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The MPI/SX Collectives Verification Library

Jesper Larsson Träffa, Joachim Worringena

aC&C Research Laboratories, NEC Europe Ltd., Rathausallee 10, D-53757 Sankt Augustin,
Germany

This paper summarizes and discusses the functionality of an extended MPI library for verifying
correct use and consistency of all collective functions of the MPI-2 standard. The library is part of
the MPI/SX implementation for the NEC SX-series of parallel vector-computers, as well as NEC
implementations of MPI for other platforms. We give examples of the use of the verification library,
and in particular report on the overheads entailed. The library could have been implemented as a
stand-alone, portable interface by using the MPI “profiling interface” as defined by the MPI stan-
dard. We discuss obstacles of a portable implementation, and instead argue to support collective
verification as part of any good MPI implementation.

1. Introduction

MPI, theMessage Passing InterfaceMPI [ 4, 9], contains a large number of functions that are
collective over a set of processes, meaning that all the processes in the set must call the function
in order to let it complete on all processes. This includes collective communication and reduction
operations likeMPI Bcast andMPI Reduce , but also functions for creating new sets of processes
(communicators), spawning processes, creating windows for one-sided communication or opening
files are collective in this sense. All collective functions of MPI explicitly or implicitly pose certain
consistency requirementsamong the parameters passed by the different processes, and sticking to
these rules is essential for correct execution of the application. As a simple example, the processes
calling theMPI Bcast function must supply the sameroot parameter. Violating consistency
conditions may lead to unpredictable, but often fatal behavior of the application, entirely dependent,
however, on the MPI implementation at hand. The application may deadlock (as could be the case if
a differentroot parameter was given in anMPI Bcast or MPI Reduce call), give wrong results
(as could be the case if non-matching datatypes and counts were given in the call), or crash, possibly
at some time later in the application (this could be the case if different process group parameters were
given to a communicator creating function). On the other hand, especially for irregular collectives
like MPI Gatherv or MPI Reduce scatter , the consistency requirements are quite complex,
and it is easy to make mistakes. Thus, it would help an application developer to have the MPI library
check parameter consistency in the use of the collective MPI functions.

Consistency requirements are conditions that require communication to check, and are thus ex-
pensive compared to simple argument checks that can be performed locally by each process (is the
root argument in range? is the datatype committed?). For high-performance use such checks are
therefore prohibitive. Consequently, the MPI standard does not specify a behavior in case of errors,
and it is legal for an MPI implementation to deadlock or even crash if collective functions are not
called consistently. A solution to the dilemma would be to have a separate MPI library to be used
during application development/debugging to catch consistency errors. Such a library could either
be implemented stand-alone and in a portable fashion using the profiling interface feature of the MPI
standard, or implemented as a separate library for a specific MPI implementation. The latter course
has been followed for MPI/SX.
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2. Related Work

The portable toolMARMOT is described in a series of papers [ 5, 6, 7]. It uses a single (ad-
ditional) MPI process to act as a control process: the MPI processes running the user application
log all MPI function calls with this control process, which in turn performs a global analysis of the
function calls and the communication patterns. This allows to give detailed diagnostic output i.e.
for a deadlock situation. However, this approach is inherently non-scalable, and we believe that it
is possible to achieve a similar verification quality following our distributed approach if a separate
deadlock-detection mechanism is available.

Umpire [ 12] follows a similar approach as MARMOT, but relies on out-of-band shared-memory
communication to have a dedicated thread of process 0 analyze the MPI function calls of all other
processes that they logged in the shared memory area. The main focus of Umpire is deadlock
detection. Obviously, the requirement that all processes of the application to be verified run on a
single node limits the scalability and applicability of this approach especially on cluster machines
with few CPUs per node.

A deadlock and use checker for MPI programs in Fortran 90 and Fortran 77 namedMPI-CHECK
is described in [ 8]. Next to some checks of correct use of MPI functions which are done in part by
instrumenting the Fortran code at source level, its main focus is on distributed deadlock detection.
It does not use a central control instance, but instead uses a handshake-protocol on top of the MPI
point-to-point communication functions to validate each send and receive call with its destination
and source, respectively.

These tools do deadlock checking, which for MPI/SX is left to the MPI implementation (sus-
pend/resume mechanism). Extensive local checks are also performed by the MPI/SX library. Thus
the MPI/SX verification library focuses entirely on collective consistency requirements.

Intel Message Checker[ 1] does mostly checking for point-to-point communication and is an
offline, trace-based tool. This means that the verification is necessarily a three-step process: first run
the application to create the trace file, then run the analyzer software with this trace file as input, and
finally visualize the results using a graphical tool. This indirect approach complicates the verification
for the user, and depending on the size of the generated trace, may even make it infeasible.

Recently MPICH2 has incorporated a checking interface similar to the approach of MPI/SX. The
MPICH2 approach is portable by using the MPI profiling interface [ 3]. It extends our approach by
doing datatype signature checking using hash-values. On the other hand, it does not perform a veri-
fication as complete as our approach as it is not able to decode opaque MPI objects likeMPI Group
or MPI Win, does not handle inter-communicators, and is missing some other verifications, i.e. in
MPI-IO (see Chapter 5).

We summarize the comparison of the different approaches in Table 1, which is based on pub-
lished information. It shows the general architecture of an approach, lists the supported types of
communicators for collective operations, the type of checks performed for point-to-point operations,
the availability of the profiling interface when using the verification library, the portability of the
software to different MPI libraries, the occasions on which the use of MPI datatypes is verified,
the capability of checking the use of opaque MPI objects (likeMPI Win andMPI Group ) and the
degree of support for the MPI-2 standard.

3. Design and Implementation of the MPI/SX verification library

The approach to verification in MPI/SX is described in more detail in [ 11]. Local checks that
can be performed fast (in constant time, independent of the number of processes, data size etc.) are
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Table 1
Key characteristics of different MPI verification approaches.

architecture collective point-to-point checking PMPI
NEC MPI/SX distributed intra & inter deadlock available
MPICH2 distributed intra datatype used
MARMOT centralized (distributed memory) intra deadlock used
Umpire centralized (shared memory) intra deadlock, buffer used
MPI-CHECK distributed, instrumentation intra deadlock used
Intel MC tracefile (offline) intra deadlock, buffer,datatype used

portable opaque objects datatype checking MPI-2
NEC MPI/SX no (NEC MPI) yes setup of file view full
MPICH2 yes no communication (hash) partially
MARMOT yes yes construction no
Umpire limited (SMP only) no no no
MPI-CHECK limited (Fortran only) no no no
Intel MC limited (Intel MPI & MPICH2) unknown communication (partly) partially

always performed by MPI/SX, as they are often valuable for catching irritating errors (e.g. rank out
of range, non-committed datatype) and do not hamper performance. Non-local consistency checks
on arguments to collective operations all require (expensive) communication, and are therefore ex-
clusively done by the verification library. To verify that all processes calling e.g.MPI Bcast with
the sameroot argument it suffices for some process, say rank 0, to broadcast its value of theroot
argument to the other processes, which in turn check this against their own value for theroot
argument. A process detecting an inconsistency could report the error, in which case it would nor-
mally make sense to abort the application. In the spirit of MPI the error handler associated with
the communicator of theMPI Bcast call should be called. In case the user has changed the error
handler to not abort, for instance by usingMPI ERRORSRETURNthis could again lead to highly
unpredictable behavior, since only the processes that detected the wrongroot argument would be
aware of the error condition. To avoid this, the action of the MPI/SX verification library is imple-
mented to besymmetric. All processes will be informed of a possible error condition and can thus
all invoke the error handler. The cost of this an extraMPI Allreduce for each verified condi-
tion. Overall, the total cost per collective operation is from two to eight extra collective calls (either
MPI Bcast , MPI Gather , MPI Alltoall , or MPI Allreduce ), all with small data (from a
singleMPI Aint up to as manyMPI Aint as there are processes in the communicator).

Collective verification of this sort can in principle be implemented in MPI itself, and made avail-
able in a portable fashion by using the profiling interface mechanism of MPI. However there are
some tedious obstacles to this approach. A minor problem is that some MPI objects (for instance
MPI Aint , MPI Op) are not first-class citizens, and therefore (formally) cannot be exchanged in
communication operations. These must therefore be mapped to objects that can be used in com-
munication operations. More severe difficulties of this sort are the extraction of the processes from
anMPI Group object which is necessary when verifying for instanceMPI Commcreate , or the
extraction of the underlying communicator from a one-sided communication window. These diffi-
culties are trivial to overcome from within an actual MPI implementation. A further advantage of
having a special library is that the profiling interface is not “used up”, meaning that other profiling
can be done together with the verification library.
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4. Using the verification library

To use the library, only relinking of the aplication with-lvmpi is needed. It is also possible to
use a version of the verification library that provides a profiling interface by using-lvpmpich . In
this case, the additional collective operations performed by the verification library willnotbe visible
to the library using the profiling interface. This is due to the fact that the verification library uses
internal hooks to these operations.

The level of verification and/or reporting is controlled either by the MPI profiling interface func-
tion MPI Pcontrol(level,...) or by setting the environment variableMPIVERIFY.

• level 0 : disabled

• level 1 : return an error code to the error handler

• level 2 : print an additional description of the problem

By default, the verification level is set to 2. Setting the level to 0 will cause only minimal run-time
overhead of a fewif statements per collective operation. Depending on the individual requirements,
this allows to use the verification library also for production code. All other verification levels will,
if a problem occurs, call the active error handler of the communicator in whose context the function
was called. In such a case the error handler is called by all processes.

5. Examples

We have tested the verification library with some existing applications. Finding errors in an appli-
cation in production is expected to be rare, as these have already been tested by other means.

We expect the verification library to be more successful when it is used during application devel-
opment. We could resolve a bug in such an application where a series ofMPI Bcast operations
was performed. The first operation broadcasted the amount of data for the following operations.
However, there was a mismatch in these values on the root process by which too little data was
broadcasted in the subsequent operations. This problem was not discovered within the broadcast
operations, but showed up much later in the application as data corruption. The verification library
could detect the mismatch between amount of data received and expected.

We have created a test suite for the verification library. This test suite contains some typical errors,
like setting the send and receive counts wrong for anMPI Alltoallv operation:

for (i = 0; i < nbr_processes; i++) {
send_count[i] = i;
recv_count[i] = nbr_processes - i; /* ERROR: should be ’my_rank’ */

}

Here, each process should receive an amount of data proportional to its rank. However, this
requires that each process sets all entries of therecv count array to its own rank.

Test cases for MPI-IO deal with using process-individual file views with shared file pointers
(which is not allowed by the MPI standard), or defining non-contiguous file views where the ex-
tents of gaps are not multiples of the extent of the elementary data type. The latter problem is local
to each process and only occurs within a collective operation.

The MPI/SX verification library detects all these errors. It is more interesting to observe how
MPI libraries without an explicit verification capability handle such problems. We checked this with
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our own MPI library and with the latest version of MPICH2 (1.0.2), which can be considered as a
reference implementation. Some problems lead to deadlocks with both libraries, while some, like
theMPI Alltoallv problem described above, behave differently.

This problem returned an (unspecified)MPI ERRTRUNCATEerror code with our library, but
deadlocked with MPICH2. The reason for this deadlock was found in the chosen algorithm: In
MPICH2, empty messages are not sent withinMPI Alltoallv , However, in this case, the receiver
erroneously waits for a (non-empty) message. The algorithm in our library is different and thus reacts
differently. With the verification library, the following diagnostic message is output:

VERIFY MPI_ALLTOALLV(0): sendsize[1]=4 != expected recvsize(1)[0]=16
VERIFY MPI_ALLTOALLV(1): sendsize[0]=0 != expected recvsize(0)[1]=12
VERIFY MPI_ALLTOALLV(2): sendsize[0]=0 != expected recvsize(0)[2]=8
VERIFY MPI_ALLTOALLV(3): sendsize[0]=0 != expected recvsize(0)[3]=4

Some of the verifications done within the MPI-IO operations are local. As the overhead is actually
not very large and some of these functions likeMPI File set view are not as performance crit-
ical as the collective communication functions, we decided to activate most verifications also in the
default version of the MPI/SX library. Still, the extended diagnostic messages are only printed by
the verification library. The standard library only returns an error code which needs to be decoded
by MPI Error string . However, this leads to the effect that 8 of the 9 problems for MPI-IO are
also detected without the verification library when using MPI/SX. The original ROMIO as used in
MPICH2, too, generates an error for one of the problems tested.

6. Verification overhead

Naturally, the verification functionality incurs extra overhead. The nominal overhead per collec-
tive operation, measured as number of additional collective operations, is from two to eight opera-
tions. The amount of data exchanged per operation is small, in the worst case proportional to the
number of processes in the communicator, and in most cases just a singleMPI Aint .

6.1. Synthetic Benchmark
We used a standard benchmark for collective communication operations to measure the actual

overhead of the verification library on different platforms. Although the verification does not only
take place in the communication operations, the methods used and thus the overhead implied is very
similar.

We express this overhead as arelative slowdown, which means we give a percentage of how much
additional time is needed for a collective operation to complete at all processes. Figure 1 shows
these numbers for runs of this benchmark on an NEC SX-8 machine, using 32 processes on 4 nodes
and for an IA-32 based cluster with Myrinet 2000 interconnect, using 32 processes on 16 nodes.

As can be seen from the charts, the overhead for small message sizes, which means short exe-
cution times of the non-verified operation, is very significant. It varies between a factor of 4 for
MPI Allgather up to a factor of 14 forMPI Gather andMPI Scatter . The high overhead
for the latter operations relates to the relatively short execution time of the non-verified operation.

With increasing data size, the execution time of the non-verified operation increases, while the
time required for the verification remains constant. This leads to a decrease of the relative overhead
of the verification library. Summarizing, the overhead of the verification library is non-negligible for
individual collective operations with small data.
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Figure 1. Relative overhead of verification library for some collective operations on NEC SX-8 and
generic IA-32 cluster

6.2. Application Benchmark
The overhead of the verification library as evaluated in the previous section is significant, espe-

cially for small data sizes and collective operations with a short native run time. It is obvious that for
applications where the performance is bound by the performance of the MPI collectives for small
data, use of the verification library imposes a significant overhead. We wanted to know how much
this actually affects the run time of an actual application.

For this evaluation, we chose thehypre [ 2] package of preconditioners and linear solvers. We
ran the test caseij from the test suite using the default algebraic multi-grid solver (index 0) with a
50 · Nproc × 100 × 100 grid, with Nproc being the number of processes. In this configuration, each
process has a peak memory usage of about 1GB. The only difference between the two executables
was the additional option-lvmpi when linking the application.

We executed the test case on 8 nodes of the aforementioned cluster, with each node running 2
processes (Nproc = 16). To get statistically valid data, we performed 99 runs of each variant of the
test case. In eachij run, more than 5000 collective operations are executed. About 70% of these
operations areMPI Allreduce with 4-byte integer values. The remaining operations are calls
to MPI Allgather(v) andMPI Gather with small data sizes below 128 bytes. Based on the
results of the synthetic benchmarks, we estimated the overhead that would be introduced by using
the verification library to about 2s additional runtime. The runtime with the standard MPI library is
in the range of 140s. The results of our tests are presented in Table 2. We give the average (arithmetic
mean) of all run times and the related standard deviation as well as the90th-quantile to better handle
the outliers.

The overhead calculated from the average execution time is very small, and it contrasts to the
expected overhead of about 2 seconds. The reason for this may be found in the value of the standard
deviation which is larger than the expected overhead. Calculating the overhead based on the90th-
quantile results in a value closer to the expected overhead.

The large standard deviation surprised us as the cluster was operated as a production system with
a batch system in which the nodes are exclusive for the individual application. The distribution plot
in Figure 2 shows that the execution times actually vary between 137 and 164 seconds for the same
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Table 2
Run time ofhypretest caseij with and without verification library.

w/o verify w/ verify overhead
avg. runtime [s] 139.78 140.10 0.32

standard deviation 2.96 3.86 n/a
90th-quantile [s] 141.64 142.27 0.63
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Figure 2. Normalized distribution of execution time ofhypreij test case.

problem on the same set of nodes. This shows two things: first, simply averaging across a small
number of runs can easily give bogus results, and secondly that in this case, the actual overhead of
the verification library could thus even be tolerated for a production environment.

7. Conclusion

The MPI/SX verification library for collective operations is an easy-to-use tool to verify the cor-
rectness of an MPI application. It covers all MPI functions which need to be called by all processes
of an inter- or intra-communicator to complete. Because our implementation can access internal data
structures of the MPI/SX library, it is able to cover more potential errors than a portable approach
reasonably could.

We continue to work on the verification library in order to create a comprehensive tool not only
for collective operations, but for the complete range of MPI functions. To achieve this, we will im-
plement techniques to ensure the correct use of MPI datatypes, and will extend the verification to
include non-collective MPI operations. To validate the correct use of MPI datatypes, we will make
use of the available technique in MPI/SX for the space- and time-efficient representation of derived
datatypes [ 10]. In contrast to approaches that use a hash-value of a datatype, using the complete
representation of a datatype can never lead to false diagnostics or undetected errors. Aspects of ver-
ification for non-collective operations are correct use of message buffers and MPI requests. Another
important aspect, namely the detection of deadlocks, is already implemented in MPI/SX outside the
scope of the verification library.
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