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Recently, with success, we applied the united-residue UNRES force field developed in our
laboratory to carry out molecular dynamics simulations. This communication is a preliminary
report of the development of a procedure for optimizing the UNRES force field for canonical
simulations.

1 Introduction

In the last decade we have been developing a united-residue physics-based force field
termed UNRES1–3 for energy-based prediction of protein structures from amino-acid se-
quences. Recently4, we extended the application of UNRES to mesoscopic molecular
dynamics simulations and found that, with this approach, wecan simulate protein fold-
ing pathways in real time. This new application requires reparameterization of the force
field, which is the subject of our current work. We describe preliminary results in this
communication.

2 Methods

In the UNRES model, a polypeptide chain is represented as a sequence ofα-carbon atoms
(Cα) with attached united side chains (SC) and united peptide groups (p), each of which is
positioned in the middle between two consecutive Cα atoms. The effective energy function
is a sum of different terms corresponding to interactions between the SC, SC and p, and p
sites, as well as local and correlation terms, each of which is multiplied by an appropriate
weight3, w. The expressions for these terms had been derived2 based on a Kubo cluster
cumulant5 expansion of a polypeptide chain in water, where the degreesof freedom not
present in the model had been integrated out. In the present work we introduced explicit
dependence of the cumulant-based terms on temperature.

The hierarchical method of force field optimization developed in our laboratory3 aims
at obtaining energy landscapes of selected training proteins such that the free energy of
each of the training proteins decreases with increasing native likeness. In the present study,
we computed the free energies below, at, and above the folding-transition temperatures and
extended the approach by the requirements that the free-energy relations be inverted above
the folding-transition temperature. We used the multiplexing replica-exchange molecu-
lar dynamics (MREMD)6 to generate decoy sets with given energy-function parameters
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and the weighted-histogram analysis method (WHAM)7 to process the results in order to
compute the free energies of the ensembles.

3 Results and Discussion

The structures of the three training proteins used in this work and the representatives of the
most probable conformations obtained with optimized forcefields (a separate optimization
was carried out for each protein) are shown in Figure 1.
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Figure 1. Experimental structures of 1E0L (a), 1GAB (b), and1E0G (c) and some of the most probable con-
formations at temperatures below the folding-transition temperature of these proteins (d–f). The experimental
structures are shown in the ribbon representation and the simulated structure are shown as Cα-traces. The N-
termini are marked for tracing purposes.

The results of testab initio prediction runs (using the multiplexing replica-exchange
molecular dynamics and the force fields parameterized using1GAB on a number ofα-
helical proteins are summarized in Table 1. It can be seen that the force field predicts the
structures of proteins both with simple three- or four-helix bundle folds (1BDD, 1CLB,
1LQ7, 1E68, 1P68) and those with more complex topology (1POU, 1KOY, 1PRU), al-
though its performance on the former is better. Therefore the force field parameterized
using 1GAB appears transferable. We are currently working on including proteins with
more complexα-helix topology as well as more complexα+ β-proteins in parameteriza-
tion.
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PDB No of lowest index(es) proba-
ID residues RMSD of native bility

cluster(s)
1BDD 46 2.2 1–4 0.84
1LQ7 67 1.6 5 0.10
1E68 70 3.9 4 0.08
1CLB 75 3.9 3 0.15
1P68 102 2.7 2 0.23
1POU 71 5.3 7 0.05
1PRU 56 5.3 –a –a

1KOY 62 4.4 9 0.003

Table 1. Results of tests onα-helical proteisn of the force field parameterized on 1GAB.

aNo clear cluster of native-like structures was located.
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