
John von Neumann Institute for Computing

A Parallel Implementation of a 3D
Reconstruction Algorithm for Real-Time Vision

J. Falcou, J. Sérot, T. Chateau, F. Jurie

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 663-670, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

1

A parallel implementation of a 3d reconstruction algorithm for real-time
vision.

J. Falcoua,J. Śerota, T. Chateaua, F. Jurieb

aLASMEA, UMR6602 UBP/CNRS, Campus des Cézeaux, 63177 Aubière, France.

bGRAVIR, INRIA/CNRS, 55 avenue de l’Europe, Montbonnot 38330, FRANCE

1. Introduction

Artificial vision requires of large amount of computing power, especially when operating on the
fly on digital video streams. For these applications, real-time processing is needed to allow the sys-
tem to interact with its environment, like in robotic applications or man/machine interfaces. Two
braod classes of solutions have been used to solve the problem of balancing application needs and
the constraints of the real-time processing: degrading algorithms or using dedicated hardware archi-
tecture like FPGA or GPU. These strategies were effective because of the specific properties of the
images and the structure of the associated algorithms. However, the constant and fast progression of
general purpose computers performance makes these specific solutions less and less interesting. De-
velopment time and cost now plead in favor of architectures based on standard components. During
the last ten years, the use of these solutions increased with the generalization ofclustersmade up
of off-the-shelf personal computers. But this type of solution has been rarely used in the context of
complex vision applications operating on the fly. This paper evaluates this opportunity by proposing
a cluster architecture dedicated to real-time vision applications. We describe the hardware archi-
tecture of such a solution – by justifying the technological choices carried out on the application
requirements and the current state of the art – then the associated software architecture. The va-
lidity of the approach is shown with the description and performance evaluation of a real-time 3D
reconstruction application.

2. Architecture Design

2.1. Hardware architecture
The hardware architecture of the cluster is shown on fig.1. The current configuration includes 14

compute nodes. Each node is a dual-processor G51 running at 2 GHz and with 1Gb of memory.
Nodes are interconnected with Gigabit Ethernet and provided with digital video streams, coming
from a pair of digital cameras, by aFirewire IEEE1394abus2. This approach allows simultaneous
and synchronized broadcasting of input images to all nodes, thus removing the classical bottleneck
which occurs when images are acquired on a dedicated node and then explicitly broadcasted to all
other nodes. The Ethernet network bandwidth is then fully available for application-level message-
passing.

1Apple XServe Cluster Node
2In isochronous mode, at 400Mb/s

663

2

ProcessorsNode

FIREWIRE IEEE1394A NETWORK @ 400Mb/S

ETHERNET GIGABIT SWITCH

Camera Camera

Figure 1. Cluster architecture

The following motivated the choice of the G5 processor :

• The presence of the Altivec extension [7].This extension can provide speedups in the range
of 2-10 for a large class of low to mid-level image processing operations [5]. Without it, the
size of the cluster needed for obtaining the required speed-ups (up to 50) would have been
prohibitive (in terms of power consumption and cost).

• The native support of Gigabit Ethernet network. Gigabit Ethernet offers one of the best
cost/performance ratio. More expensive solutions like MyriNet or InfiniBand have been con-
sidered, but their high cost will have reduced the actual number of node available for the
cluster.

The suggested architecture is sufficiently open to enable it to benefit directly from technological
progress, while supporting mainstream programming models and tools.

2.2. Software architecture
The software architecture is a layered one :

1. At the lowest level are theFirewire drivers handling the transfer of images from the cameras
to the processor memory (using the DMA). For the programmer, the calls to these drivers are
encapsulated within a dedicated library (CFOX[6]) which provides in particular functions for
configuring cameras and obtaining a pointer to the most recently acquired frame in memory.
CFOXalso provides a easy way to synchronize video streams (sec. 3.3).

2. The middle layer deals withparallelism issues. We use a hybrid three-level parallel program-
ming model, involving a fine-grain SIMD-type parallelism within each processor (Altivec),
a coarse grain shared-memory multi-processing model between the two processors of a node
and a coarse grain message passing based multi-processing between two processors of distinct
nodes. The first level can be exploited using the Altivec native C API [7] or, more easily,
using EVE [5], a high-level vectorization library specifically tuned for this extension. The
second level is exploited by describing the process running on each node as two concurrent
threads using thePTHREAD library. At the third level, the application is decomposed into a set
of processes running in SPMD mode and communicating using theMPI library. The use of

664

3

PTHREAD to explicitly schedule the execution of threads on the two processors of each node
is due to the fact that the lowest level of the software architecture doesn’t map correctly onto
the dual processor architecture. Each node is viewed as a singleFirewire node by the driver
layer and as a two-processor node by the parallel layer. This duality leads to resources shar-
ing conflicts that can’t be handled correctly byMPI. We need to keep a one-for-one mapping
between theFirewire level and theMPI level and usePTHREAD for this purpose.

3. The upper layer acts as ahigh-level programming framework for implementing applica-
tions. This framework, implemented in C++, provides ready-to-use abstractions (skeletons, in
the sense of [8]) for parallel decomposition, built-in functions for video i/o and mechanisms
allowing run-time modification and parameterization of application-level software modules.
Developing specific applications boils down to write independent algorithmic modules and
to design an application workflow using those modules. One can develop various workflows
using simple text description and dynamically choose which one is used by the application.

Here is a example of how we can write applications using this framework.

struct Data : public MPIData<Data>
{

Frame input;
Frame output;

5 };

struct Work : public Task<Work>
{

bool operator()(Data& d)
10 {

d.output = where(d.input > 127, 255, 0);
return true;

}
};

15

int main(int argc, const char** argv)
{

Data d;
Camera camera(30, res640x480, 8);

20 Cluster cluster(argc,argv);

task_list(RowSplit<Frame>,Work,RowMerge<Frame>) act;
cluster.task() = (SCM<act>(cluster.root(),cluster.world()));

25 camera >> d.input;
cluster.run(d);

return 0;
}

Figure 2. A simple binary thresholding application using our software architecture

665

4

The code shown in figure 2 is a simple example that retrieves video frames from a single camera
and relies on a classical scatter-compute-merge skeleton to perform a binary thresholding on them3.
The first part of this code is the declaration of a class that defines the data we will work on and the
operations that will be applied to this data. TheWork class implements a() operator that performs
the actual thresholding.This is done by using theEVE functionwhere that implements a vectorized
if/then/else construction. The application itself starts by building aData object, theCamera
object and the mainCluster object. Then tasks that will be run onto thisCluster are explicitly
scheduled by using one of the built-in parallel skeleton class provided by the application framework.
SCMis a simple scatter-compute-merge skeleton that splits the input image into slices, dispatches
them onto a static number of workers, applies a given operation and merges the result. Here the
built-in split and merge classes (RowSplit andRowMerge) and theWork class defined earlier
are used. We also explicitely choose the root process of theSCMskeleton and the subgroup of nodes
that will run the atual tasks. Once the activity is scheduled, video frames are grabbed and dispatched
to theCluster object.

3. Realistic application

The proposed platform has been assessed in the context of real-time vision applications in order
to show that its dual bus architecture (Ethernet for communication andFirewire for video broadcast-
ing) and its three-level parallel programming model (SIMD,SMP,MP) suit the needs of this class of
applications in terms of performance and programmability.

3.1. Algorithm description
We implemented the first stages of a 3D reconstruction and tracking chain using stereoscopic

vision. The application described here generates set of 3D points; it will obviously be followed by
an interpretation stage that we don’t cover in this paper. Basically, the algorithm consists in four
different steps:

• Image rectification (RECTIF) : This stage warps camera frames by matching epipolar lines
onto image pixels rows[9]. This simplifies further point matching by limiting search to a single
pixel lines.

• Key-point detection (DETECT) : point of interest to be used as seed for matching stage are
extracted from the rectified stereo pairs by a Harris and Stephen corner detector [4].

• Key-point matching (MATCH) : Each 2D key-point from the left image (resp. right image)
is matched with a 2D key-point from the right image (resp. left image) by using a maximum
likelihood search using a zeros normalized cross correlation (ZNCC) measure.

• 3D reconstruction (BUILD) : Correctly matched key-point pairs are then triangulated [10] to
outputs the 3D coordinates of the corresponding point.

This algorithm was chosen for three reasons: the huge number of operations per frame, the diver-
sity of these operations and the fact it is at the root of numerous applications such as mobile robot
navigation, motion capture or human-computer interface. A sample of the results obtained by this
algorithm is shown on figure 3.

3For clarity purpose, we left out include directives and namespace declaration.

666

5

Figure 3. Visual output of the 3D reconstruction algorithm

3.2. Parallelization Strategy
The detection and matching steps both involve regular, iconic processing and have been vectorized

using theEVE library [5] in order to take advantage of the SIMD level parallelism offered by the G5
Altivec extension. Parallelization of the rectification, matching and reconstruction steps is done by
partitioning the source image into a fixed number of slices and having each processor operating
within a slice4. A first approach was to use aFarm skeleton providing simple workload balancing.
In this skeleton, a master node dynamically dispatches images slices to workers that apply each step
of the reconstruction algorithm to a slice and outputs a set of 3D points. Finally, sets computed on
each workers are merged and displayed. It turned out that the optimal slices size was one slice per
processor. We therefore decided to use theSCMskeleton shown earlier. Globally, this parallelization
scheme only needs two synchronization step : one before grabbing the frame from the camera and
one at the end of the merging process.

3.3. Camera Synchronization
To be as accurate as possible, the algorithm must be run onto a stereo pair picturing the same

space-time event. If left and right image of the pair are incoherent, the matching and reconstruction
will lead to badly reconstructed scene. In practice, this means that acquisition of left and right frames
on a single node must be synchronized as well as the broadcasting of images pairs to all node of the

4This is possible because the rectification step ensures that matching points will be on the same horizontal line of the
rectified image.

667

6

cluster. This is done by a two-step synchronization mechanism :

• A node synchronization step: The CFOX driver implements a time-stamp verification and
is able to provide synchronized frames from any number of cameras. We ensure that when the
video frames are acquired, they picture the same space-time event. This synchronization step
being a feature of the CFOX driver, users don’t have to care about explicitly synchronizing
frame acquisition on a single node.

• A cluster synchronization step: By using a message passing based synchronization (using
MPI Barrier) to force all nodes to wait each other before acquiring the next frame, we
force the synchronization of frame acquisition on all nodes. This synchronization has to be
explicitely triggered by the user.

4. Results

Preliminary results, obtained on 640×480×8bits video streams, appear in table 1. Computation
times for each step of the algorithm and total execution times are given for several values of the
processor number5. The first column gives the corresponding numbers for a sequential reference
implementation measured on a single G5 processor at 2GHz.

Step Seq np=2 np=4 np=8 np=16 np=24 np = 28
RECTIF 246ms 139.1ms 70.5ms 36.1ms 19.5ms 13.1ms 12.6ms
DETECT 262ms 80.1ms 40.5ms 20.6ms 11.2ms 7.1ms 6.4ms
MATCH 304.2ms 180ms 91.5ms 47.4ms 22.4ms 13.8ms 9.7ms
BUILD 180ms 100ms 53ms 27.5ms 18.2ms 12.0ms 9.5ms
TOTAL 992.2ms 479.2ms 244.6ms 122.6ms 68.2ms 42.9ms 38.2ms
FPS 1.02 2.08 4.08 8.15 14.66 23.31 26.17

Figure 4. Preliminary results for the application

Minimum latency is 38.2 ms, obtained with 28 processors. This leads to a maximum throughput
of 25.97 images processed per second and perfectly matches real-time vision constraints (cameras
are programmed to deliver 30 FPS). The corresponding relative speedup (compared to the sequential
reference implementation) is 25.97 (96% efficiency6). Two factors can explain these very encour-
aging results . First, thanks to the automatic broadcasting of images provided by theFirewire bus,
the application exhibits a high computevscommunication ratio (between 0.90 and 0.92 typically).
Second, the SIMD parallelization level offered by the Altivec can be efficiently exploited in at least
two steps of the application : DETECT and MATCH. Without Altivec, the maximum throughput is
only 17 im/s, showing that the presence of the SIMD level provides a noticeable speed-up increase.
These preliminary7 results were obtained with a rather naive implementation. They could be further
improved by reformulating certain parts of the involved algorithms to make them more amenable to
vectorization / parallelization and by fine tuning several algorithmic and parallelization parameters
such has the dimension of the filters used in the MATCH step). For the DETECT and MATCH steps,

5The processor handling the display of results is not counted here.
692% if we take into account the processor acting as display.
7Obtained with the first full working version of the platform in December 2004.

668

7

the speed-up due to AltiVec only is respectively 2,82 and 2,29. This acceleration could be easily in-
creased by changing the data types used for computations, minimizing memory copy and swap or
by rewriting some algorithm with a more SIMD-oriented approach than now.

5. Related Work

Running real-time 3D reconstruction applications on clusters has been applied to some variation
of our original problem. A proposed implementation of a real-time 3D shape reconstruction algo-
rithm uses N camera connected to N nodes in order to build a visual hull of the scene by a silhouette
volume intersection method. Camera synchronization is needed to ensure that each PC/Camera pair
is acquiring images at same time and solutions to this synchronization problem are described. The
parallelization strategy is based on a simple pipeline in which each algorithm step is allocated to a
computer node. Real-time performances are achieved with a small number of nodes and camera. Wu
and Matsuyama[1] or Franco and al.[2] expose such results. Those approaches differ from the one
presented in this paper in term of parallelization scheme and camera usage. Yoshimoto and Arita[3]
describe a Firewire-based PC cluster dedicated to real-time image processing. It consists of a cluster
of PCs interconnected by a IEEE-1394a Firewire bus. This bus is used both for transmitting video
data from the camera to the processors and for communicating between processors. Although the
possibility to obtain real-time performances is demonstrated (on a stereo-based 3D image restora-
tion), sharing the Firewire bus for both video broadcasting and inter-process communication may
lead to performance loss or scalability issues.

6. Conclusion

This paper shows that a cluster made of off-the-shelf computers with an efficient video stream-
ing capability and with several parallelism levels meets the constraints of complex real-time vision
applications. This was demonstrated by developing a 3D reconstruction application from a stereo
video stream. As far as we know, this is the first use of such an architecture to solve real time vision
application with this level of complexity. Those results are however preliminary as the cluster has
been operational for a few months. Shortly, we plan to finalize the reconstruction/tracking chain to
provide a fully functional real time 3D tracking application.

References

[1] Wu X., Matsuyama T. Real-time active 3d shape reconstruction for 3d video. In Proceedings of 3rd
International Symposium on Image and Signal Processing and Analysis, pages. 186-191, 2003.

[2] Franco J.-S., Menier C. and Boyer E. A Distributed Approach for Real-Time 3D Modeling.CVPR Work-
shop on Real-Time 3D Sensors and their Applications, 2004

[3] Yoshimoto H. and al. Real-Time Image Processing on IEEE1394-based PC Cluster. In 15th International
Parallel and Distributed Processing Symposium, 2001

[4] Harris C. and Stephens M. A combined corner and edge detector. In 4th Alvey Vision Conference, 1988,
pp. 189-192.

[5] Falcou, J., Serot, J - E.V.E., An Object Oriented SIMD Library. In Practical Aspects of High-level
Parallel Programming,ICCS 2004(3), pp. 323-330

[6] Falcou, J. - CFOX - A Firewire Camera Driver for OS X
http://wwwlasmea.univ-bpclermont.fr/Personel/Joel.Falcou/software/cfox

[7] Ollman I. AltiVec Velocity Engine Tutorial.http://www.simdtech.org/altivec . March 2001.

669

8

[8] Cole M. - Algorithmic Skeletons. In Research Directions in Parallel Functional Programming, Springer-
Verlag, 1999.

[9] Fusiello A.,Trucco E., Verri A. - A compact algorithm for rectification of stereo pairs. In Machine Vision
and Application, vol. 12, no. 1, pp. 16–22, 2000

[10] Hartley R. I. and Zisserman A. - Multiple View Geometry in Computer Vision. Cambridge University
Press - ISBN 0521623049, 2000.

670

