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The subject of this study is the application and tuning of existing statistical analysis methods
for molecular dynamics (MD) data analysis. Special attention is focused on detecting causal-
ity relationships (time precedence) between events in MD, based on time series derived from
trajectories. The problems of time-series preprocessing,such as normalization and filtering,
and the choise of the most appropriate causality detection method is discussed. Features and
characteristics of two existing and widely applied methods: Directed Transfer Function3 and
conventional Granger causality approaches2 are described. We suggest an adaptation of the
conventional Granger method for MD analysis. The adapted Granger method is tested using
the MD/SCC-DFTB simulation data of the proton transfer reaction in malonaldehyde4 and a
coarse-grained MD simulation of HIV-1 protease5.

1 Introduction

Detecting causality relationships between conformational changes in biomolecular sys-
tems simulated with molecular dynamics (MD) methods is of crucial importance for de-
scribing their mechanisms and understanding the logic of their functioning. An attempt
to approach this problem was presented in our recent study1. We followed the Granger
causality methodology2 and applied a Multi-Variate Autoregressive Model (MVAR) with
Directed Transfer Function(DTF), which was used successfully in EEG time-series anal-
yses3. However, the method still requires some tuning, and in thispresentation we deal
mostly with a conventional Granger approach2. We analyse also two following problems -
normalization of the data and the noise filtering.

2 The Causality Analysis Model

Classical correlation analysis detects linear coupling between variables at the same time but
it cannot detect linear couplings with a time shift or nonlinear couplings. One of the more
advanced solutions is the MVAR model, which can detect time-shifted linear couplings:

X(t) =

p
∑

i=1

A(i)X(t − i) + E(t) (1)

where: X(t) = {X1(t), . . . , Xk(t)} - vector of analysedk variables at timet, called
also channels;t − i ≡ t − i · dt - a notation for the time shift ofi steps backward;
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A(i), i = 1, . . . , p - fitted MVAR coefficients, matrices ofk × k dimension;p - model
order;E(t) - white noise vector ofk dimension.

TheA(i) are fitted to satisfy condition (1) and keepE(t) components,Ei(t), linearly
uncorrelated, with proper mean and standard deviation. Thestandard deviations ofEi(t)
correspond to the white noise levels in each variable and determineA(i) estimation.

The raw MVAR coefficients are usually not representative forour purposes. Results of
the MVAR fit usually depend on the model order (real signals donot satisfy a strict MVAR
model), they can be also different for subsets of time series. In our purposes the MVAR
model plays a role of a searching engine, not the system parametrization method.

Some time ago we tested1 a more comfortable representation of the MVAR analysis
namely, the Directed Transfer Method3. This method was designed for EEG analysis and
it is based on the frequency representation of signal transmission, well optimized for linear
systems with a clear linear filter interpretation, and noiselevel independent. However,
the method requires variables of the same units and a similarsignal type (such as electric
potentials recorded as EEG signals). It is sensitive to scaling variables and gives ambiguous
results for variables expressed in different units. This problem is very important in MD data
analysis because MD simulation observables, such as distances, angles, combinations of
different degrees of freedom, energies, etc., have different units. Normalization of variables
is connected with choosing the appropriate noise level for the rescaled variables, which
determines the MVAR fit.

In this study we test an older, but equivalent to DTF, model: the conventional Granger
causality2 approach. This method is based on comparing of the MVAR fit error with and
without selected variable information. To estimate causal influence of Xj variable on
variableXi, we should select MVAR-model orderp, and perform the following MVAR fits.

From the fit for full variables setX(t) = {X1(t), . . . , Xk(t)}

X(t) =

p
∑

i=1

A(i)X(t− i) + E(t), (2)

we compute the residual variance matrixV = 〈ET (t)E(t)〉.
From the fit for variables set withXj excluded:

X(j)(t) = {X1(t), ..., Xj−1(t), Xj+1(t), ..., Xk(t)}

X(j)(t) =

p
∑

i=1

A(j)(i)X(j)(t− i) + E(j)(t), (3)

we compute the residual variance matrix:V(j) = 〈(E(j)(t))T E(j)(t)〉.
Note thatdimV = k × k anddimV(j) = k − 1 × k − 1.
The causality measure forXj → Xi direction is defined as:

Jij = 1 − Vii

V
(j)
ii

∈ [0; 1]. (4)

TheJij matrix is usually asymmetric and represents the strength ofa delayed linear
coupling between pairs of variablesXj → Xi, where0 corresponds to no coupling,1 - to
Xi fully determined byXj with the linear relationship.
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The conventional Granger method results are not sensitive to rescaling and unit choice,
which results from the construction of this method. This feature is very important for our
applications. Optional renormalization can be applied forbetter numerical MVAR fitting
convergence and accuracy.

3 The Conventional Granger Method - Examples of Applications

3.1 Malonaldehyde Molecular Dynamics Trajectory

Malonaldehyde molecule is shown in Fig.1a. The analysed trajectory was derived from a
combined quantum/classical dynamics of the proton transfer between O1 and O2 oxygen
atoms4, and contains 1000000 observations probed every 10 fs (every 10 steps of dynam-
ics). Previous analyses show that the proton transfer is a cooperative reaction and the
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Figure 1. Malonaldehyde example: a) the malonaldehyde molecule; b) relationships between values of
X1, X2, X3 variables in the same timet; c) classical correlation matrix for theX1, X2, X3 variables defined in
Eqn.5 ; d) the Granger causality matrixJij for theX1, X2, X3; e) causality diagram corresponding toJij with
the shown feedbackX1 ↔ X3; f,g) relationships between values of theX1, X3 variables with the time shift
±1.
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required condition for the proton hopping is the small O1 andO2 distance. We selected
following variables for the causality search:

X1 = |O1O2|, X2 =
|HO1| − |HO2|
|HO1| + |HO2|

, X3 = ( ~vO2 − ~vO1) · ~O1O2/|O1O2| (5)

TheX2 variable is called the ,,reaction coordinate” and in our example describes the rela-
tive proton position. TheX3 variable is the projection of relative velocities of O1 and O2
atoms on the ~O1O2 direction. Simple correlation matrix (Fig.1c) does not show any inter-
esting correlation because the variables measured in the same moment are either indepen-
dent or couplings are nonlinear (Fig. 1b). The Granger method applied to malonaldehyde
data shows strong bidirectional causality relationship (feedback) between variablesX1 and
X3. It is an example of existing of non-instant correlations between the spatial and velocity
degrees of freedom.For automatic detection of theX1 andX2 couplings, we need to apply
nonlinear and/or instant causality extensions of the conventional Granger approach.

3.2 HIV-1 Protease Molecular Dynamics Trajectory

We have analysed the coarse-grained dynamics trajectory ofHIV-1 protease (Fig.2a) per-
formed in the NVE ensemble5. The trajectory contained 10000 frames, delayed by 10 ps.
The conformation of the protein was represented by reduced variables: 10 PCA projections
derived from the Essential Dynamics method7. No instant linear correlations between the
variables were seen in this parametrization because they are already included in the PCA
eigenvectors. The Granger method detected only weak couplings (Fig.2b) and for the anal-
ysis we have selected those withJij > 0.1 (diagram in Fig.2c).J16 is the largest element
in the first row, which indicates theX6 → X1 coupling. This coupling is strongly non-
linear (Fig.2d) and difficult to detect by linear methods, but the Granger method detected
it as a result of some linear correlation. The coupled PCA motions are shown in Fig.2ef -
the eigenvector corresponding toX1 is the most significant movement which characterizes
the flap opening. The second one, corresponding toX6, is also a component of flap move-
ment. Both components change distance between the 17 and 39 residues of two symmetric
chains. The movement inX6 direction is preceding theX1 flap opening movements, but
the Granger method detects it as not very important statistically. A similar correlation was
described in the cited articles5, 6.

4 The Influence of Smoothing

Smoothing algorithms (e.g. Savitzky-Golay filter9), are usually based on linear filters. The
output signal at timet is a linear combination of input values over a window of times:
X ′

i(t) =
∑k=+k0

k=−k0
c(k)Xi(t + k). Linear filtering of the signal obviously interferes with

the MVAR model; the MVAR model will detect filter parameters when run on a too densely
probed data. In some cases, filtering can remove some noise from the signal, and can help
in detecting of the expected couplings. Sampling of the datafor the MVAR analysis should
have lower density than the window size used for the preceding smoothing operation.

We applied smoothing of the data by Savitzky-Golay polynomial filter9, with k0 = 4
(then window was 9 frames long) and order of polynomial2, then probed data every 10
steps. This operation doesn’t improve causal relations visibility.
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Figure 2. HIV-1 protease example: a) the ribbon model of HIV-1 PR homodimer; b) the Granger causality matrix
Jij for theX1, . . . , X10 variables (reduced coordinates which result from the projection of the MD coordinates
on ten most significant PCA components); c) causality diagram corresponding toJij which shows causality
relation for Jij ≥ 0.1 ; d) the relationshipX6 → X1 with the time shift of1 e,f) the PCA eigenvectors
(movement directions) corresponding to theX1 andX6 projections, respectively. Motions occur from blue to
red, and back.
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5 Conclusions

We have been developing and applying two versions of the causality analyses: the
MVAR/DTF and the conventional Granger approaches. MVAR/DTF was presented in1.
This study deals mostly with the conventional Granger approach. We analysed MD simu-
lation data of malonaldehyde and HIV-1 protease.

The conventional Granger method based on the Multi-VariateAutoregression Model
is a quite efficient tool for the molecular dynamic data analysis, because it is independent
on normalization and can be applied for signal channels characterized with different units.
We have been developing the generalization of this method for detecting of non-linear
couplings. For the studied examples prefiltering of the databefore the MVAR analysis did
not improve the sensitivity of the method in detecting the expected couplings. It interferes
with the MVAR and should be use with some care.
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