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Evolution of Experimental and Theoretical
Determinations of Protein Structure and Protein Folding

Pathways

Harold A. Scheraga, Adam Liwo, Cezary Czaplewski, and Stanisław Ołdziej

Baker Laboratory of Chemistry and Chemical Biology, Cornell University,
Ithaca, NY 14853-1301, U.S.A.

E-mail: has5@cornell.edu

Physical chemical studies of hydrogen bonding and hydrophobic interactions, and experimental
studies of the structure and folding pathways of bovine pancreatic ribonuclease A motivated
the development of a theoretical approach to compute protein structure and protein-folding
pathways.

1 Introduction

This article traces the development of our experimental andtheoretical efforts to gain
an understanding of the underlying physics that controls the progression from a newly-
synthesized polypeptide chain to the three-dimensional structure of a native biologically-
active fibrous or globular protein. Our earliest involvement with this problem was con-
cerned with the influence of hydrogen bonds and hydrophobic interactions on protein struc-
ture and reactivity. This work led to our efforts to determine protein structure and folding
pathways, first by experimental methods, and subsequently by theoretical methods.

2 Internal Bonding in Proteins

Internal hydrogen bonds influence the observed pKs of ionizable groups1 and even the
reactivity of covalent bonds2, e.g., peptide bonds. Figure 1 provides an example of a
hydrogen bond between a tyrosyl donor and a glutamate acceptor. The observed pKs of
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Figure 1. Example of a tyrosyl· · · glutamate hydrogen bond.
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these groups are modified by the free energy to form (or break)such a hydrogen bond.
Therefore, in comparison with a non-hydrogen-bonded modelcompound, the observed
pKs of such hydrogen-bonded tyrosyl and glutamate groups will be raised or lowered,
respectively. Consequently, such departures of the pKs from those of model compounds
are diagnostic for the presence of such hydrogen bonds.

Hydrophobic interactions can provide a nonpolar environment which will also influ-
ence the pKs of nearby ionizable groups. A theory3 for the thermodynamics of hydropho-
bic interactions, based on the structures of liquid water and of aqueous hydrocarbon so-
lutions was presented in 1962, and upgraded4 in 2004. By themselves, hydrogen bonds
in proteins in water are not very strong because of the necessity to shed water in order to
form a hydrogen bond between the polar groups of a protein. However, as illustrated in
Figure 2, the presence of nearby nonpolar groups can providehydrophobic interactions5

with the nonpolar parts of residues such as lysine and glutamic acid and also restrict the
internal rotational freedom of the ionizable side chains. In addition, nonpolar groups can
restrict the access of water to the polar parts of ionizable side chains. Thus, the cooperativ-
ity of nonpolar groups and hydrogen bonding of ionizable side chains can strengthen the
hydrogen bonds.

Figure 2. Illustration of various hydrophobic interactions of a polar side chain with its surroundings. B refers to
the backbone, and P to the polar head.

3 Location of Hydrogen Bonds in Proteins

Before the advent of X-ray crystallography, NMR, and recombinant DNA methods to de-
termine protein structure, experimental studies to locatehydrogen bonds between ioniz-
able groups, as indicated by the dotted lines in Figure 3, provided distance constraints on
the folding of a protein backbone. Such studies, carried outon the 124-residue protein
bovine pancreatic ribonuclease A (RNase A), showed that 3 ofits 6 tyrosyl residues had
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Figure 3. Schematic representation of a protein. Solid and dotted lines represent disulfide bonds and non-covalent
interactions, respectively.

abnormally-high6 pKs, and that 3 of its 11 carboxyl groups had abnormally-low7 pKs.
Further, the UV absorption spectrum of tyrosine was perturbed8 at low pH where carboxyl
groups ionize. This evidence suggested the existence of three tyrosyl· · · carboxylate hy-
drogen bonds, and subsequent physical and biochemical experiments7 identified one pair-
ing, namely

Tyr25 · · · Asp14
Tyr92 · · · Asp38
Tyr97 · · · Asp83

out of the 19,800 possible ways to pair 3 of 6 Tyr and 3 of 11 carboxyl groups of RNase
A. The identification of these 3 interactions was subsequently verified by the X-ray struc-
ture. These three non-covalent interactions (dotted linesin Figure 3) and the four disulfide
bonds (solid-line crosslinks in Figure 3) provide 7 distance constraints on the folding of
the backbone. However, 7 distance constraints are not sufficient to provide an accurate
description of the backbone of a 124-residue protein such asRNase A. To determine the
backbone structure, as is now done by NMR, many more distanceconstraints would be
required. In fact, it is possible to specify the number of distance constraints required9 in
order to determine the structure within any desired RMSD from the native structure.

4 Initial Considerations of a Theoretical Approach to Structure
Simulation

On the other hand, even 7 known distances could serve as restraints on a potential en-
ergy function to compute the native structure of a protein. This provided the motivation
to develop10 a theoretical approach to compute protein structure, first by making use of
distance restraints and, subsequently, to rely on a physics-based potential function without
the need to incorporate distance restraints. At about the same time, Anfinsen11 identified
spontaneous protein folding, and introduced the thermodynamic hypothesis for a theoreti-
cal approach, and we expanded our interest from determiningstructure to also determining
folding pathways (first by experiment, and later by theory).
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5 Experimental Studies of Oxidative Folding of RNase A

Our experimental study of the oxidative folding of RNase A led to the mechanism shown
in Figure 4. Figure 4(a) shows that a pre-equilibrium existsbetween the unfolded forms

Figure 4. (a) Oxidative folding of wild-type RNase A. (b) Oxidative folding of two three-disulfide mutants of
RNase A (C40A/C95A and C65S/C72S).

of reduced RNase A, R, and various ensembles of disulfide-bonded intermediates12. The
rate-determining step13 is the reshuffling of the three-disulfide ensemble, 3S, by SH/SS
interchange, to form two main intermediates, des [40-95]N and des [65-72]N which each
contain three native disulfide bonds but lack the 40-95 and 64-72 disulfide bonds, respec-
tively. These two native intermediates14, 15 rapidly form the native structure of the wild-
type protein. As shown in Figure 4(b), two very minor pathways exist16, 17 in which the
2S ensemble undergoes oxidation to des [40-95]N and des [65-72]N , which could be de-
tected only with the aid of mutants which lacked the 40-95 and65-72 disulfide bonds,
respectively.

The overall scheme for the oxidative folding of RNase A is shown in Figure 5. Of
the 28 possible 1S species, 40% have the native 65-72 disulfide bond, and 10% have the
non-native 58-65 disulfide bond, and the remaining 26 species accumulate only to the ex-
tent of<10% each in folding of the whole protein18. The 65-72 disulfide bond persists
increasingly in the remainder of the pathway19 to form des [40-95]N . Interestingly, the
same 40:10 ratio that is found in the protein is also found when a fragment of reduced
RNase A from Cys 58 to Cys 72 is oxidized20, 21. This result is attributed to preferential
native-forming interactions22 and not to entropic effects in the 65-72 loop, since both pos-
sible loops (58-65 and 65-72) have the same size; it is this kind of physics that is revealed
by such experimental studies, and by our concomitantly developed molecular mechanics
approach.

6 All-atom Determination of Protein Structure and Folding
Pathways

Progressing from our initial work10 in 1965, with a hard-sphere potential, we developed an
all-atom ECEPP (Emperical Conformational Energy Program for Peptides) force field23,
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Figure 5. Overall scheme of oxidative folding of RNase A

and improved it in subsequent years, the latest version of which24 appeared in 2006. The
ECEPP force field and various procedures that we developed for global optimization of the
potential energy were described in a recent review25. The largest protein whose structure
we have computed with the all-atom force field is the 46-residue three-helix bundle, protein
A26, and the 36-residue villin headpiece27.

Our initial attempt28 to compute an all-atom folding pathway made use of the stochastic
difference equation method of Elber29. The pathways were computed from each of a large
ensemble of unfolded states of protein A to the final folded state, and then averaged. It
was found that the C-terminal helix folded first, followed bythe N-terminal helix, and
then the middle helix. Various folding pathways have been proposed for protein A, and it
has been found30 that environmental factors and different components in thevarious force
fields used may account for the reported differences.

7 A Hierarchical Approach to Protein Structure and Folding
Pathway Prediction

In order to compute protein structures larger than those of protein A, we have developed a
hierarchical procedure which initially makes use of a united-residue (UNRES) model of a
polypeptide chain31–37 together with a conformational space annealing (CSA) procedure38

to search the UNRES conformational space to find theregionin which the global minimum
might lie. Then the lowest-energy structures are convertedfrom the UNRES representation
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to an all-atom one39, 40 whose ECEPP energy (including hydration) can then be globally
optimized.

The UNRES model consists of virtual-bond chains for the backbone and side chains,
with the less-important degrees of freedom (rotation of thepeptide groups around their vir-
tual Cα–Cα bonds, internal rotations about side-chain bonds, etc.) averaged out. The force
centers are the positions of the averaged-out peptide groups and the ends of the virtual
bonds at the center of gravity of the side chains. The UNRES energy consists of interac-
tions between these force centers, the energies to vary the positions and rotational states
of side chains, the energies to vary the angle between successive backbone virtual bonds,
the torsional angles around the backbone virtual bonds, anddouble torsions around two
neighboring virtual bonds, and multi-body interactions. The CSA procedure is essentially
a genetic algorithm in which a finite set of widely- dispersedUNRES minima are forced
to coalesce to the region of the global minimum.

Performance in successive blind tests from CASP3 to CASP7 has provided sufficient
confidence to encourage us to develop41, 42and apply43–45a molecular dynamics treatment
based on UNRES. Our recent work with this molecular dynamicsapproach is being dis-
cussed at this workshop by A. Liwo46.

8 Conclusions

The evolution of the development of our experimental and theoretical approaches to gain
an understanding of the fundamental physics that controls protein structure and folding
pathways has been traced. It is elaborated upon in the accompanying article by Liwo et
al46. Current work is focused on the use of the molecular dynamicsapproach with UNRES,
and the improvement of this methodology including introduction of entropic effects37.
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