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Previous works on loop structure prediction treat the loop reconstruction problem, that is, the
geometry of the protein into which the loop must fit is assumedto be given. In ab initio pro-
tein structure prediction, however, this information is not available, but loop structure and the
anchoring stem region structure have to be predicted simultaneously. The resulting loop struc-
ture prediction problem with flexible stems treated here is considerably more difficult than the
reconstruction problem.

The proposed approach is based on (i) dihedral angle sampling, (ii) structure optimization by
energy minimization with a physically based energy function, and (iii) clustering. In contrast
to previous works, clustering is not only used to identify conformers that are likely to be close
to the native structure, but also to identify far-from-native decoys.

The method is tested on a large test set. Surprisingly, the average of the smallest rmsd found in
ensembles of 2000 conformers depends linearly on the lengthof the sequence. Since our test
set is large, different methods for selecting close-to-native conformers from ensembles can be
compared in a meaningful way.

1 Introduction

Without the great structural flexibility of loops, many proteins could not fold into compact
structures. Since loops posses great geometric flexibility, loop structure is difficult to pre-
dict. Recent approaches assume information on the locationof the anchoring residues is
available, that is, the loop reconstruction problem is treated1. While using information on
the geometry of the anchoring residues may be justified in homology modeling, approaches
of this type are ruled out inab initio prediction. In order to benchmark the prediction pre-
cision that can be achieved inab initio loop structure prediction, we apply a methodology
that predicts both, the geometry of the anchoring residues,and the loop structure itself, to
a large test set.

2 Methods

Conformers are generated with probability functions in a discretized(φ, ψ)-space similar
to those used by DePristo et al.2. We distinguish between three types of residues, (i)
α-helical amino acids as defined by DSSP code H, (ii)β-strand (DSSP code E), and (iii)
loop3. To qualify as a loop an amino acid sequence must not be of DSSPtype E or H, not be
at either terminal, and must be located between strands or helices. Probability distributions
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nr [-] 10 12 14 16 18 20
rmsd [Å] .9842 1.412 1.825 2.159 2.451 2.772

Table 1. Average of smallest rmsd in ensembles of given loop length. The symbolnr denotes the number of
residues in a loop including the stem residues. Rmsds dependlinearly on the loop length1. Results for odd loop
lengths are omitted for brevity.

are determined by investigating a reference set of known structures. This set comprises all
proteins with experimental resolution of2.2Åor better in the PdbSelect25 set3.

In order to take the influence of the anchor regions into account, we add three stem
residues at both ends and subject these additional six residues to the same prediction pro-
cedure as the loop residues. We optimize side chain angles using the Dunbrack rotamer
library4. Energies are calculated with the ECEPP/3 force field5. After the side chain opti-
mization the entire structure is subjected to an energy minimization with NPSOL6.

Clustering methods have been used before to identify groupsof conformers that are
likely to be similar to each other and, ultimately,likely to be similar the native structure1.
In contrast, our clustering approach identifies conformersthat are likelynot to be similar to
the unknown native structure, and discards those structures. As a result the overall quality
of the ensemble is improved, and any strategy for picking outthe best conformer in the
remaining ensemble is more likely to identify a conformer that is close to native. The
clustering method used here is based on the observation thatcluster size and rmsd to the
native structure are correlated1.

3 Results

We applied our method to3215 loops extracted from the PdbSelect25 set of proteins and
to a set of 65 loops from the CASP6 targets1. Due to space restrictions, we can only report
a fraction of our results1.

Table 1 assesses the quality of the conformers generated by dihedral angle sampling.
These results are obtained by determining the minimum rmsd to native for all conform-
ers generated by dihedral angle sampling, and subsequentlyaveraging over the minimum
rmsds of all ensembles of loops of a given length. From the data in table 1 we infer that
dihedral angle sampling does not restrict the prediction accuracy1.

Figure 1 summarizes some of our prediction results1. Results labeledaverage rmsds
by energyare determined by identifying the lowest energy conformer in each ensemble,
recording its rmsd to native, and subsequently averaging over the rmsds for all ensembles
of loops of a given length. The average rmsds by colony energyare determined corre-
spondingly, where the candidate conformer in each ensembleis picked by identifying the
lowest colony energy7. The remaining data shown in Figure 1 is obtained by applyingour
clustering algorithm1.

From Figure 1 it is evident that the conformer that generatesthe largest cluster after
any clustering stepk = 0, 1, 2 is on average a better prediction for the native structure than
the lowest energy or lowest colony energy conformer. Cluster size is therefore a better
criterion for the identification of good conformers than energy or colony energy. Moreover,
the largest cluster conformer found after stepk + 1 of the clustering algorithm is as good
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Figure 1. Average of rmsds as a function of total loop length for the loops from the PdbSelect25 proteins. Lines
are added as a guide to the eye.

as, or better than, the largest cluster conformer found in stepk. In this sense, repeatedly
applying the clustering algorithm improves the largest cluster conformer on average.

For the large set of loops we investigated, the rmsd predicted by cluster size after
iterative clustering, averaged over the ensembles of all loops of the same length, is a linear
function of loop length. This indicates that the predictionquality is currently not limited
by the dihedral angle sampling, but by the strategy for selecting a conformer that is likely
to be close to native1. This holds also for the results for the CASP6 targets1.

4 Summary and Outlook

We briefly summarized results obtained with a new methodology that allows structure pre-
diction of loops with flexible stem residues. The proposed methodology was applied to a
large test set, allowing meaningful results of methods to select conformers from ensem-
bles that are close to the native structure. We compared several selection criteria, namely
ECEPP/35 energy, colony energy7, and cluster size before and after application of a new
clustering algorithm1. The comparison shows that that energy is approximately as good
as colony energy, cluster size before applying our clustering approach is on average better
than both energy and colony energy, and cluster size after applying our clustering approach
is the best criterion.

The loop prediction method developed here is ultimately going to be used in an existing
ab initio protein prediction approach8.In this context, the loop prediction method must not
assume information on the surrounding protein to be given, but loops and the remaining
parts of the structure must be predicted simultaneously.
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