
John von Neumann Institute for Computing

Scheduling issues on IBM p690: Performance
Analysis with the PARbench Environment

H. Dietze, W.E. Nagel, B. Trenkler

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 717-724, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

Scheduling issues on IBM p690: Performance Analysis with the PARbench
Environment

Heiko Dietzea, Wolfgang E. Nagela, Bernd Trenklera

aCenter for Information Services & High Performance Computing (ZIH) Dresden University of
Technology D-01062 Dresden, Germany

1. Introduction

This paper investigates scheduling properties of parallel programs on IBM p690. Based on the
PARbench environment, it is the continuation in a series of research studies to analyze different
multiprogramming scheduling issues on high performance computer systems ([1], [3], [4], [5]).
First, thePARbenchenvironment is introduced briefly. Then the performance analysis main results,
as the basis for the scheduling study, are described. Finally, the behavior of the scheduling system is
discussed.

2. PARbench

The PARbench benchmark system is designed to simulate virtually every workload the user might
specify. It can execute many benchmark programs in parallel and record their behavior with regards
to time flow. This feature is applied analysing a system workload containing parallel programs in a
multiprogramming mode.

The basis for each workload program generated with PARbench is a set of synthetic kernels.
All kernels follow two rules: First, they are short enough to combine into one workload. Second,
together they are able to represent the overall parameter space of the used computer system.

The used version of PARbench provides 17 different kernels, each consisting of three parts: writ-
ing to disk, a loop nest, and reading from disk. The I/O-Part can be varied in 5 stages, including the
option to skip it. The loops are often derived from scientific calculations but do not always solve a
problem. Every kernel can be used with different data sizes by changing the size of the used ma-
trices. In result, there are 340 different kernel versions available. As a concept for parallelization,
OpenMP is used. The number of threads per job during execution is a parameter specified by the
user.

3. IBM p690

The tested IBM p690 is a shared memory system with 32 processors. Based on the IBM POWER4+
processor with a clock rate of 1.7 GHz, it has a theoretical peak performance of 6.8 GFLOPS per
processor.

3.1. Preliminary Investigations
The first step for the work with the PARbench benchmark is to identify the kernel properties. This

includes, amongst other things, the FLOP-rate and rate of the processors memory references per sec-
ond (MREFS). The results represent the available parameter space for the scheduling experiments,
particularly for the CPU and memory utilization.

The review of the results for all 340 Kernels shows that very few kernels reach a rate of more than
25% theoretical peak performance (1700 MFLOPS) and yet fewer reach more than 50% theoretical

717

peak performance (3400 MFLOPS). The same, but to a lesser degree, can be said about the rate of
memory references. A plot of all kernels is available in Figure 1. Importantly, a high FLOP-rate
cannot be achieved in conjunction with a high rate of memory references. This behavior is due
mainly to the processor and memory interface, but the PARbench benchmark properties can be of
influence.

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500

M
F

LO
P

S

MMREFS

Figure 1. PARbench kernel performance (MMREFS and MFLOPS) on IBM p690

To reach the theoretical floating-point peak performance, it is necessary to use both floating-point-
units continuously with FMA-Operations (Fused Multiply Add Operation). This is not possible in
all PARbench-Kernels. This disables the attainable rate down to 1.7 GFLOPS. Even if it was pos-
sible, insufficient bandwidth and high latencies to the memory and level-three (L3) cache prevent a
better performance. The design of the processor core also reduces the attainable FLOP-rate. Man-
aging out-of-order execution via groups is a design decisions. Tracking by groups of instructions
and not individual instructions reduces the necessary hardware, but introduces additional overhead
such as the cost of creating an instruction group and the cost due to lost opportunities for parallel
computation.

Another problematic design feature is the two floating-point-units. Each unit has a six staged
pipeline. However, each pipeline stage needs an independent floating-point instruction to operate
continuously. Thus, 12 or more instructions are needed to feed the pipeline in an continuous and
efficient way. This can be a problematic requirement for loops with data dependencies (even in one
iteration). The peak performance of 5.4 GFLOPS (Kernel number 1) can only be achieved by using
40 FMA-register-register-operations per iteration of the inner loop.

718

Another aspect is the processors memory interface. There are two load/store-units per processor
core. Every unit can issue one load or store operation per clock cycle. Thus the theoretical limit for
the memory references is 3800 million (3800 MMREFS). Consequently, each floating-point-unit is
only provided with one operand from memory (or caches) per cycle.

The results indicate that the memory subsystem is a bottleneck of the system. The high latency
of the level-three (L3) cache and structural problem of the shared level-two (L2) cache increase this
problem. Thus, only 2.3 GMREFS (Peak 3.8 GMREFS) could be achieved with PARbench kernel
number 186. This kernel uses the level-one (L1) data-cache very efficiently, because it uses 15 out
of 16 entries of a cache line and the hardware pre-fetching can be employed.

4. Scheduling on the IBM p690

Scheduling is the task of the operating system. The tested IBM p690 system is equipped with the
AIX 5L Version 5.2 for POWER. It uses a thread based scheduling system with priority queues (256
stages). The scheduling algorithm is a fair round robin algorithm with dynamic priorities. The pri-
orities are calculated on the threads CPU usage. Since AIX 4.3.3, each processor has its own queue
(32 queues for 32 processors). Furthermore, there is one global queue for all processors available.
However, this queue must be explicitly activated and overwrites the system of local queues.

4.1. Serial Workloads
The initial experiments investigate the basic scheduling behavior. This includes workloads based

on kernel number 1 and 186. The jobs based on kernel 1 represent the ideal workload without side
effects. A run with 32 identical jobs based on kernel 1 and with 32 processors is nearly perfect. All
32 jobs run without any waiting time. There is virtually no additional user-time and the system-time,
an indicator for the schedulings overhead, is negligible.

The same experiment, with the 32 identical jobs, based on the memory intensive kernel 186 results
differently. There is a visible prolongation of the user-time for several jobs. This is explained by the
interaction of the jobs when caches are shared. When caches are shared, more time is needed during
loading and storing.

Both experiments show that scheduling serial workloads in full-load situations are unproblematic.
However, cache interference and memory must be watched, as it can increase the necessary user-
time.

4.2. Serial Workloads with Overload
The experiments in overload situations are simulated by using 48 jobs based on kernel 1. Each

job has a initial runtime of 100 seconds. The operating system offers two variants for organizing the
scheduling: one queue per processor, which is the standard version (results shown in Figure 2), or
one global queue for all processors (not shown). The scheduling algorithm for all queues is the fair
round robin system with dynamic priorities.

The results from the system of 32 queues show two classes of jobs: with and without waiting time.
Naturally, slight waiting time due to the overload is to be expected. The reason for the difference
is the late migration between the processor queues. If a processor is idle, one of the waiting jobs
migrates to the other processor. In the beginning of the experiment with 48 jobs there are queues with
only one job and queues with two jobs. The single jobs run without interruptions until completion.
Meanwhile, two jobs share one processor fairly via round robin. Only after completion of one
quasi exclusive jobs is there a migration (late migration). Now the two jobs can complete without
interruption.

719

Figure 2. PARbench experiment with 48 serial jobs based on kernel 1 running on 32 processors with
one queue per processor.

Using the global queue for scheduling, the result is quite different. All jobs are distributed equally
among the 32 processors by the round robin scheduling algorithm. This means every job has now a
waiting time of approximately half the runtime. Due to the loss of several processors exclusive use,
the overall waiting time increases. The global queue in conjunction with a fair scheduling concludes
in an increase of waiting time.

4.3. Mixed Workloads
For experiments with parallel workloads, we create a new set of 32 jobs. Every job is created

with the goal of 1900 MFLOPS, 1000 MMREFS and 100 seconds runtime. This is impossible with
one special kernel, so a sequence of kernels are used. This sequence contains different kernels to
approximate the given job properties.

As an example of a mixed workload with both parallelized and serial jobs, we use 16 serial jobs
and 16 parallel jobs with 4 threads each. The jobs are divided into four groups, each with 4 serial
and 4 parallel jobs. The result for the system of one queue per processor is shown in Figure 3 and
for the global queue in Figure 4.

The system of local queues produce only a small speedup, but this is done at a high cost. The
overall user-time increases and the waiting time is not reduced. Therefore, there is no actual gain in
runtime. This is due to the migration between the 32 queues of the 32 processors.

720

Figure 3. PARbench experiment with 16 jobs a 4 threads and 16 serial jobs running on 32 processors
with one queue per processor.

Figure 4. PARbench experiment with 16 jobs a 4 threads and 16 serial jobs running on 32 processors
with the global queue.

721

With initiation, every job is assigned to a queue and processor. Then, the 16 jobs start to execute
their parallel regions (OpenMP). Still, the 4 threads of one parallel job remain mainly on the same
processor. The late migration reduces the ability to work with threads of the same job in parallel. A
consequence of the increased busy-wait is additional user-time.

The results from the global queue (Figure 4) show a better acceleration than the local queues. Also,
there is no additional overall user-time. However, due to the properties of the global queue, there is
an increase of the overall waiting time. This annuls any gain due to parallelization in comparison to
the serial working of the set of jobs. The two possibilities for organizing scheduling do not produce
convincing results in an overload situation with mixed workloads of parallel and serial jobs.

During the experiments with mixed workloads, we encountered some shortcomings in the ac-
counting system, particularly with the user-time. In result, the accounting system recorded less
user-time for parallel programs (OpenMP) and thus more to the sequential programs. In extreme
cases, we measured sequential programs with a higher user-time than real-time. Yet, the sum of
all user-times remains correct. This seems to occur only if thread-parallel and sequential programs
shared the same queue. Thus, the drawn user-time in Figures 3 and 4 for parallel jobs is, in reality,
higher and for sequential jobs, smaller. With parallel-only or sequential workloads, there are no such
visible effects.

The experiment with a parallel-only workload uses a set of 32 parallel jobs with 4 threads per job.
The results with local queues are shown in Figure 5. There are no gains visible and the user-time

Figure 5. PARbench experiment with 32 jobs a 4 threads with one queue per processor.

increases even further. The effect of one queue per processor is most visible here: no thread has
a chance to work in parallel with a thread of its own job because no thread can migrate to another
processor due to late migration. The increase of user-time is explained due to the busy-wait during
parallelization.

722

Changing to the global queue (not shown) could stop the additional user-time, but there is still no
gain through parallelization. Serializing the threads is nearly ideal and this case is viewed as almost
identical to the calculation with 32 serial jobs. The only cost is the additional work for the scheduler,
which can be measured in an increase of the system-time.

4.4. Handoptimized Workload
The main goal of parallel work is to gain an acceleration due to reduced runtime. The current

results show that a system of local queues have a negative influence on parallel computation. The
global queue is slightly better but it also increases the overall waiting time thus negating any positive
effects.

Figure 6. PARbench experiment with 32 jobs a 4 threads and hand-optimization delay in the begin-
ning of parts of the workload.

To avoid the overloads negative effects, one can use a delay when starting some of the jobs in
the workload. This is done, for instance, manually, as shown with PARbench in Figure 6 (for the
example of 32 jobs with 4 threads per job).

This results in nearly ideal behavior. Every job can gain a considerable acceleration and nearly all
jobs finish earlier than in a sequential mode. Only the last group of 4 jobs completes after the 100
second limit. The reason being the acceleration is slightly less than ideal for a parallelization with 4
processors. But this is negligible in contrast to the results without a manual optimization (ref. Figure
5).

A manual optimization or the use of a workload manager to prevent an overload situation con-
tradicts the ideal multiprogramming mode. Additionally, the use of MPI in a cluster of IBM p690
nodes is only efficient if all processes of one MPI-job are active at the same time. This can not be
guaranteed in an overload situation with multiprogramming.

723

5. Summary and Outlook

The performance results show that the POWER4+ Processor has several deficits reaching its peak
performance. The main reasons are the design of the processor core and the memory-interface. The
caches can not compensate this problem. The level-three (L3) cache with its high latency and the
shared level-two (L2) cache are also problematic factors.

The operating systems scheduling system works perfect for workloads up to a load of 100 percent.
In overload situations, such as multiprogramming environments, both scheduling variants exhibit
drawbacks. Using the global queue can produce acceptable results but at the cost of higher waiting
times. The method of one queue per processor produces the best results with serial workloads. Its
disadvantage being the longer process-time when used in conjunction with parallel jobs. Addition-
ally, the speedup is small or the parallel runtime is longer than the sequential version. A manual
optimization using a start-delay to decrease the workload could produce the best results. Further-
more, we have detected some shortcomings in the accounting system which, just by accident, record
fewer to the parallel programs.

In the future, limited degree of parallelism will be tested. It is expected, that multiprogramming
provides better results in this situation, as it is the mostly used dedicated mode. Furthermore, other
machines e.g. Sun Fire E25K, NEC-SX8 will be tested.

6. Acknowledgment

We would like to thank the John-von-Neuman Institute at the Research Center Juelich for provid-
ing the access to their IBM p690 Cluster JUMP thus making the measurements possible.

References

[1] Sebastian Boesler. Performance-Analyse von Hochleistungsrechnern im Multiprogramming-Betrieb:
Untersuchungen auf der SGI Origin. Diploma-Thesis, Dresden University, Dec 2001.

[2] Heiko Dietze. Das PARbench-System: Untersuchungen zum Scheduling von parallelen Programmen
auf der IBM p690. Diploma-Thesis, Dresden University, Nov 2004.

[3] Klaus Fabian. Leistungsuntersuchungen von Multiprozessorsystemen auf der Basis des parameterges-
teuerten Lastbeschreibungssystems PAR-Bench unter besonderer Bercksichtigung von parallel ablauf-
baren Teillasten. Technical Report Jl-2671, Forschungszentrum Jlich, August 1992.

[4] Andreas Kowarz. Performance-Untersuchungen mit dem PARbench-System auf unterschiedlichen Par-
allelrechnern. Diplomarbeit, Technische Universitt Dresden, Fakultt Informatik, Institut fr Technische
Informatik, Mai 2003.

[5] Wolfgang E. Nagel and Markus A. Linn. Benchmarking parallel programs in a muliprogramming envi-
roment: The PARbench system, 1991.

724

