/word

(4.1)
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Figure 1. Two paths along the efficiency surface for fixed number of processors, p = q2 = 322 = 1024.
The higher path corresponds to the older Machine 1; the lower path to the modern Machine 2. The problem
size increases from n = 500 at low efficiency in increments of 100. In the limit of very large problem size,
both machines approach perfect efficiency. They approach the limit at different rates along different paths on the
surface.

Because of these changes, modern machines follow paths lower on the efficiency surface
than paths followed by older machines.

Fig. 1 shows two paths along the efficiency surface, one for each machine in Table 4.1
for a fixed number of processors, p = q2 = 322 = 1024. Each point on a path e∗(n),
calculated from (3.12) using the curvilinear coordinates u∗(n) and v∗(n) from (3.11), cor-
responds to a different problem size. For large enough problem, both machines approach
perfect efficiency. But they follow different paths at different rates along the surface to
reach the summit. The modern machine follows a path lower on the efficiency surface at
all values of the problem size and is less efficient than the older machine.

The reason for this loss of efficiency is clear. The modern machine has higher values
for the coordinate u∗(n) for each problem size. It travels a long way across the surface at
low efficiency before mounting the ascent to the summit. The coordinate u∗(n) depends
on the hardware force φH

1 , which depends on the startup time σ. As Table 4.1 shows, this
force has increased in the last two decades. It is harder now to overcome long startup times
than it was before. This difficulty translates directly into a harder job for the programmer
who must provide a larger software force φS

1 to overcome the larger hardware force. To
increase the software force, the programmer must design a new algorithm for the problem.

5 Summary

Our approach to performance analysis is quite different from the more familiar approaches
that have appeared in the literature. Our first impulse is to plot the efficiency surface, or
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contours of the surface, as a function of the problem size and the number of processors.
With that approach, each machine has its own efficiency surface depending on its particular
values of the hardware forces φH

1 and φH
2 . It is difficult to compare machines because they

lie on different surfaces.
Our approach produces one efficiency surface for all machines. Different machines

follow different paths along the same surface depending on their hardware forces φH
1 and

φH
2 . The distance between paths, along the geodesic on the surface, measures the distance

between machines. Two machines with the same hardware forces are self-similar and
scale the same way even though the particular values for their startup time σ, their band-
width τ−1, and their computational power α−1 may be quite different. Only the forces
determined by the ratios of these quantities matter not their absolute values. These forces
provide a unifying concept for scalability analysis.
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