
John von Neumann Institute for Computing

High Throughput Method for Protein Structure
Prediction

Dominik Gront, Sebastian Kmiecik, Andrzej Kolinski

published in

NIC Workshop 2006,
From Computational Biophysics to Systems Biology,
Jan Meinke, Olav Zimmermann,
Sandipan Mohanty, Ulrich H.E. Hansmann (Editors)
John von Neumann Institute for Computing, Jülich,
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Recently several successful methods for protein structureprediction have been proposed. Next
step towards modeling on a genomic scale is to combine existing tools into a single automated
protocol. Such methods are crucial to fill the gap between thenumber of currently known
protein sequences and structures. Here we utilize a latticebased coarse-grained modeling al-
gorithm together with several accompanying tools to build ageneralized pipeline for protein
structure prediction. Our strategy was successfully applied during the CASP6 experiment.

1 Introduction

Building accurate 3D structural models for protein sequences of unknown structure is a
challenging problem in contemporary computational biology. Large-scale genomic se-
quencing efforts provide increasing number of sequences. On the contrary the number
of experimentally determined structures remains relatively small. Several computational
methods that have been recently proposed can help to narrow this gap. The gap however is
still getting wider. Therefore, development of high throughput protocol that would be able
to predict protein structures with no human intervention becomes an urgent task.

2 Generalized Approach to Structure Prediction in a Reduced
Conformational Space

The CABS modeling tool has been designed in a way allowing easy implementation of var-
ious restraints. Such restraints could be derived theoretically using various bioinformatics
tools and databases of known structures, or experimentallyfrom sparse NMR data, site-
directed mutagenesis, etc. The approach is called ,,generalized”, since essentially the same
strategy was employed to all types of protein targets, from comparative modeling (CM),
through the fold recognition category (FR), to the most difficult new fold (NF) cases. This
strategy combines FRankenstein (FR - Fold Recognition) method of Bujnicki12 used for
derivation of structural restraints, CABS simulation employed in a consensus model build-
ing, clustering and evaluation of models. The ,,FRankenstein Monster” algorithm builds
models from large molecular fragments, properly extractedfrom the databases of known
protein structures. These models are often quite accurate in the regions of regular sec-
ondary structure, while the loop connections are usually poorly predicted. The general
idea was to generate a number of FRankenstein models, extract a large number of distance
restraints (often self-contradictory) from these models and to apply them as the set of soft
constraining potentials in the CABS simulations. Only the Cα -Cα distance restraints were
used. The entire prediction pipeline could be outlined as follows (see flowchart on Figure
1a):
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Figure 1. a) Flowchart representing main stages in protein structure prediction by the CABS modeling tool. b)
Two-step procedure for building an all-atom model from its reduced representation

• Using GeneSilico metaserver12 plausible templates (or their fragments) were identi-
fied, secondary structure of the target predicted, and FR alignments generated.

• Basing on the data from the metaserver the Frankenstein’s all-atom models were built.

• The obtained models were evaluated by VERIFY3D method2, and the high scoring
fragments of each model were used as a source of distance restraints. The poorly
scoring fragments of the initial models were left unrestrained. In the cases of the
apparent New Folds very weak restraints were derived from fragments of FR models
and from few alternative models generated by the Robetta server3.

• A number of copies of the target structure was generated using the CABS lattice
discretization and the initial FRankenstein’s models. These constituted the set of the
starting replicas for a long simulated tempering Monte Carlo simulations. To obtain a
sufficient number of replicas, not only different templates, but also different alignment
variants were used in this stage.

• Thousands models in reduced representation from CABS simulations were clustered
using HCPM (Hierarchical Clustering of Protein Models)4, 5 algorithm, leading to 5-
20 clusters, depending on the degree of convergence of the MCsimulations. For a
representative alpha-carbon backbone from each cluster a full-atom model was re-
built.

This procedure has proven to be very efficient. Good predictions were achieved in
all categories of the CASP targets and the group Kolinski-Bujnicki1 using the outlined
methodology has been classified as the second best, when averaging scores from all
categories. Interestingly, for a number of targets the predicted molecular models were
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closer to the true (released after the CASP meeting) structures of the targets than to any of
the templates employed in modeling. In some cases of the NF targets reasonable models
were obtained that were qualitatively different from all templates used. Apparently,
the self-contradictory restraints became ,,diffused” by the CABS force field, while a
small subset (for instance defining a plausible supersecondary element of the fold) of
qualitatively correct restraints restricted sufficientlythe conformational space during the
simulations.

In the high-throughput modeling, especially when many proteins are modeled in a sim-
ilar way, data processing in an automated fashion is especially important. As a result of our
experience gained during the long process of multistage modeling of all CASP targets, we
created a BioShell package6. BioShell is a way of performing and integrating computations
employing UNIX shell as an interface platform. The package itself is composed of sev-
eral programs, which extend functionality of shell or scripting languages, such as Python or
Perl. Most of the examples given in the BioShell website (http://biocomp.chem.uw.edu.pl/)
are related to the CABS modeling tool. Nevertheless, owing to standard file formats and
algorithms, BioShell programs can be applied to virtually any modeling protocol.

3 Reconstructing the Full-Atom Representation

Simulations of reduced lattice models are usually a couple of orders of magnitude faster
than simulations employing equivalent all-atom continuous models1. One of the major
drawbacks is the necessity to reconstruct all-atom representation from approximate
coordinates of Cα atoms. Here we describe a very efficient algorithm that can beapplied
on a genomic scale (Figure 1b)

For the non-Cα backbone atoms average relative positions were derived in alocal co-
ordinate system by statistical analysis of PDB structures.Our method follows previous ap-
proaches by Purisima and Scheraga7 and by Milik8. Assuming a constant length of all Cα
-Cα vectors, each backbone configuration for a tetrapeptide canbe described by three Cα
distances:R13 (between first and third Cα atoms in a tetrapeptide),R24 andR14 (defined
similarly toR13). The chirality of the backbone is taken into account by applying a sign
toR14. Negative values represent left-handed, and positive values represent right-handed
conformations. These three distances form a three-dimensional grid in which average po-
sitions of C, O, and N atoms are accumulated from the PDB structures according to the
local backbone configuration measured byR13,R24, andR14 after transformation into the
local coordinate system. To make our implementation more accurate the grid spacing was
chosen as 0.2̊A , rather than the 0.3̊A used by Milik et al.8. In order to reconstruct the
C, O, and N backbone atoms, for each tetrapeptide average positions for C, O, and N are
taken from the grid described above according toR13,R24, andR14 and transformed back
into the original coordinate system. In the final step of the modeling, side chain atoms are
reconstructed. For this purpose the SCWRL9 method can be used.
Our approach to backbone reconstruction turned out to be reliable, fast and very accurate.
In a test on a set of native structures taken from PDB we compared our algorithm with sev-
eral existing methods: bb10, MaxSprout11, Pulchra12 and Sybyl (Tripos) program which
implements an algorithm by Claessens et al13. MaxSprout and S ybyl are the methods that
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utilize fragment libraries derived from known structures.In many cases the two methods
were not able to find a suitable fragment: MaxSprout succeeded only in 46% and Sybyl
in 91% of the native Cα traces in a test set. Among the other three methods our approach
was found to be both the fastest and the most accurate. Average crmsd error for 70 chains
measured on the fully reconstructed backbone is 0.42Å .
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