
John von Neumann Institute for Computing

Skeletons for Recursively Unfolding Process
Topologies

J. Berthold, R. Loogen

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 835-842, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Skeletons for Recursively Unfolding Process Topologies
Jost Berthold and Rita Loogena

aFachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans-Meerwein-Straße,
D-35032 Marburg, Germany.

We discuss two different patterns for the generation of process topologies. All processes are either
created by a single root process, or the topology unfolds recursively along a spanning tree. An obvi-
ous drawback of the first approach is the bottleneck in the root process, which becomes more serious
when the number of processes increases. Difficulties of the second approach are the appropriate
installation of the communication channels and the correct placement of processes on processors.
We compare the generation policies for rings and toroids and analyse the impact of the topology
generation on the runtimes of programs.

1. Introduction

Skeletons [3] provide commonly used patterns of parallel evaluation and simplify the development
of parallel programs, because they can be used as complete building blocks in a given application
context. In many skeletal parallel programming approaches a fixed number of skeletons is provided,
together with optimised implementations for special target architectures, see e.g. [2] and [4] or, more
recently, with implementations on top of communication libraries like MPI, see e.g. [5], [1].

In functional languages like Haskell or ML, skeletons can simply be specified as polymorphic
higher-order functions. If parallelism or concurrency can be expressed, skeletons can even be imple-
mented in the language itself. This is possible in languages like GpH (Glasgow parallel Haskell) [11],
Concurrent Clean [8], Eden [7], or Concurrent ML [10]. Describing both the functional specification
and the parallel implementation of a skeleton in the same language context has several advantages.
Firstly, it constitutes a good basis for formal reasoning and correctness proofs. Secondly, it provides
much flexibility, as skeleton implementations can easily be adapted to special cases, and if necessary,
new skeletons can even be introduced by the programmer himself.

Topology skeletons define process systems with an underlying communication topology, e.g.
pipes, rings, grids, hypercubes etc. In this paper, we discuss two different ways to generate pro-
cess topologies. The simplest method is to create all processes and their interconnecting channels
by a single root process. Alternatively, the topology can be unfolded recursively, each process cre-
ating its successor processes with respect to a generational spanning tree of the topology. In the
first approach, the root process may become a bottleneck when the number of processes increases.
Such a bottleneck is avoided in the second approach at the price of a more sophisticated installation
of the communication channels and the need for explicit placement of processes on processors. In
this paper, we describe and compare the two approaches for rings and toroids. We implement the
skeletons in our parallel functional language Eden and briefly analyse the impact of the topology
generation on the runtimes of programs.

2. A Short View on Eden

Eden [7], a parallel extension of the functional language Haskell, embeds functions into process
abstractions with the special function process and explicitly instantiates (i.e. runs) them on remote
processors using the operator (#). Processes are distinguished from functions by their operational

835

2

property to be executed remotely, while their denotational meaning remains unchanged as compared
to the underlying function.

process :: (Trans a, Trans b) => (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => Process a b -> a -> b

For a given function f and an expression e, evaluation of the expression (process f # e) leads to
the creation of a new (remote) process which evaluates the function application f e. The argument
e is evaluated to normal form by the creator or parent process, i.e. the process evaluating the process
instantiation. The result value of e is transmitted from the parent to the child and the child output
f e, which will be completely evaluated by the child process, is transmitted from the child to the
parent via implicit communication channels installed during process creation. The type class Trans
provides implicitly used functions for these transmissions. Tuples are transmitted component-wise
by independent concurrent threads, and lists are transmitted as streams, element by element.

Eden provides the dynamic creation of channels which allows to establish direct channel connec-
tions between arbitrary processes. An Eden process may explicitly generate a new dynamic reply
channel and pass the channel’s name to another process. The receiving process may then either
use the name to return some information directly to the sender process (receive and use), or pass
the channel name further on to another process (receive and pass). Eden introduces a unary type
constructor ChanName for the names of dynamically created channels. It provides two operators to
generate and use channel names.

new :: Trans a => (ChanName a -> a -> b) -> b
parfill :: Trans a => ChanName a -> a -> b -> b

Evaluating an expression new (\ ch_name ch_vals -> e) has the effect that a new channel
name ch name is declared as reference to the new input channel via which the values ch vals will
eventually be received in the future. The scope of both is the body expression e, which is the result
of the whole expression. The channel name must be sent to another process to establish the direct
communication. A process can reply through a channel name ch name by evaluating an expression
(parfill ch_name e1 e2). Before e2 is evaluated, a new concurrent thread for the evaluation
of e1 is generated, whose normal form result is transmitted via the dynamic channel. The result of
the overall expression is e2. The generation of the new thread is a side effect. Its execution continues
independently from the evaluation of e2.
Figure 1 shows the definition of a ring skeleton in Eden. All processes are created by the process
evaluating the function ring and communicate in a unidirectional way. The number of ring pro-
cesses is given by the first parameter. Parameter functions split and combine specify how to
distribute the input to the ring processes and how to combine the results of the ring processes to the
overall result. The node function f determines the behaviour of each ring process. It is applied to
the corresponding part of the input and the value received from its ring predecessor, yielding an
element of the list toParent which is part of the overall result, and a value that is passed to its
ring successor. Note that the ring is closed by using the list of ring outputs ringOuts rotated by
one position to the right by rightrotate as inputs ringIns in the node function applications.
The Haskell function zip converts a pair of lists element by element into a list of pairs and unzip
does the reverse. The mzip function corresponds to the zip function except that a lazy pattern is
used to match the second argument. This is necessary, because the second argument of mzip is the
recursively defined ring input. Laziness is essential in this example - a corresponding definition is
not possible in an eager language.

836

3

ringDC

...plink plink plink plink

ring :: (Trans ri,Trans ro,Trans r) =>
Int -- ring size
-> (Int -> i -> [ri]) -- input split function
-> ([ro] -> o) -- output combine function
-> ((ri,r) -> (ro,r)) -- ring process mapping
-> i -> o -- input-output mapping

ring n split combine f input = combine toParent
where
(toParent,ringOuts) = unzip [plink f # inp | inp <- nodeInputs]
inputs = split n input
nodeInputs = mzip inputs ringIns
ringIns = rightRotate ringOuts
rightRotate xs = last xs : init xs

plink :: (Trans ri,Trans ro,Trans r) =>
((ri,r) -> (ro,r)) -> Process (ri,ChanName r) (ro,ChanName r)

plink f = process fun_link
where fun_link (fromParent,nextChan) = new (\ prevChan prev ->

let (toParent,next) = f (fromParent,prev)
in parfill nextChan next (toParent,prevChan))

Figure 1. Eden Ring Skeleton

The function plink establishes direct channel connections between the ring processes. It embeds
the node function f into a process which creates a new input channel prevChan that is passed to
the neighbour ring process via the parent. The ring output next is sent via the received channel
nextChan, while the ring input prev is received via its newly created input channel prevChan.
The ring input/output from/to the parent is received and sent on static channel connections while
the communication between ring processes occurs on dynamic reply channels. As all processes are
created by a single parent process, the default round-robin placement policy of Eden is sufficient to
guarantee an even distribution of processes on processors.

In the following section we will discuss alternative skeleton definitions where the topologies are
recursively unfolded. For simplicity we restrict the discussion to rings and toroids (two-dimensional
ring structures). The same techniques can be applied to higher-dimensional structures like hyper-
grids or hypercubes.

3. Recursively Unfolding Rings and Toroids

The single-source creation of process systems may lead to a serious bottleneck in the creator process
when the number of processes increases. For this reason, we investigate the recursive unfolding of
process topologies. We start with the discussion of a one-dimensional unidirectional ring skeleton

837

4

ringRec

...start
Ring

results
activa-
tion

results

unfold
Ring

unfold
Ring

unfold
Ring

ringRec n split combine f input = plist ‘seq‘ combine toParent
where (pChans, toParent) = createChans n -- result channels

plist = (process (startRing f (split n input))) # pChans

startRing :: (Trans ri, Trans ro, Trans r) =>
((ri,r) -> (ro,r)) -> [ri] -> [ChanName ro] -> ()

startRing f (i:is) (c:cs)
= new (\ firstChan firstIns -> -- channel to close the ring

let (result,ringOut) = f (i,firstIns)
recCall = unfoldRing firstChan f is
next = (process recCall) # (cs,ringOut)

in parfill c result next)

unfoldRing :: (Trans ri, Trans ro, Trans r) =>
ChanName r -> ((ri,r) -> (ro,r)) -> [ri] ->
([ChanName ro],r) -> ()

unfoldRing firstChan f (i:is) ((c:cs),ringIn)
= parfill c result next
where (result, ringOut) = f (i,ringIn)

recCall = unfoldRing firstChan f is
next | null is = parfill firstChan ringOut ()

| otherwise = (process recCall) # (cs,ringOut)

createChans :: Trans a => Int -> ([ChanName a],[a])
createChans 0 = ([],[])
createChans n = new (\chX valX -> let (cs,xs) = createChans (n-1)

in (chX:cs,valX:xs))

Figure 2. Recursively Unfolding Ring Skeleton

where each process but the last creates its successor process in the ring. Subsequently, we show how
higher-dimensional structures can be built on this.

3.1. Rings
Figure 2 shows an alternative definition of the ring skeleton which has the same type interface as
the original one of Figure 1. The input to the ring processes is now passed as a parameter and thus
will be communicated together with the process instantiation, while the output of the ring processes
is returned to the originator process via initially created dynamic reply channels pChans which are
communicated to the ring processes. The static output of the ring processes is merely the unit value
(). The explicit demand on the unit value plist by plist ‘seq‘ leads to the immediate creation

838

5

...

...

...

......... ...

Recursive Toroid Creation
Solid lines show the underlying ring
skeletons (thick lines indicate the first
column ring). Dotted lines indicate the
vertical connections created using dy-
namic channels.

Dashed lines show how the dynamic
reply channels from row 2 are passed
through the ring connection to row 1,
which sends on these channels.

Figure 3. Creation scheme of a torus topology using ring skeletons

of the ring processes when the ring skeleton is called. The first process evaluates the startRing
function. It creates a dynamic reply channel which is passed through the sequence of ring processes
and will be used by the last process to close the ring connection. It is assumed that the number of
ring processes is at least two. Thus, the functions startring and unfoldRing are never called
with an empty input list. The input from the parent process is passed through the sequence of ring
processes where each ring process takes its part of the input and passes the rest list to its successor
process.

The roles of static and dynamic channel connections are exchanged in the two versions of ring
skeleton definitions. The previously static output connections to the parent are now modelled by
dynamic reply channels while the previously dynamic ring connections can now be realised as static
connections, except that the connection from the last to the first ring process is still implemented by
a dynamic reply channel.

Experiments with application programs using the ring skeleton show that the recursive ring cre-
ation is slightly advantageous as the number of ring processes increases. For a small number of
processes there is almost no impact on the runtimes of programs. The number of messages sent
and received by the parent process is clearly reduced while the overall amount of messages remains
almost the same.

3.2. Torus
The Eden torus skeleton defined in [6] creates all processes by a single process and establishes
dynamic interconnection channels between them. In the following, we redefine this skeleton by
using the previously defined ring skeletons, as the torus is nothing but a two-dimensional grid with
ring connections in both dimensions. Figure 3 depicts the generation scheme for the torus topology
used in our redefinition. The first column and all rows are created as unidirectional rings. The other
column rings must be installed using dynamic channels.

Figure 4 shows the core of the recursively unfolding torus skeleton. Function toroideRec de-
scribes the toroid by its dimensions (no. of rows and columns) and the functionality of each node.
To place all processes on different processor elements, the first column of the torus structure is cre-
ated with a variant ringP of the recursively unfolding ring skeleton, which allows for placing ring
processes with a constant stride. To place processes row by row, the first column is placed with stride
dim2, i.e. the length of the rows.

839

6

toroideRec :: (Trans input, Trans output, Trans horiz, Trans vert) =>
Int -> Int -> -- dimensions
((input,horiz,vert) -> (output,horiz,vert)) -> -- node function
[[input]] -> [[output]] -- resulting mapping

toroideRec dim1 dim2 f rows
= rnf outChans ‘seq‘ start_it ‘seq‘ -- force channel & ring creation
list2matrix dim2 outs -- re-structure output

where (outChans,outs) = createChans (dim1*dim2)
ringInput = (list2matrix dim2 outChans, rows)
-- creating first column ring
start_it = ringP dim1 dim2 (_ -> uncurry zip) spine

(gridlineR dim1 dim2 f) ringInput

-- ring function for 1st column ring
gridRow :: (Trans i, Trans o, Trans h, Trans v) =>
Int -> Int -> -- dimensions
((i,h,v) -> (o,h,v)) -> -- node function
(([ChanName o], [i]), [[ChanName v]]) -> ((), ([[ChanName v]]))

gridRow dim1 dim2 f ((ocs, row), allnextRowChans) =
let (cChanNamevs, rowChans) = createChans dim2

-- creating row ring
start = startRingDI staticIn (gridNode f) dummyCs mynextRowChans
staticIn = mzip3 row ocs cChanNamevs
mynextRowChans = allnextRowChans!!(dim1-2)
(dummyCs, _) = createChans dim2

in rnf cChanNamevs ‘seq‘ rnf dummyCs ‘seq‘ start ‘seq‘
((), rowChans:take (dim1-2) allnextRowChans)

-- ring function for row rings
gridNode :: (Trans i, Trans o, Trans h, Trans v) =>

((i,h,v) -> (o,h,v)) ->
((i,ChanName o, ChanName (ChanName v)),ChanName v,h) -> ((),h)

gridNode f ((a,cResult,cv),cToBottom,fromLeft) =
new (\ cFromAbove fromAbove ->

let (out,toRight,toBottom) = f (a,fromLeft,fromAbove)
in parfill cv cFromAbove -- send vertical input channel

(parfill cResult out -- send result for parent
(parfill cToBottom toBottom -- send data on column ring
((), toRight)))) -- result and data on row ring

Figure 4. Core of Recursively Unfolding Torus Skeleton

The ring function gridRow for the first column ring creates a ring for each row. We do not
use the normal interface of the ring skeleton but the internal startring function, because we want
to embed the column processes into the row rings. A subtlety of the inner rings is the circular
dependency of their dynamic input, i.e. the dynamic channels to establish the additional column
rings. It is necessary to use a variant startRingDIwhich decouples static input, which is available

840

7

Multiplication of dense
random 1000 × 1000
matrices with
Recursive Toroid
Overall Runtime:
12.1sec.

Multiplication of dense
random 1000 × 1000
matrices with
Single-Source Toroid
Overall Runtime:
12.4sec.

Figure 5. Start Phase of Matrix Multiplication Traces Using Toroid Skeletons, on 26 Processors

at instantiation time, and dynamic input, which will only not be produced after process instantiation.
Otherwise, the inner rings would immediately deadlock on process instantiation. Each row ring
process returns a channel name for its vertical input, which must be collected and passed to the
previous row through the first column ring (as indicated in Figure 3 for the second row).

Measurements with a toroid-based matrix multiplication algorithm (by Gentleman, see [9]) show
that runtimes are slightly better for the recursive version, due to a distributed startup sequence.
Figure 5 shows traces of the start phase of the matrix multiplication program executed on 26 nodes
of a Beowulf cluster, using either the original (single-source) or the recursive skeleton. Processors
(resp. processes1) are shown as horizontal bars with colour-coded segments for their actions. We
distinguish between the states blocked (red – dark grey), runnable (yellow – bright grey) and running
(green – middle grey). Idle processors are shown as a smaller bar, and messages between processes
are indicated by grey lines.

1Because of explicit placement, every processor executes exactly one process. So we identify nodes and processes.

841

8

While runtime is only slightly improved, the traces show the expected improvement in startup:
process creation is carried out by different processors in a hierarchical fashion in the recursive skele-
ton implementation. One can observe how the first column unfolds, starting at processor 2 with
stride 5, and how each of these processes unrolls one row. Process creation takes about 0.15 sec. in
this version, whereas the single-source version below needs 0.4 sec. until all processes start to work
(explaining the difference in runtime).

The improvement in startup pays especially for skeletons with a big number of processes. In any
case, it substantially reduces the network traffic. The program investigated here already includes
the input matrices in the process abstraction instead of communicating these big data structures via
channels (which would be more time-consuming). However, the parent process in the single-source
version has to send the channel names to each toroid process, which needs 125 messages. The
parent process in the recursive version only sends 2 messages – creation and input to the startring
process of the first column ring.

4. Conclusions and Future Work

The recursive unfolding of rings and toroids spreads the process creation overhead over several pro-
cesses, thereby avoiding an eventual bottleneck in the originator process. Although the specification
and implementation of the recursive unfolding is more sophisticated, case studies have proved that
the effort definitely pays off. An interesting aspect which we want to elaborate further is the creation
of higher-dimensional topologies by an appropriate nesting of lower-dimensional ones. Currently we
have only shown how to define a recursive two-dimensional toroid skeleton using one-dimensional
ring skeletons.

References

[1] M. Cole A. Benoit. eSkel – The Edinburgh Skeleton Library, University of Edinburgh 2002.
http://homepages.inf.ed.ac.uk/abenoit1/eSkel/.

[2] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured High Level
Programming Language and its Structured Support. Concurrency — Practice and Experience, 7(3):225–
255, May 1995.

[3] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Research Mono-
graphs in Parallel and Distributed Computing. The MIT Press, Cambridge, MA, 1989.

[4] J. Darlington, Y. Guo, and H.W. To. Structured Parallel Programming: Theory meets Practice. In
Research Directions in Computer Science. Cambridge University Press, 1996.

[5] H. Kuchen. The Münster Skeleton Library Muesli, University of Münster 2002.
http://www.wi.uni-muenster.de/PI/forschung/Skeletons/.

[6] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Abstractions in Eden. In
Patterns and Skeletons for Parallel and Distributed Computing. Springer, 2003.

[7] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́. Parallel Functional Programming in Eden. Journal of
Functional Programming, 15(3):431–475, 2005.

[8] R. Plasmeijer, M. van Eekelen, M. Pil, and P. Serrarens. Parallel and Distributed Programming in Con-
current Clean. In Research Directions in Parallel Functional Programming, page 323ff. Springer, 1999.

[9] M.J. Quinn. Parallel Computing. McGraw-Hill, 1994.
[10] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, August 1999.
[11] P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S. Partridge, and S.L. Peyton Jones. GUM: a portable

implementation of Haskell. In IFL’95 — Implementation of Functional Languages, 1995.

842

