
John von Neumann Institute for Computing

Distributed Congestion Control for Packet
Switched Networks on Chip

T. Marescaux, A. Rångevall, V. Nollet, A. Bartic,
H. Corporaal

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 761-768, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributed Congestion Control for Packet Switched Networks on Chip

Théodore Marescaux1, Anders Rångevall1,2, Vincent Nollet1, Andrei Bartic1, Henk Corporaal3
1IMEC V.Z.W., Kapeldreef 75, 3001 Leuven, Belgium

2Department of Information Technology, Lund University, Lund, Sweden
3Technical University Eindhoven (TU/e), Eindhoven, The Netherlands

Theodore.Marescaux@imec.be

Packet-switched NoCs are efficient communication architectures for future MP-SoC platforms.
However the run-time management of their communication, especially congestion avoidance is a
challenging task. This paper discusses a distributed HW/SW congestion control technique. Hard-
ware modules detect early signs of congestion and traffic is re-shaped accordingly to reduce conges-
tion. The shape of the traffic is computed with binomial algorithms running on simple distributed
microcontrollers.

The hardware and software extensions we propose to our system provide a congestion control
solution that proves to be low-latency (100 clock cycles) and has a low area contribution to the
router hardware (about 5% in UMC 0.13 technology).

1. Introduction

In order to meet the ever-increasing design complexity, many future sub-100nm platforms will
be on chip multi-processor systems that require the flexibility and scalability of switched commu-
nication architectures such as Networks-on-Chip (NoCs). One interesting property of NoCs is their
ability to provide a wide range of Quality-of-Service (QoS) levels, ranging from best-effort to soft
and hard real-time guarantees.

We present the implementation of a packet-switched NoC and its network interfaces (NI) that
provide soft real-time guarantees by performing traffic shaping. Traffic is shaped at the sender NI
by controlling three parameters of the packets sent: their priority-level, their length and the time
they are injected in the NoC. Adapting traffic shapes to the current quality requirements allows to
control the congestion in the NoC and provides soft real-time guarantees. This paper focuses on the
extensions of our NoC to allow an automatic and distributed mechanism to perform traffic shaping
aiming at controlling congestion in the NoC. Our system -emulated on a Virtex-II FPGA coupled
to a StrongArm processor- is composed of two NoCs: a 3x3 mesh NoC with virtual cut-through
switching for application data traffic and a specialized NoC for control and distributed operating
system (OS) services, such as controlling the traffic shaping parameters [1]. These OS services are
implemented on small micro-controllers (µC) included in the NIs of the control NoC [2].

Enhancing our system with the ability to dynamically control the traffic shaping in a distributed
manner has required a small number of changes, such as modification of the packet header, extension
of the interface to the data router for observability of the buffer occupancy and control algorithms
implemented in software.

Related work comes in several categories: some authors propose to enforce hard real-time guaran-
tees thus completely avoiding congestion but at the expense of more complex and restrictive schedul-
ing techniques [3]. Other techniques use adaptive routing to distribute traffic and avoid congestion
but need to either re-order packets at the expense of large buffers in the network interfaces or need
to re-send dropped packets and hence incur a large latency penalty [4,5] . Congestion avoidance by
central control of traffic shaping is discussed in [2] and centralized end-to-end flow control in [6].

761

2. NoC Extensions

Providing distributed congestion control on the data NoC requires hardware and software modi-
fications to our system. The packet header has been extended with the address of the source of the
communication, to be able to identify the source of the congestion, and with a priority field (Figure
1). The router has not been modified since it processes the contents of the first header flit and the
header extensions only affect the second header flit. The FIFOs inside the data NoC routers have
been modified to provide visibility on the number of packets queued and on the source and priority
fields from the header of the last packet buffered. The resulting signals are fed into a buffer monitor
module that has the role of sensing congestion. A FIFO is considered congested when its occupancy
goes above a settable threshold level. The buffer monitor keeps a history of source and priority of
the latest packets received. Upon congestion, the history is searched and the source of the lowest
priority packet is notified to a congestion monitor module. The congestion monitor multiplexes the
congestion notifications of all buffer monitors in the router and copies them to the data memory of
the µC in the local control NI. The µC local to the router that has sensed congestion can then no-
tify the µC of the source router to throttle the traffic coming out of its data NI. As a consequence,
congestion is reduced and the path is left free for other communication streams sharing part of the
congested path.

Message Class[15:14] Message Tag[13:6] Destination Input Port[7:4] Destination Address[3:0]

Destination Logic ID[15:7] Priority[6:4] Source Address[3:0]

Figure 1. Packet header extended with source and priority fields.

3. Buffer Monitor

The relatively small size of the buffers in the routers of the data NoC leads to a network that can
congest rapidly. In worst-case scenarios, congestion can build-up in as little as 3 ∗ buffer depth
clock cycles, hence the congestion detection mechanism needs to rapidly counteract. The congestion
detectors are called buffer monitors and there is one buffer monitor connected to each output buffer
in the routers of the data NoC. On a 2D mesh NoCs a router has between three to five buffers and
hence as many buffer monitors.

The buffer monitor uses the four signals that are exported from each buffer in the Data Router to
get information about the packets (Figure 2). Whenever a packet enters the buffer, the router asserts
the signal new packet. At the same time the router exports the source and priority of that packet,
the source and priority signals. The fourth signal from the router is the packets outqueue
that tells how many packets there are in the buffer.

The primary role of the buffer monitor is to sense congestion by measuring how many packets are
stored inside the buffer in the router. If there are more packets than the threshold level set by the
operating system, the buffer is considered to be congested.

Upon congestion, the role of the buffer monitor is to select where to send a congestion notifica-
tion. To make an informed decision, the buffer monitor stores information regarding recent packets

762

notified
priority[2:0]
source[3:0]

+ notified
priority[2:0]
source[3:0]

+ notified
priority[2:0]
source[3:0]

+ notified
priority[2:0]
source[3:0]

+

find_lowest()

source

priority <
exemption

source

packets_queue
� threshold

threshold
congested

exemption

priority

++

+0x3>depth
+0x2>depth

+0x1>depth

+0x0>depth

depth

packets_outqueue

Buffer in router

Buffer Monitor

Congestion Monitor

new_packet

Figure 2. The buffer monitor, keeps a history of packets sorted by priority. Upon congestion it
reports the lowest priority packet to the congestion monitor.

in a separate history FIFO (hFIFO) that contains the source address and the priority of a packet.
Whenever a packet header enters the data router buffer, its source address and priority are shifted
into the hFIFO.

When a buffer monitor senses congestion it uses the find lowest function to search among
all the priority fields inside the hFIFO to find the source address of the packet that has the lowest
priority. If two packets have the same priority the most recent packet is selected.

A congestion notification containing source address and priority is then reported to the congestion
monitor (Figure 2). The entry in the history FIFO is then tagged as notified to avoid subsequent
congestion notifications. The notified tag is local to the buffer monitor hFIFO, therefore the
same packet may trigger more congestion notifications on the next hops along the path.

The maximum size of the hFIFO is set at design-time by the HISTORY DEPTH constant. Nev-
ertheless the effective size of the hFIFO can be controlled at run-time, for the needs of the control
algorithm, by setting the depth register in the buffer monitor. All entries in the hFIFO are searched
in parallel with a search tree to allow a very short reaction time, at the expense of increased area.
However that area increase is only linear with HISTORY DEPTH (Section 7). The hFIFO imple-
mented in our emulation platform stores information about four packets.

Two depth settings are of particular interest: 0x0 and buffer depth. With a depth of 0x0,
information is only stored for one packet. This packet is the most recent one that has entered the
buffer. This setting is interesting because it equates to very simple hardware, just store and search
one packet. The other setting where depth equals buffer depth means that the hFIFO stores
information about as many packets as the actual buffer holds.

The threshold and depth variables, although they seem similar, are quite different. The threshold
variable defines when the buffer is considered to be congested. This is done by comparing the

763

threshold value to the number of packets in the buffer. The depth variable on the other hand only
affects for how many packets the source address is remembered.

Another setting of interest is when the threshold and depth are both set to the same number
of packets. For example if the threshold and the depth are both set to two packets, then the source
address will be taken from one of the two currently buffered packets. It will not be taken from a
packet that has already left the buffer, which can be the case if the threshold is set to two packets and
the depth is set to three packets.

To further enhance the flexibility of the congestion control, there is a possibility to completely ex-
empt packets with certain priorities from triggering a state of congestion. This behavior is controlled
through the exemption register. By setting the exemption to 0x3, packets with a higher priority
than three – and cause congestion – will never trigger any congestion notifications to be sent. When
congestion is caused by another packet, the tile that sends the exempt packet will never receive a
congestion notification. In this example the packets with priorities 0x2, 0x1 and 0x0 cannot trigger
any congestion notification from being sent. It is important to realize that the exemption mechanism
does not prevent congestion from occurring; it merely hides it from the congestion control.

4. Congestion Monitor

Every router on the data NoC contains one congestion monitor that fulfills two major roles. On the
one hand it acts as a multiplexer/decoder to give the local µC visibility and control over all the buffer
monitors contained in the data router. On the other hand it is able to autonomously send/receive
notification of congestions to/from remote congestion monitors. Congestion notifications are sent
over a separate control network reserved for low-latency OS traffic [1,2].

Each congestion monitor connects to a µC in the local Control Network Interface (Figure 3) and
its registers are memory-mapped in the address space of the microcontroller. It is the microcontroller
that assigns values to the different variables such as the depth and the threshold that affect the
buffer monitors. The congestion monitor also contains statistics registers that count the number of
congestion notifications received and sent.

The µC controls the behavior of the congestion monitor and of its buffer monitors. For instance
it can selectively enable buffer monitors through the memory-mapped register cmBufMsk. Inciden-
tally the congestion monitor also contains a hardware timer that is read and set by the µC. It is used
to provide the µC with a time-base related to the NoC traffic.

Congestion signaling of the buffer monitors is detected by the congestion monitor and is relayed
as a congestion notification. The destination for the congestion notification is provided by the buffer
monitor signal source. If several buffer monitors of the same router indicate congestion at the same
clock cycle, only the highest priority congestion notification is sent, the other ones are dropped.

Congestion notifications can either be directly sent from congestion monitor to congestion monitor
through the control network, or the autonomous congestion notification can be overridden by the µC
by setting the autonomous mode register to zero in the congestion monitor. The latter allows the
µC to implement in software more complex notification schemes but puts it in charge of sending
congestion notifications. By default our system functions in autonomous mode.

5. Congestion Control in Action - an Example

This section shows a simple example of how congestion is detected and how congestion notifi-
cations are propagated to the source of congestion. The congestion control mechanism is triggered
when a buffer in a router on the data NoC fills up above the threshold level and is thus considered as

764

being congested. Figure 3 shows how the congestion notification is propagated through the system.
Steps one to five take place in hardware and take three clock cycles to execute (not including possi-
ble, but short, conflicts on the control network). Steps six and seven execute in software on the local
µC, typically consuming about 100 clock cycles.

Congested Router

Source of Congestion

Congestion

Monitor

Control Network Interface

uCuC

Data
NI

Control Network Interface

Data
NI

uCuC

Congestion

Monitor

Data Network

Control
Network

1

2

3

4 5

6

Traffic Shaper

7
Traffic Shaper

Congested Router

Source of Congestion

Congestion

Monitor

Control Network Interface

uCuC

Data
NI

Control Network Interface

Data
NI

uCuC

Congestion

Monitor

Congestion

Monitor

Data Network

Control
Network

1

2

3

4 5

6

Traffic ShaperTraffic ShaperTraffic Shaper

7
Traffic ShaperTraffic ShaperTraffic Shaper

1. The buffer monitor detects congestion in the local buffer.

2. The buffer monitor searches packet history for congestion source.

3. The source address of the congestion is given to the congestion monitor.

4. The congestion monitor sends a congestion notification to the congestion

source through the control network.

5. The congestion notification is processed by the receiving congestion monitor.

6. The uC polls the congestion monitor and gets the congestion notification.

7. The uC computes a new window size and configures the traffic shaper to

reduce throughput accordingly.

Figure 3. Congestion control in action. A buffer in the left router is congested. The arrows show
how the congestion notification is propagated to the source of congestion.

6. Traffic Shaping - Control Algorithm

The traffic shaping in our system is based on a sliding window mechanism. Packets are only
injected in the network during the time a window ω is opened. The size of the window is based on
binomial congestion avoidance [7]:

Window Increase : ω(t + R) = ω(t) + α
ω(t)k ; (α > 1) (1)

Window Decrease : ω(t + δt) = ω(t)− βω(t)l ; (0 < β < 1) (2)

While no congestion is notified, the window size is gradually increased at a rate R (Figure 4(a)),
by default 2048 NoC cycles on our system. In the general case, the increase amount is proportional
to ω−k (Equation (1)). Shortly after congestion has been notified, the window size is decreased
(Equation (2)), usually by a larger amount than it is increased (Figure 4(a,b)). The parameters k
and l in Equations (1,2) define the aggressiveness at which the windows are opened and closed
and therefore their impact on response to congestion. To ensure a good trade-off between probing
aggressiveness and congestion responsiveness, we use the k + l rule defined in [7]: k + l = 1
and l ≤ 1. Figure 4(b) shows the effect of two different sets of (k, l) values that follow the k + l
rule. Additive Increase Multiplicative Decrease (AIMD) uses (k, l) = (0, 1) and yields a windowing
mechanism that is both efficient and simple to implement. The square root algorithm (SQRT) uses
(k, l) = (0.5, 0.5) and thus changes the window size proportionally to

√
ω which yields a smoother

traffic shaping but is more computationally intensive (Figure 4(b)).
The µCs in the network interfaces are tiny micro-controllers, without floating-point units and

have a very limited amount of memory, making it difficult to store constant tables. Therefore, to

765

Time

w

R

a
b = 0.8

Ex: AIMD (k=0;l=1)

Congestion Notified

Time

w

R

a
b = 0.8

Ex: AIMD (k=0;l=1)

Congestion Notified

(a) Window increase/decrease illustrated on AIMD.

w

Time

Slow Start

Congestion

Avoidance SQRT (k=0.5;l=0.5)

AIMD (k=0;l=1)

w

Time

Slow Start

Congestion

Avoidance SQRT (k=0.5;l=0.5)

AIMD (k=0;l=1)

(b) SQRT gives a smoother window variation.

Figure 4. Traffic shaping is based on a sliding-window mechanism.

rapidly compute window sizes, the congestion control algorithm initially implemented on our system
is AIMD. In the current implementation the sending rate is divided by half upon notification of
congestion and the increase rate is 2048 NoC cycles, or the equivalent of sending 8 packets of
maximum length (512 bytes).

7. Results

The distributed congestion-control system is fully implemented and integrated to our emulation
platform. An instance with a history depth of 3 packets and 8 levels of priority requires about 3% of
the Virtex-II 6000 for all 9 congestion monitors and 33 buffer monitors. The average total response
time to congestion is 100 NoC cycles with a variance of 20.

7.1. Synthesis to UMC 0.13 STD Cell Technology
Additionally to the FPGA implementation, we have also synthesized the congestion detection

system to standard cell technology using the UMC 0.13 libraries. We believe these numbers to give
a good indication of the impact our distributed congestion control system would have in a real chip.

We have compared the area and contribution to the critical path of the whole congestion con-
troller -composed of a congestion monitor and 4 buffer monitors- to the router of the data NoC. It
results that the area impact of our congestion control system is negligible with respect to the router
area (Figure 5(a)). For instance for a router with 4 ports, the congestion controller occupies about
15000µm2, which only represent 5% of the router. As Figure 5(b) shows, the critical path of the
congestion controller has a negligible effect on that of the router.

Figure 6(a) shows a linear increase to the area contribution of the congestion controller when
varying the number of ports, hence the number of buffer monitors. Figure 6(b) details the area
contribution of a congestion controller with only one buffer monitors when varying its HISTORY -
DEPTH. The dependency is again linear, which shows that HISTORY DEPTH can be increased to
slightly higher values to allow more complex control algorithms without having a dramatic impact
on area.

7.2. System Latency
A critical requirement of our system is a low latency when responding to a congestion notification.

We measure that response latency from the moment a buffer in a data NoC router is congested to the
moment the window size is adapted in the traffic shaper to reduce the data throughput at the source
of congestion (steps 1 to 7 in Figure 3).

The polling by the microcontrollers determines to a large extent the latency for the congestion
control. The whole control loop executes in about 100 clock cycles (Figure 7(a,b)), unless it needs
to respond to commands sent from the operating system.

766

0 2 4 6 8 10
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

800000

Router Area

Router

Congest mon

Number of Ports

A
re

a
 (

u
m

²)

(a) Negligible area of congestion controller.

0 2 4 6 8 10 12 14 16 18 20
150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

Congestion Monitor versus Router

ConMon

Router

Number Ports

F
re

q
u
e
n
c
y
 (

M
H

z
)

(b) No impact on router critical path.

Figure 5. The congestion controller proves to be inexpensive (UMC 0.13 STD cell technology).

0 2 4 6 8 10 12 14 16
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Congestion Controller Area - History Depth 4

Congestion

Total

Buff Total

Buff Avg

Number of Ports

A
re

a
 (

u
m

²)

(a) Congestion controller area vs buffer monitors.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

6656.2
8019.7

10374.9

15353.3

20108.8

25145.9

44122.8

Congestion Controller Area - 1 Port

buffer_monitor

congestion_monitor

Total

History Depth

A
re

a
 (

u
m

²)

(b) Congestion controller area vs history depth.

Figure 6. Congestion controller implementation details in UMC 0.13 STD cell technology.

The hardware composed of buffer monitors and congestion monitors is optimized, so that the
congestion detection and notification only takes 3 clock cycles. All the remaining cycles reported in
Figure 7(b) are spent in software on the µC local to the source of congestion to compute window
sizes with AIMD, perform I/O accesses or respond to requests from the central operating system.
With statistics collection and reporting enabled, the average response latency to congestion is about
100 clock cycles, with a variance of 20.

On our system the packet payload length can vary between 0 and 256 data words (16-bits). The
packet travel time is proportional to the number of hops in the system and to the payload length. For
packets longer than 100 data words, the congestion control system reacts in a time that is inferior
to the packet travel time. For more reasonable packet lengths, the latency of the congestion control
is in the order of magnitude of the flight time of 10 packets. The system is therefore fast enough to
rapidly counteract when congestion is building-up in the NoC.

767

Initialize

Variables

Update

timestamp

OS

Command?

Congestion

Notification?

Process OS

Command

Store to RAM:

Window Parameters

and Time-Stamp

Window

Decrease

Reset timer

Window

Increase

Reset timer

Timer

Time-Out?

Yes

No

Yes

No

Yes

No

(a) Control loop on µC.

0

20

40

60

80

100

120

140 Best
Worst

Clock Cycles

No Statistics
Collected

Normal
Execution

(b) Reaction latency.

Figure 7. Control loop on the µC and impact on congestion control latency.

8. Conclusion

This paper discusses distributed congestion control for packet-switched networks-on-chip. Early
signs of congestion are detected by distributed hardware modules and traffic re-shaping techniques
are used to reduce congestion accordingly. The traffic shaping is based on a sliding-window mech-
anism for which the window size is computed by software running on distributed microcontrollers
that implement simple operating system support on our platform.

The hardware and software extensions we propose to our system provide a low-latency, low-area
congestion control solution. The area overhead of the hardware extensions is negligible compared
to the area of the packet-switched router (only 5% of the router area in UMC 0.13 technology). The
latency of the congestion control system is about 100 clock cycles which is low enough to react to
congestion building-up in the system.

Both hardware and software extensions are very flexible and parameterizable to allow the imple-
mentation of many different types of control algorithms. It is possible to change the parameters and
algorithms at run-time from the central operating-system on the platform. Future work will focus on
determining optimal parameters and control algorithms depending on traffic patterns.

References

[1] T. Marescaux, V. Nollet and al., ”Run-time support for heterogeneous multitasking on reconfigurable
SoCs”, in Integration VLSI Journal, Elesvier Science Publishers, 2004.

[2] V. Nollet, T. Marescaux, D. Verkest, J-Y. Mignolet, S. Vernalde: ”Operating System controlled Network-
on-Chip”, Proc. of the Design Automation Conference, San Diego, June 2004, pp. 256-259.

[3] K. Goossens, J. Dielissen, and A, Rădulescu, ”The Æthereal Network on Chip: Concepts, Architectures,
and Implementations”, in IEEE Design and Test of Computers, September 2005.

[4] A. Adriahantenaina et al., ”SPIN: A Scalable, Packet Switched, On-Chip Micro-Network”, DATE Con-
ference, 2003.

[5] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, ”The Nostrum backbone - a communication
protocol stack for networks on chip”, in Proceedings of the VLSI Design Conference, January 2004.

[6] P. Avasare, V. Nollet, J.-Y. Mignolet, D. Verkest, H. Corporaal, ”Centralized End-to-End Flow Control
in a Best-Effort Network-on-Chip”, in Proceedings of EMSOFT, September 2005.

[7] D. Bansal and H. Balakrishna, ”Binomial Congestion Control Algorithms”, INFOCOM 2001.

768

