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Molecular dynamics (MD) simulations on two coupled electronic surfaces are employed to
investigate the geminate recombination of nitric oxide to photoactive biotechnological enzyme
nitrile hydratase (NHase). NHase enzymatic activity is triggered by photodissociation of NO
molecule1,2. The crossing between the ground and the excited state surfaces is treated using the
Landau-Zener model3,4. The NO geminate recombination curve and recombination rate were
calculated. Results suggest that the NO recombination is a picosecond time-scale process.

1 Introduction

The microbial enzyme nitrile hydratase (NHase, EC. 4.2.1.84, CAS registration no. 82391-
37-5) is widely used in biotechnological production of amides5, 6 from nitriles. Out of two
types of NHases (Fe and Co-type) only the Fe-type NHase is photosensitive. This en-
zyme loses activity in the dark conditions when the endogenous nitric oxide molecule (NO)
blocks the active centre. This process is totally reversible and the enzyme recovers catalytic
ability upon light irradiation1, 2. The electronic mechanism of NO controlled photoactivity
remains unknown, despite several model systems of NHase have been investigated7, 8 and
theoretical models have been calculated9–14. In the earlier study of the photosensitivity
phenomenon Nowaket al., described structural changes upon NO ligand binding to the
iron center (”inverted doming”)9. The MD calculations of NHase gave an insight into the
channel dynamics15, however the kinetics of recombination is still mysterious.

In this paper the NO recombination kinetics rate is theoretically calculated for the pro-
tonated enzyme model. Similarly to Liet al.16 classical Landau-Zener (LZ) MD model of
recombination is employed.

2 Computational Methods

In the LZ method the system may evolve on two alternative, ground and excited state
crossing hypersurfaces. At the crossing point, the LZ probability P is calculated (1) and
the decision whether to switch the energy surface is made3, 4

P = e
− 4πε2

12
hν|s1−s2| , (1)

whereV is a velocity,ε212 is energy difference between two energy states and|s1 − s2| is
a difference in the energy curves slopes.
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All computations were performed for Fe-type NHase (2AHJ) inthe MOIL pack-
age16, 17. The parametrization of the NHase active site is described elsewhere15. Only
crystallographic water molecules were present. Initiallyminimized system (the enzyme
with NO molecule bounded via Morse potential, 3000 steps) was heated up to 300 K (50
ps) and equilibrated for 50 ps. From short 100 ps run 6 random structures were chosen as
starts for production simulations of the NO recombination.For each start a 10 ps trajectory
at 250, 275, 300, 325 and 350 K was generated. In each of 30 trajectories NO molecule
was photodissociated (by excitation) at the very beginning. The SHAKEB protocol was
used, data were collected in each 1 fs step. The temperature was held constant by veloc-
ity scaling, cutoffs for electrostatic and van der Waals interactions were 12̊A and 9Å,
respectively. The nonbonding interactions were recalculated in each step.

The excited state curveU(r) was modeled by (2) and the binding potentialB(r) was
approximated by the Morse function (3) (see Fig. 1):

U(r) = Arepe
−βr −Brep, (2)

and

B(r) = Dmore
−2α(r−req) − 2e−α(r−req). (3)

Parameterreq is the equilibrium Fe–N(NO) bond length of 1.65Å, parametersDmor,
α,Arep, β andBrep were 30 kcal/mol, 2̊A−1, 80 kcal/mol, 1Å−1 and 4 kcal/mol, respec-
tively. Other parameters required for excited state MD wereadopted from16.

3 Results and Discussion

Figure 1. Kinetics of NO recombination to NHase active site.Points indicate a percent of recombined ligands.

A mono-exponential decayy = y0 +A1 exp
“

−x−x0
t1

”

is fitted. Inset: Potential curves used in simulations of

NO recombination.

For each of 10 ps non-equilibrium trajectories on excited state energy surface the Fe–
N(NO) distance, the repulsion energy value (Erep), the switching moment from repulsion
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to Morse potential and a value of the Morse potential (Emorse) were monitored. If the
distance Fe–N(NO) was smaller than 2.5Å or if theEmorse was smaller than−10 kcal/mol,
we assumed that the recombination happened. A percent of recombinated ligands vs time
gave data for estimation of recombination rate (see Fig. 1).

We assume that these data points are the best described by a mono-exponential decay
since that assumption gives the smallest value of theχ2 (χ2 = 3.3). Two and three expo-
nential decays fitted to our MD data gaveχ2 of 4.7 and 8.7, respectively and timest2 and
t3 were extremely long (data not shown). Fitted parameters (Fig. 1) indicate that the aver-
age lifetime of the free NO is 4.8 ps (the decay rate constant is 0.21 ps−1). NO collisions
with βArg56 or (less frequently) withαGln90 induced the recombination. Other collisions
with the active site-solvent channel walls didn’t result inthe rebinding.

4 Conclusions

For the first time a geminate recombination of the NO moleculeto Fe-type NHase active
site was studied using the Landau-Zener approach and MD in excited state. We found that
there is perhaps one energy barrier (4 kcal/mol) and the recombination rate is characterized
by 4.8 ps lifetime of free NO. ResiduesβArg56 andαGln90 are critical for NO recombi-
nation. Better statistics is required for more quantitative estimates of NHase photophysics.
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