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The subject of this study is the application and tuning oftxg statistical analysis methods
for molecular dynamics (MD) data analysis. Special attents focused on detecting causal-
ity relationships (time precedence) between events in Mi3ell on time series derived from
trajectories. The problems of time-series preprocessingh as normalization and filtering,
and the choise of the most appropriate causality detectietihad is discussed. Features and
characteristics of two existing and widely applied methaddgected Transfer Functidnand
conventional Granger causality approachase described. We suggest an adaptation of the
conventional Granger method for MD analysis. The adaptezh@r method is tested using
the MD/SCC-DFTB simulation data of the proton transfer tieacin malonaldehydeand a
coarse-grained MD simulation of HIV-1 protedse

1 Introduction

Detecting causality relationships between conformatichanges in biomolecular sys-
tems simulated with molecular dynamics (MD) methods is ot@l importance for de-
scribing their mechanisms and understanding the logic af flanctioning. An attempt
to approach this problem was presented in our recent Studie followed the Granger
causality methodologyand applied a Multi-Variate Autoregressive Model (MVAR)thvi
Directed Transfer Function(DTF), which was used succdgsSfuEEG time-series anal-
yses. However, the method still requires some tuning, and in pnésentation we deal
mostly with a conventional Granger approactVe analyse also two following problems -
normalization of the data and the noise filtering.

2 The Causality Analysis Model

Classical correlation analysis detects linear couplirtgzben variables at the same time but
it cannot detect linear couplings with a time shift or noalin couplings. One of the more
advanced solutions is the MVAR model, which can detect tahifted linear couplings:

X(t) =Y A@)X(t — i)+ E(t) (1)

=1

where: X(t) = {X1(t),...,Xk(t)} - vector of analysed: variables at timef, called
also channelst — i = t — ¢ - dt - a notation for the time shift of steps backward;
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A(i), i = 1,...,p - fitted MVAR coefficients, matrices df x k dimension;p - model
order;E(t) - white noise vector ok dimension.

The A (i) are fitted to satisfy condition (1) and ke&dt) componentsE;(t), linearly
uncorrelated, with proper mean and standard deviation.stdreard deviations df; ()
correspond to the white noise levels in each variable aretiahéteA (i) estimation.

The raw MVAR coefficients are usually not representativesiarpurposes. Results of
the MVAR fit usually depend on the model order (real signalsdiosatisfy a strict MVAR
model), they can be also different for subsets of time sefi@e®ur purposes the MVAR
model plays a role of a searching engine, not the system pdriaation method.

Some time ago we testeé more comfortable representation of the MVAR analysis
namely, the Directed Transfer Methbdrhis method was designed for EEG analysis and
it is based on the frequency representation of signal tresssom, well optimized for linear
systems with a clear linear filter interpretation, and ndésel independent. However,
the method requires variables of the same units and a sigigaal type (such as electric
potentials recorded as EEG signals). Itis sensitive tarsgahriables and gives ambiguous
results for variables expressed in different units. Thabpem is very importantin MD data
analysis because MD simulation observables, such as degaangles, combinations of
differentdegrees of freedom, energies, etc., have diffengits. Normalization of variables
is connected with choosing the appropriate noise levelHerrescaled variables, which
determines the MVAR fit.

In this study we test an older, but equivalent to DTF, modwe: dconventional Granger
causality approach. This method is based on comparing of the MVAR fidrevith and
without selected variable information. To estimate causal infleepfcX; variable on
variableX;, we should select MVAR-model ordgrand perform the following MVAR fits.

From the fit for full variables seX (¢

~—

= {X1(8), ..., Xx(1)}

X(t) = A(D)X(t—1i)+ E(t), (2)

-

1=1

we compute the residual variance matvix= (E7 (t)E(t)).
From the fit for variables set witl(; excluded:

X (t) = {X1 (1) ey Xjo1 (8), X1 (8), ooy Xi(t)}

P
XD (t) = Z ADHXOD(t — i)+ ED(t), (3)
i=1
we compute the residual variance matixt!) = ((EU) (¢))TEV)(t)).
Note thatdimV = & x k anddim VU =k — 1 x k — 1.
The causality measure fof; — X; direction is defined as:
Vii
- — €01 (4)
‘/iij)
The J;; matrix is usually asymmetric and represents the strengthdglayed linear
coupling between pairs of variablé§; — X;, where0 corresponds to no coupling.- to
X; fully determined byX; with the linear relationship.

Jij =1

26



The conventional Granger method results are not sensitirestaling and unit choice,
which results from the construction of this method. Thigdeais very important for our
applications. Optional renormalization can be applieddetter numerical MVAR fitting
convergence and accuracy.

3 The Conventional Granger Method - Examples of Applicatiors

3.1 Malonaldehyde Molecular Dynamics Trajectory

Malonaldehyde molecule is shown in Fig.1a. The analysgédi@y was derived from a
combined quantum/classical dynamics of the proton trarsfaveen O1 and O2 oxygen
atomg, and contains 1000000 observations probed every 10 fsy(@@esteps of dynam-
ics). Previous analyses show that the proton transfer isoperative reaction and the

a) b)

o1 /Hl 02 o1 N \OZ
Pay
c)

X1 X2 X3

e)
X1

X3

< E CX3(t-1)

Figure 1. Malonaldehyde example: a) the malonaldehyde culde b) relationships between values of
X1, X9, X3 variables in the same tintec) classical correlation matrix for th&;, X2, X3 variables defined in
Eqn.5; d) the Granger causality matdy; for the X1, X», X3; e) causality diagram corresponding.tg; with
the shown feedback(y — X3; f,g) relationships between values of thg , X3 variables with the time shift
+1.
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required condition for the proton hopping is the small O1 &#idistance. We selected
following variables for the causality search:

[HO:| — |HO,|
|HO: |+ [HO;|

The X, variable is called the ,,reaction coordinate” and in oumepi describes the rela-
tive proton position. TheX; variable is the projection of relative velocities of O1 andl O
atoms on the); O, direction. Simple correlation matrix (Fig.1c) does notwhamy inter-
esting correlation because the variables measured in the seoment are either indepen-
dent or couplings are nonlinear (Fig. 1b). The Granger ntetpplied to malonaldehyde
data shows strong bidirectional causality relationstepdback) between variabl&s and
X3. Itis an example of existing of non-instant correlationsi@en the spatial and velocity
degrees of freedom.For automatic detection ofXheand X, couplings, we need to apply
nonlinear and/or instant causality extensions of the cotiweal Granger approach.

X1 =010, X2 = , X3 = (V52 —v51) - 0102/]0105|  (5)

3.2 HIV-1 Protease Molecular Dynamics Trajectory

We have analysed the coarse-grained dynamics trajectdtj\ol protease (Fig.2a) per-
formed in the NVE ensemble The trajectory contained 10000 frames, delayed by 10 ps.
The conformation of the protein was represented by reduagdhies: 10 PCA projections
derived from the Essential Dynamics metholo instant linear correlations between the
variables were seen in this parametrization because tleegliaady included in the PCA
eigenvectors. The Granger method detected only weak e@slFig.2b) and for the anal-
ysis we have selected those witly > 0.1 (diagram in Fig.2c)./; is the largest element
in the first row, which indicates th&s — X coupling. This coupling is strongly non-
linear (Fig.2d) and difficult to detect by linear methodst the Granger method detected
it as a result of some linear correlation. The coupled PCAiongtare shown in Fig.2ef -
the eigenvector correspondingXa is the most significant movement which characterizes
the flap opening. The second one, correspondinggas also a component of flap move-
ment. Both components change distance between the 17 argid@es of two symmetric
chains. The movement i direction is preceding th&’; flap opening movements, but
the Granger method detects it as not very important stzisti A similar correlation was
described in the cited articl$.

4 The Influence of Smoothing

Smoothing algorithms (e.g. Savitzky-Golay fiffgrare usually based on linear filters. The
output signal at timé is a linear combination of input values over a window of times
X[(t) = Sp=5 e(k)X;(t + k). Linear filtering of the signal obviously interferes with
the MVAR model; the MVAR model will detect filter parameterk@n run on a too densely
probed data. In some cases, filtering can remove some noisgliie signal, and can help
in detecting of the expected couplings. Sampling of the fitatdhe MVAR analysis should
have lower density than the window size used for the pregestimothing operation.

We applied smoothing of the data by Savitzky-Golay polyradrfiiter®, with ky = 4
(then window was 9 frames long) and order of polynongiathen probed data every 10
steps. This operation doesn’t improve causal relatioribilrtyg.
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Figure 2. HIV-1 protease example: a) the ribbon model of HIFR homodimer; b) the Granger causality matrix
Jij forthe Xy, ..., X0 variables (reduced coordinates which result from the ptige of the MD coordinates
on ten most significant PCA components); c) causality diagcarresponding ta/;; which shows causality
relation for J;; > 0.1 ; d) the relationshipXs — X3 with the time shift of1 e,f) the PCA eigenvectors
(movement directions) corresponding to the and X projections, respectively. Motions occur from blue to
red, and back.
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5 Conclusions

We have been developing and applying two versions of theatiusanalyses: the
MVAR/DTF and the conventional Granger approaches. MVARFDVas presented n
This study deals mostly with the conventional Granger apgho We analysed MD simu-
lation data of malonaldehyde and HIV-1 protease.

The conventional Granger method based on the Multi-Vakat®regression Model
is a quite efficient tool for the molecular dynamic data asslybecause it is independent
on normalization and can be applied for signal channelsacitarized with different units.
We have been developing the generalization of this methodidtecting of non-linear
couplings. For the studied examples prefiltering of the bafare the MVAR analysis did
not improve the sensitivity of the method in detecting thpested couplings. It interferes
with the MVAR and should be use with some care.
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