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Inference of phylogenetic trees based on the Maximal Likelihood method is computational ex-
tremely intensive. In order to accelerate the computations, we present the parallel implementa-
tion of SEMPHY in this paper. SEMPHY is a program for the phylogenetic reconstruction from
DNA/protein sequence data, which uses the structural expectation-maximization (SEM) algorithm,
to efficiently search for maximum likelihood phylogenetic trees. It is dramatically faster than other
ML methods while reserving comparable accuracy. Two different parallel paradigms, i.e., OpenMP
and MPI version are developed to compare their performance on different parallel systems. Our
experiments show that the OpenMP version scales well with the increase of processors on the shared
memory system, and achieves better speedup than the MPI version on the cluster system.

1. Introduction

Phylogenetic tree represents the phylogenetic relationship of species by a tree where closely re-
lated species are placed in nearby branches. For DNA/protein sequences from different species, a
phylogenetic relationship among them can be inferred to reflect the course of evolution. The phy-
logeny of genes or species is broadly used in gene family classification, species divergence time
estimation and disease associated mutation identification, etc [1].

Phylogenetic tree inference is a high performance computing problem along with the exponential
increasing of biological data [2]. The inference includes searching for the best tree topology and
the best branch lengths representing the distance between the two neighbors. If we have n taxa,
the number of possible rooted trees is (2n − 3)!/2(n−2)(n − 2)! and that of unrooted trees is (2n −
5)!/2(n−3)(n − 3)! [3]. Another intrinsic complexity is the numerous branch length probabilities
for each topology. The search for the best tree is a NP-complete problem [4]. The exhaustive
search for the whole tree space is prohibitive except that the number of taxa is small, say 12, which
evaluates approximately 6.5×108 possible trees and takes approximately two hours on a Pentium III
machine by a moderate fast tree building algorithm [5]. Currently many ongoing phylogeny practices
involve tens to hundred of taxa which is unimaginable for exhaustive tree search in a reasonable time
scale. Extremely, the Ribosomal Database Project-II consists of 108,781 16S rRNA sequences to be
analyzed for phylogeny (RDP) [6], and the Tree of Life project aims to illustrate the evolutionary
tree that unites all living things (ToL) [7]. The availability of large data sets poses a great challenge
on how to both accurately and efficiently reconstruct phylogenetic trees.

There are many approaches to construct the phylogenetic tree, such as the Neighbor Joining, Max-
imum Parsimony, etc [8], where the maximal likelihood (ML) approach is one of the most accurate
methods [9]. However, the ML method is limited in relative small data set for its huge computational
intensity, even after incorporating heuristic search techniques. For example, fastaDNAml [10] takes
roughly 9 days for a single run on a data set containing 150 DNA sequences of each length 1269
characters and typically tens to thousands of different runs are needed because of its heuristic search
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nature. For protein sequences, the problem of ML tree inference is even more demanding because
the alphabet size of amino acids is twenty comparing to four of nucleotides.

Recently a new algorithm called SEMPHY is proposed for learning ML trees [11]. The main
idea of SEMPHY is to use the structural expectation-maximization algorithm [12, 13], a variation of
the EM algorithm for structure learning, to efficiently search for maximum likelihood phylogenetic
trees. This algorithm is dramatically faster than other ML approaches while reserving comparable
accuracy.

In this paper we present SEMPHY parallel implementation and analysis in both share and distrib-
uted memory environments. The parallel version of SEMPHY makes the algorithm more powerful
for handling much more large data sets with hundreds of taxa, which covers most size range of
current phylogenetic analysis. Particularly, it is the first time phylogenetic tree inference for large
protein data set (up to 300 taxa) becomes realizable.

This paper is organized as follows. Section 2 describes the SEMPHY algorithm. Section 3
presents the analysis and parallel implementation of the SEMPHY algorithm in different parallel
environments. Section 4 shows the experimental results. Section 5 concludes the paper.

2. Algorithm Description

The maximal likelihood (ML) method is a well-established statistical method of parameter esti-
mation. The ML method of phylogenetic inference attempts to reconstruct a phylogenetic tree using
an explicit evolution model. Mathematically speaking, given data D and a proper nucleotide (or
protein) substitution model, ML methods will find a tree T , t such that P (D|T, t) is maximized,
where T and t represent the tree topology and the branch lengths respectively.

Exhaustive search of tree space (including the topology space and parameter space) that max-
imizes the log-likelihood of tree (T, t) becomes impractical when the number of taxa increases.
Heuristic techniques are usually used to reduce the computation time, including the stepwise ad-
dition algorithm fastDNAml and the star-decomposition algorithm in MOLPHY [14], etc. Even
using heuristic approaches, these methods still suffer from intensive computations. The structural
EM algorithm used in SEMPHY efficiently solves this problem by using parameters found in cur-
rent topology to help evaluate new topologies and thus improving the structure at each step until
convergence. This is accomplished by a decomposition step of likelihood function.

X. Ma et al. [7] show that the expected log-likelihood for an arbitrary tree can be decomposed as
the sum of local terms plus a constant:

Q(T, t) =
∑

(i,j)∈T

llocal(E[Si,j|D,T 0, t0], ti,j) + const (1)

Where E[Si,j(a, b)] is the expected count of co-occurrences of the pair (a, b) in each position of
(i, j):

E[Si,j(a, b)] = E[
M∑

m=1

1{xi[m] = a, xj[m] = b}] (2)

Thus the Q score can be optimized by optimizing each llocal term separately within each iteration of
the structural EM algorithm.

2.1. Structural EM algorithm
The structural EM is a variation of standard EM algorithm for learning structures. The general

framework is similar to the standard EM procedure except that it optimizes not only the edge length
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but also the topology during each EM iteration. In the phylogenetic inference, the algorithm consists
of the following steps:

E-step: Compute E[Si,j(a, b)|D,T l, tl] for all links of (i, j), and for all character states (a, b) ∈ ∑
.

M-step I: Optimize link length by computing tl+1
i,j = argmaxtllocal(E[Si,j|D,T l, tl], t). Compute

wl+1
i,j = llocal(E[Si,j|D,T l, tl], tl+1). Denote W l+1 = (wl+1

i,j ) to be the 2N − 2 by 2N − 2 matrix
weights.

M-step II: Finding the spanning tree T l+1
∗ which maximize W l+1(T ) =

∑
(i,j)∈T wl+1

i,j . Transform
the spanning tree to an equivalent bifurcating tree T t+1 satisfying l(T l+1

∗ , tl+1) = l(T l+1, tl+1).
SEMPHY repeats the above iterations until convergence to the local maximum. This algorithm

can efficiently evaluate all possible trees in each iteration by finding a spanning tree first instead of
directly finding a bifurcating tree which maximizes the likelihood. There is a standard algorithm [15]
for finding spanning tree. For efficient computation in E-step and M-step I, dynamic programming is
incorporated to calculate the expected counts E[Si,j(a, b)] in E-step. Each iteration of the structural
EM algorithm is called ”Semphy step” throughout the following paper.

2.2. The Best-branch-length (BBL) algorithm
In each iteration of the structural EM algorithm, BBL step in SEMPHY finds the best edge lengths

of the tree immediately after finding a step-optimized topology. The EM algorithm of BBL consists
of two sub steps which are similar to the E-step and M-step I of the structural EM algorithm except
that the calculations are performed on the edges instead of all links of the tree .

3. SEMPHY Parallelization

SEMPHY has to do a number of EM iterations to construct the final phylogenetic tree, which is
also time prohibitive especially for the large scale data sets. Parallelization of SEMPHY will make
it more powerful to handle large data sets with hundreds of taxa, which covers most size range of
current phylogenetic analysis.

Due to the intrinsic EM learning characteristics, we can only perform parallelization within each
iteration of EM step, where each EM step will be further decomposed into several kernels. Therefore,
application parallelization becomes a problem of how to efficiently parallelize these smaller kernels
since the underlying algorithm does not allow higher level concurrency.

To compare the performance on different parallel systems, e.g., SMP (shared memory system)
and Clusters, two paradigms, i.e., OpenMP programming model [16] and MPI, are used to parallel
SEMPHY with different parallel environments.

3.1. Kernel identification and analysis
The schematic flowchart of SEMPHY is shown in Fig.1, where NJ tree means constructing an

initial tree by the Neighbor Joining method. MST denotes finding the spanning tree and transforming
it into an equivalent bifurcating tree. There are two major modules in the EM step: Semphy step and
BBL step. Other modules such as NJ tree and MST take relatively less time.

When further investigating the Semphy and BBL step, we find that they can be decomposed into
several even smaller kernels: calculation of the up and down message (CUD), calculation of counts
for edges (CCE), and distance calculation (CD). As depicted in Fig 1, these three kernels are shared
by the Semphy and BBL modules. Additionally, Semphy step has a unique kernel, calculation of
counts for separate nodes (CCS). To analyze the time distribution of these kernels, the algorith-
mic complexities for these kernels are summarized as follows: CUD and CCE have O(|∑ |2NM)
time complexity, and the CCS and CD have O(

∑ |2N2M) time complexity. CCS and CD kernels

633



4

Aligned sequences

NJ Tree

BBL

Semphy Step BeginCUD

CCE

CCS

CD Semphy Step End

BBL Step Begin

CUD

CCE

CDConvergence?

N

Y
BBL Step End

Convergence?

Y

N

BBL

End

MST

Figure 1. Flowchart of SEMPHY

will become dominating with the increase of the taxa number because the number of separate links
increases in quadratic while that of edges increases only linearly. Table 1 shows the quantitative
breakdown on three data sets from the Pfam database [17], which confirms the idea that the percent-
age of CCS and CD kernel keeps increasing with more sequences involved. Furthermore, it can be
easily observed that these four kernels are the hotspots from Table 1, which occupies almost 99%
of the total execution time. Parallelization can be performed on these time-consuming kernels to
enhance the whole application performance.

Table 1
Kernel Breakdown for SEMPHY

Kernels CUD CCE CCS CD Others
53 sequences 12.3% 21.88% 20.67% 44.24% 0.91%
108 sequences 8.51% 14.97% 31.0% 45.25% 0.27%
220 sequences 6.14% 9.82% 32.7% 50.6% 0.74%

3.2. Application parallelization
As aforementioned, the majority time are spent on the four kernels (CUD, CCE, CCS and CD).

The parallelization of each kernel is specified below.

A. CUD
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Table 2
HW/SW environments

Processor speed 3.0G 3.0G
L2 Unified Cache 512KB 512KB
L3 Unified Cache 4MB /

L4 on-board Unified Cache 32MB /
Interconnection Crossbar Gigabits Ethernet
Memory Size 8GB 1GB

Os SUSE Linux Redhat Linux

CUD, which computes up and down messages, including four layer nested loops. We choose the
outside loop, the sequence position, to parallelize. The whole iterations are simply partitioned into
N segments and they are equally distributed to the N processors. Apparently the scalability of this
kernel is limited by the sequence length L and it will incur slight imbalance among all the processors
when L is comparable with N .

B. CCE and CD
In SEMPHY, CCE is immediately followed by the CD kernel. Therefore they can be combined

together for parallelization. Counts computations for edges are equally assigned to each processor
by the edge number, and the subsequent distance computation (CD) also follows the similar decom-
position strategy.

C. CCS
The process of CCS is similar to CCE. The difference is that CCE only handles all the edges,

whereas CCS handles all the links in the topology tree.
In SEMPHY, the kernels for parallelization often consists of nested ”for” loops, and each item

in this loop is independent with each other. Therefore the basic ”parallel for” pragma in OpenMP
can be employed to handle most of these cases. Furthermore, we use dynamic scheduling policy to
efficiently minimize the load imbalance impact. In spite of all of those general parallel constructs,
there are still some special cases, e.g., ”while” loops and C++ iterators, and we choose an alternative
Intel omp extension taskq progma to solve it, where the taskq and task pragma uses a work queu-
ing model, serving as the extension of the OpenMP standard by Intel. Since there are few global
variables and data sharings in SEMPHY, the OpenMP version can simply dispatch the computations
to working threads by adding some compiler directives, without paying much attention to how to
manage all of those shared variables.

Compared with OpenMP version, MPI version is considerably more difficult. It has to partition
and combine the tasks by hand, carefully deal with all the communications among the working
nodes. In practice, the communication cost grows dramatically with the increase of data set due
to frequent collective operations, and it becomes a primary scalability limiting factor in the cluster
system.

4. Results

To measure the performance of SEMPHY application, two different parallel systems are used:
16-way shared memory system and 16 node cluster. Detailed configurations of these two systems
can be found in Table 2.
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Table 3
Speedup performance with different dataset

16 way SMP
53.phy 108.phy 220.phy

Time(s) Speedup Time(s) Speedup Time(s) Speedup
1 271.24 1.0 889.9 1.0 3493.2 1.0
2 136.76 1.98 434.2 2.05 1751.5 1.99
4 71.15 3.81 222.2 4.0 873.4 4.0
8 37.83 7.17 115.3 7.72 436.7 8.0
16 23.04 11.77 62.78 14.17 224.7 15.6

16 node cluster
53.phy 108.phy 220.phy

Time(s) Speedup Time(s) Speedup Time(s) Speedup
1 201.47 1.0 631.1 1.0 2464.9 1.0
2 105.93 1.90 334.2 1.89 1254.5 1.96
4 58.63 3.44 186.4 3.39 663.6 3.71
8 37.25 5.41 107.9 5.85 376.7 6.54
16 29.13 6.92 72.9 8.66 234.1 10.53

For the test data, we use protein sequence data sets from the Pfam database [17], where three
typical sequences: A2M N.phy (taxa=53, length=394), AA kinase.phy (taxa=108, length=397), and
Aototransporter.phy (taxa=220, length=389) are chosen in our experiments. For simplicity, we use
the taxa number to denote these sequences, e.g., 53.phy represents A2M N protein sequence.

4.1. Scalability performance
Table 3, Fig 2,3 show the basic speedup performance for these data sets respectively. The speedup

for the smaller data set, e.g. 53.phy, is linear on 2, 4 and 8 processors, but starts deteriorating when
16 processors is used on the SMP system. The slowdown on more processors occurs because the
granularity of the work assigned to each processor decreases. With the increase of data set, we get
much better speedup curves.

Comparing these two different parallel paradigms, the OpenMP version is consistently superior
to the MPI version in terms of speedup performance. This is not surprising since the MPI version
involves tremendous collective operations and the communication overhead increases with more
processors.

4.2. Parallel Metrics on SMP system
To discover why SEMPHY exhibits good scalability performance on the SMP system, we further

characterize its parallel performance with VTune [18] and Intel VTune Thread Profiler [18]. Table 4
and Table 5 show the metrics in detail.

In Table 4, the SEMPHY workload displays very low barrier, locks and synchronization overhead.
The sequential area and the slight load imbalance may hurt the scalability performance on more
processors. However, when the problem size increase, we can obtain much better performance. For
example, 220.phy demonstrates a consistent better speedup curve than 108.phy on more processors.

Table 5 shows that the memory hierarchy is used efficiently for SEMPHY application, exhibiting
very few cache misses, little bus conflicts and low memory bandwidth requirement, which indicates
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Figure 2. Speedup performance on 16-way SMP (left)

Figure 3. Speedup performance on 16 node cluster (right)

that SEMPHY can scale up well on shared memory systems.
Overall speaking, the SEMPHY application exhibits very good scalability performance in the

shared memory multiprocessor system, whereas frequent collective operations and large amount
of data communication inhibit its speedup on the cluster environment. It can be expected that the
increasing of the hardware resource such as processor numbers on the SMP system will increase its
scalability performance accordingly.

5. Conclusions

Maximum likelihood analysis is the most computationally intensive approach to phylogenetic
inference. SEMPHY is dramatically faster than other ML approaches while reserving comparable
accuracy. In this paper, we present a parallel implementation of SEMPHY, extracting kernels within
one iteration of EM step and paralleling them with two different parallel programming paradigms.
The experiments demonstrate that SEMPHY scales well on the shared memory system, achieves up
to 15.6x speedup on 16 processors. However, the performance on the cluster environment is not
satisfying due to huge communication cost.

References

[1] M.Holder, et al: Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet., 4: 275-
284. 2003.

[2] C.A.Stewart, et al: Parallel implementation and performance of fastDNAml: a program for maximum
likelihood phylogenetic inference. SC2001. 2001.

[3] J.Felsenstein: The number of evolutionary trees. Syst. Zool., 27:27-33. 1978.
[4] H.L.Bodlaender, et al: Two strikes against perfect phylogeny. In Proceedings 19th International Collo-

quium on Automata, Languages and Programming, pp. 273-283, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1992.

637



8

Table 4
General parallel metrics with 220.phy sequence
Proc Num Parallel Area Sequential Area Imbalance Barrier Locks Sync.

2 99.7% 0.25% 0.04% 0.0% 0.0% 0.0%
4 99.1% 0.74% 0.17% 0.0% 0.0% 0.0%
8 97.9% 1.6% 0.5% 0.0% 0.0% 0.0%

16 95.2% 3.0% 1.8% 0.0% 0.0% 0.0%

Table 5
Memory hierarchical metrics with 220.phy sequence
Procs L1 miss rate L2 miss rate L3 miss rate Bandwidth(MB/s) Bus Access Latency(clks)

1 2.9% 12.4% 8.2% 23.4 183.6
2 3.6% 10.3% 9.0% 50.3 190.2
4 3.5% 12.0% 7.5% 106.4 194.4
8 3.3% 10.7% 9.3% 216.7 188.2

16 3.5% 10.6% 9.3% 447.9 191.7

[5] D.L.Swofford, et al: The phylogenetic handbook, pp. 160-206, Cambridge University Press. 2004.
[6] Ribosomal Database Project-II Release 9.22. http://rdp.cme.msu.edu.
[7] Tree of Life. http://tolweb.org/tree/phylogeny.html.
[8] J. Felsenstein: Inferring Phylogenies, Sinauer Associates, Sunderland, Massachusetts. 2003.
[9] J.J.Wiens, et al: Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood,

and distance methods. Syst. Biol., 47: 228-253.1998.
[10] G.J.Olsen,et al: fastDNAml: A tool for construction of phylogenetictrees of DNA sequences using

maximum likelihood. Comput. Appl. Biosci. 10: 41-48. 1994.
[11] N.Friedman, et al: A structural EM algorithm for phylogentic inference. J. Comput. Biol., 9: 331-353.

2002.
[12] N. Friedman: A Structural EM algorithm for Phylogenetic Inference. Journal of Computational Biology,

9:331-353, 2002.
[13] N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In Fisher,

D. ed., Proceedings of the Fourteenth International Conference on Machine Learning, pp. 125-133, Mor-
gan Kaufman, San Francisco, 1997

[14] J. Adachi, et al: Molphy version 2.3, programs for molecular phylogenetics based on maximum likeli-
hood, Technical report, The Institute of Statistical Mathematics, Tokyo, Japan.1996.

[15] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem, Proceed-
ings of the American Mathematical Society, 7: 48-50, 1956.

[16] OpenMP Architecture Review Board: ”OpenMP C and C++ Application Program Interface,” Version
2.0, March 2002, http://www.openmp.org.

[17] Bateman, A., et al: The Pfam Protein Families Database. Nucleic Acids Research Database Issue
32:D138-D141, 2004.

[18] Intel Corp.: Intel Vtune Performance Analyzer, (available on-line:
http://developer.intel.com/software/products/vtune/).

638




