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Comparing Two Parallel File Systems: PVFS and FSDDS

Jorge Buenabad-Cháveza, Santiago Domı́nguez-Domı́ngueza

aSección de Computación, CINVESTAV, Apartado Postal 14-740, México D.F., 07360, México.

1. Abstract

Parallel file systems are used to improve the performance of out-of-core parallel applications.
The Parallel Virtual File System (PVFS) uses caching both toimprove performance and to support
logical views of data in order to simplify programming. The file system atop the data diffusion
space (FSDDS) maps files onto an all-software distributed shared memory, and thus implicitly uses
a relatively large cache. In this paper, we contrast the programming interface of PVFS and FSDDS
and present some experimental results on their performanceusing two applications.

2. Introduction

Parallel file systems stripe file data across different I/O nodes so that data can be accessed in par-
allel on multiple, concurrent read/write operations to thesame file. They are essential to improve the
performance of out-of-core applications. First designs were targeted at massively parallel systems.
Today the ubiquity of PC clusters and the availability of open/free designs and of other software
tools have made their use and research wide-spread [2,3,5,7,9,11].

Parallel data access is a key factor for good performance, but is not the only one. Different
applications manage different data structures in different ways [10,12]. In parallel applications, this
implies a logical data partitioning among the processors which may, or may not, match the physical
data partitioning (striping) of data across I/O nodes by a parallel file system [13]. This mismatch
tends to increase the number of I/O operations, resulting inpoor performance. Some I/O interfaces
reduce the number of I/O operations through caching: reading/writing larger amounts of data than
that requested by applications. Some interfaces also allowapplications to specify a logical view of
the data and access it accordingly. On a read, the interface reads all the data blocks that contain the
logical data (possibly in parallel from different I/O nodes), shuffles the data according to the logical
view and delivers it to the application. This also requires caching.

In this paper we compare two parallel file systems: PVFS and FSDDS. PVFS (Parallel Virtual
File System) was designed for Linux clusters [2], and has gained general acceptance. It can be used
with the MPI-IO interface which allows applications to access data according to logical views.

FSDDS stands for File System atop the Data Diffusion Space (DDS) [4]. DDS is another all-
software distributed shared memory, and FSDDS supports filemapping onto its shared address space.
DDS manages some memory as a cache in each node to dynamicallymap shared data; FSDDS thus
benefits of a relatively large cache.

In this paper we contrast the programming interface and present some experimental results on the
performance of PVFS and FSDDS. In Sections 3 and 4 we present background to PVFS and FSDDS,
respectively. In Section 5 we compare their performance running 2 parallel applications on different
processor counts. We conclude in Section 6.
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3. The Parallel Virtual File System

The Parallel Virtual File System (PVFS) was designed for Linux clusters. It supports several APIs
to access PVFS files, can be mounted as a UNIX file system (ls, cp andrm commands work on PVFS
files), and is rather easy to install and use [2]. It is open/free software.

File data in PVFS is striped across different I/O nodes basedon three metadata parameters:pcount
specifies the number of I/O nodes across which data is striped; base specifies the I/O node where
the striping begins; andssize specifies the stripe size. PVFS handles default values for the striping
metadata, which the user can change for each file. File data and metadata are stored in files in the
local file system in each node, both for simplicity and for portability.

PVFS is organised as a client/server system. Server nodes have hard disk space and are those
across which file data is striped; they are called I/O nodes. Client nodes are those where application
processes run, issuing read/write requests to I/O nodes; they are called compute nodes. PVFS soft-
ware allows each node to be either a compute node or an I/O node, or both. Application processes
are linked to a PVFS library which allows them to communicatewith I/O nodes through TCP.

3.1. PVFS APIs
PVFS files can be accessed with different APIs: a native PVFS API, the UNIX/POSIX API [6],

and the MPI-IO interface [8]. The native API offers similar functions to the UNIX one for accessing
files. It also supports functions to access noncontiguous data in a file in a single call. The MPI-IO
interface offers typical functions for accessing a file, butalso offers functions to define logical views,
and collective I/O functions which may, or may not, be based on a logical view.

Figure 1 shows in C language code the main points involved in the definition and use of a logical
data view using MPI-IO. The logical view is that, for anN×N matrix andp processors, processor 0
uses only the firstN/p elements in each row, processor 1 uses only the secondN/p elements in each
row, and so on. (This view is useful to implement a matrix multiplication algorithm,C = A × B,
where each processor computes a partial value of each element in matrix C; before reading A, each
processor will have readN/p rows of matrix B; see Section 5.)

MPI_Datatype newtype; /* the new logical view */
int ndims=2,

array_of_gsizes[0] = N; /* size of each dimension*/
array_of_gsizes[1] = N;
array_of_distribs[0] = MPI_DISTRIBUTE_BLOCK; /* divide rows by block */
array_of_distribs[1] = MPI_DISTRIBUTE_NONE; /* do not divide columns */
array_of_dargs[0] = MPI_DISTRIBUTE_DFLT_DARG; /* block = rowsize/processors */
array_of_dargs[1] = MPI_DISTRIBUTE_DFLT_DARG; /* not applicable */
array_of_psizes[0] = 0; /* compute rowsize/processors */
array_of_psizes[1] = 1; /* do not compute */
MPI_Dims_create( nprocs, ndims, array_of_psizes); /* divide rows/nprocs */
MPI_Type_create_darray(nprocs, myrank, ndims, /* define view */

array_of_gsizes, array_of_distribs, array_of_dargs,
array_of_psizes, MPI_ORDER_C, MATRIX_MPI_TYPE, &newtype);

MPI_Type_commit( &newtype ); /* logical view handle */
MPI_Type_size( newtype, &bufcount );

MPI_File_open( MPI_COMM_WORLD, ..., &f ); /* use view on file */
MPI_File_set_view( f, 0, MATRIX_MPI_TYPE, newtype, "native", MPI_Info );
MPI_File_read_all( f, readbuf, N, MATRIX_MPI_TYPE, &status );
MPI_File_close( &f );

Figure 1. Logical view for a PVFS file using MPI-IO.
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A logical view is defined using three (type int) arrays:array of gsizes holds the size of each di-
mension in the array upon which the logical view is defined;array of distribs says whether a dimen-
sion is distributed and how (NONE, BLOCK, or CYCLIC);array of dargs specifies the size of the
distribution unit (BLOCK may use the default SizeOfDimension/NumberOfProcessors; CYCLIC
requires a unit size); andarray of psizes specifies programmer-defined number of elements to dis-
tribute to each processor if defaults are to be ignored. The view is then created and anewtype is
defined with it. The view is then attached to a file and used.

4. FSDDS: A File System atop the Data Diffusion Space

FSDDS is a parallel file system for the Data Diffusion Space (DDS), an all-software distributed
shared memory for PC Clusters. FSDDS supports typical functions to access files but also allows
mapping files onto the shared address space of DDS.

4.1. DDS
DDS supports a shared address space for parallel applications running on distributed memory

platforms under the SPMD (Single Program Multiple Data) model [1]. The size of the shared address
space can be up to264 bytes, either on 32-bit or on 64-bit architectures. Shared data diffuses in the
memory of each processor using the data, or in the disk space of each processor if need be, under a
multiple-readers-single-writer protocol.
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Figure 2. The DDS Architecture.

Figure 2 shows the DDS architecture. In each node runs an application process and a DDSP
process. The data diffusion space isextra to the address space of each process running a parallel
application. Shared data is dynamically mapped into the address space of whichever application
process is using the data. Alocal directory is used to determine if a shared data item is already
mapped (looking up its address). If it is not mapped, the sibling DDSP process sends a request
to its home directory (HD) node, which is identified using the hash functionitem-address modulo
number-of-nodes. A home directory holds the location (node) and state information (exclusive,
shared, master shared) of a data item. DDSP processes communicate through TCP sockets.

509



4

4.2. File Management based on DDS
FSDDS provides applications with file management based on DDS [4]. As in other parallel file

systems, in FSDDS: file data is striped across different I/O nodes, metadata is used to describe the
striping, and compute nodes and I/O nodes interact as clients and servers, respectively. Data striping
and metadata management are based on those of PVFS. Also as inPVFS, a node can be either a
compute node or an I/O node.

When a file is opened under FSDDS, it is automatically mapped onto the shared address space of
DDS. The first tera byte of DDS is reserved for shared data in arrays (i.e., not file data); the following
tera bytes are used one for each file that is open. Thus files andshared data are accessed in the same
way, and under the multiple-readers-single-writer protocol exerted by DDS. (The API of FSDDS is
described in Section 4.3.)

For each data item in a file, its I/O node is also its home directory node; and these two roles are
carried by the DDSP process in that node. However, recall that the home node of a shared (array) data
item is determined with the hash functionitem-address modulo number-of-nodes , while the I/O node
of a file data item is determined through metadata. Whether the hash function or metadata is used
depends on the address of each data item: the address of file data items will be equal to or greater
than 1 tera byte because of the mapping of files described above. This distinction also entailed some
changes to the DDS replacement policy, as described below, in order to improve performance.

In each node, when the memory becomes full, a less recently used item is chosen and an action
is taken depending on its status. If the status isshared, the item is just discarded. If it isexclusive
and the item belongs to an array (not a file), the item is swapped onto a local temporary file. If it is
exclusive and the item belongs to an FSDDS file, the item is sent to its I/Onode, unless thecurrent
node is that I/O node, in which case the item is just swapped out onto its FSDDS local file. If the
status of the item ismaster shared and the item belongs to an array, the item is sent to its home node,
unless the current node is the home node, in which case the item is sent to another node chosen
randomly. If the status of the item ismaster shared and the item belongs to an FSDDS file, the item
is swapped out onto a local temporary file, or its FSDDS local file if the current node is its I/O node.

4.3. API
Figure 3 shows the addition of two matrices,C = A + B, using an FSDDS file for each matrix.

DDS Init is the first DDS function that must be called; it establishes communication with the
sibling DDSP process, which allocates the (DDS) cache memory to store shared data, and initialises
the local directory and the home directory. A file is opened/created withDDS Open; then its
data is automatically mapped onto DDS. Each processor computesROWS/nprocs rows. Before
accessing data, each processor must gain access to it, through callingDDS Write or DDS Read.
When these procedures return, the relevant data is already in the processor memory, and will remain
there until the correspondingDDS UnWrite or DDS UnRead is issued.

Data is actually accessed through pointers held in the arraydds shmem, and the variablesoff fa,
off fb andoff fc, which are associated to the file descriptors, and arelocally shared between the
DDSP process and the application process. Those variables are updated by DDSP according both
to the address of the data requested withDDS Read or DDS Write, and to the shared address
allocated to the array when it was opened.

5. Performance Evaluation

To evaluate the performance of PVFS and FSDDS we ran two applications on a 16-node PC cluster
using different numbers of processors. Each node in the cluster consisted of one Intel Celeron 1.7
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int fa, fb, fc; /* Definition of file descriptors */
main(int argc, char **argv) {

DDS_Init(NULL, NULL, mynod); /* initializing DDS*/
fa = DDS_Open("matrixA", O_RD | O_CREAT, NULL);
fb = DDS_Open("matrixB", O_RD | O_CREAT, NULL);
fc = DDS_Open("matrixC", O_RDWR | O_CREAT, NULL);

rows = ROWS/nprocs; /* Each processor computes ROWS/nprocs rows. */
offset = myid * (ROWS/nprocs);
for (r=0; r < rows; r++){

i = r + offset;
DDS_Read( fa, i*COLUMNS, COLUMNS); /* gaining access */
DDS_Read( fb, i*COLUMNS, COLUMNS); /* to shared data */
DDS_Write(fc, i*COLUMNS, COLUMNS);
for (j=0; j<NCA; j++){ /* using shared data */
(dds_shmem[off_fc+i])[j] = (dds_shmem[off_fa+i])[j] +

(dds_shmem[off_fb+i])[j] ;
}
DDS_UnWrite(fc, i*COLUMNS, COLUMNS);
DDS_UnRead(fa, i*COLUMNS, COLUMNS);
DDS_UnRead(fb, i*COLUMNS, COLUMNS);

} /* Close files */
DDS_Close(fa); DDS_Close(fb); DDS_Close(fc);
DDS_Finalize(); /* Finalize DDS*/

}

Figure 3. FSDDS programming model example: matrix multiplication.

GHz processor, 512 MB RAM memory, and a hard disk. Hard disks are of different make and
storage capacity (4 and 8 GB). All nodes were interconnectedthrough a 3COM Fast Ethernet switch
with 48 ports. The operating system was Linux RedHat 9.0.

The runs with PVFS used the MPI-IO interface to issue collective I/O operations. Both the runs
with PVFS and the runs with FSDDS used data stored in files. In all runs, all the nodes function both
as compute nodes and as I/O nodes (data is physically partitioned among all nodes). The striping of
files was different for each application and is described below.

5.1. Application 1: Matrix Multiplication
Our first application is a matrix multiplication algorithm (MM), C = A×B. ForN ×N matrices

andp processors, processor 0 computes the partial result of eachelement in C using the firstN/p

elements of the corresponding row in A and the firstN/p elements of the corresponding column in
B; processor 1 does the same using the secondN/p elements ..., etc. Each processor computes the
partial results of an entire row in C in one go, and then adds them to the actual elements in C. All
processors start computing the first row in C. This algorithmmatches the data access pattern with
the physical data partitioning in secondary storage (by rows, according to the row-major order of the
C language), and allowed us to validate the synchronisationneeded to maintain data coherence on
writing matrix C.

In all our experiments, each matrix is10000× 10000 long type elements (4 bytes each), is stored
in a file by rows, and each file is striped acrossp processors (nodes). Under PVFS withindividual
(non-collective) read/write operations (PVFS-I), and under FSDDS, the stripe size in all matrices was
N/p rows. We also ran a PVFS version where each processor uses collective read/write operations
(PVFS-C), using a stripe of sizeN/p data elements for matrix A only.

Figure 4.a shows the number of read and write requests under PVFS-I, PVFS-C and FSDDS. Both
PVFS versions incur the same number of read requests becausethey differ only in the kind of read
they use: each read operation is for the same amount of data. Under FSDDS, some reads for rows in
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Figure 4. MM under PVFS and FSDDS.

matrix A were satisfied from copies in other memory nodes. Allversions incur the same number of
write requests because they use the same write unit, a row. Under PVFS-I/C, each row is written out
by one processor once it is computed. Under FSDDS, rows in matrix C are held in memory as much
as possible; hence some of them are written out only when the file is closed.

Figure 4.b shows the execution time of MM under PVFS-I, PVFS-C and FSDDS. All versions
show about the same execution time, even though under FSDDS less than half read requests are
incurred. The reason for this is data caching. All processors access each row in matrix A starting at
the first row, and once they finish computing the partial results of the corresponding row in C, they
discard it; in contrast, each processor holds the rows of matrix B it uses throughout the computation.
That is, each processor is accessing each row in each matrix into its memory only once, both under
PVFS and under FSDDS. This implies that in PVFS some reads where satisfied from copies in main
memory too, most likely from the cache of I/O nodes. FSDDS shows slightly better performance, on
8 and 16 processors, because PVFS versions usedMPI Gather() to collect all the partial results for
a row in matrix C, and thus incur synchronisation cost, more so the larger the number of processors.
Under FSDDS, each processor writes exclusively its partialresults as they gain access to each row.

5.2. Fast Fourier Transform
Our second application applies the Fast Fourier Transform (FFT) to restore degraded or defocused

images. For an image ofN ×N pixels, a matrix of sizeN ×N × 8 (float type) bytes is used. From
this matrix, animages matrix is created which corresponds to an autocorrelation process. The images
matrix containsM×M images, whereM = 2N , and is of size2N×2N×(N×N)×8 = (N4)×32
bytes. To the images matrix, our application applies the FFTas follows. Processor 0 applies the FFT
to the firstM/p rows and to the firstM/p columns (of images) along rows in each image matrix
(1st), along columns in each image matrix (2nd), jumping through rows in different image matrices
(3rd), and jumping through columns likewise (4th); processor 1 applies the FFT to the secondM/p

rows and to the secondM/p columns (of images), ..., and so on. Figure 5 shows an images matrix
for N = 2, and its partitioning for 4 processors.

We ran FFT on 4, 8 and 16 processors, both under PVFS (non-collective) and under FSDDS. In all
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runs, the stripe size wasM/p rows of images, and the images matrix was of size((128)4)× 32 = 8
GB, and could not be held entirely in memory in all processor-count configurations.

Figure 6.a shows the number of I/O requests per processor. Ineach processor-count configura-
tion, the number of I/O requests under FSDDS was smaller thanunder PVFS because, under FSDDS,
some reads were satisfied from copies in other memory nodes, and because writes occurred in mem-
ory copies which were committed to disk only when there was a shortage of memory or until the file
was closed.

PVFS FSDDS
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Figure 6. FFT under PVFS and FSDDS.

Figure 6.b shows the execution time of FFT, both under PVFS (non-collective) and FSDDS, on
4, 8 and 16 processors. On 4 processors, even though the number of reads and writes under FSDDS
was smaller than the number of reads and writes under PVFS, the execution time under FSDDS was
much greater because the available memory was relatively small, and thus the replacement policy of
FSDDS was exerted frequently. On 8 and 16 processors, the larger memory available meant less use
of the replacement policy, improving performance.
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6. Conclusions and Future Work

We have outlined the use of PVFS and FSDDS, and presented someexperimental results on their
performance. Files in PVFS can be accessed rather simply through a UNIX-like interface; the MPI-
IO interface can also be used to define logical data views. Theuse of views is not simple, however,
even though there is some logic behind it. FSDDS interface isquite cumbersome, because DDS
internal data structures are exposed. We are working on the design of an extension to the C lan-
guage and its preprocessor to avoid the use of the DDS interface entirely. We envisage parallel
applications will use arrays and files as a shared memory; thepreprocessor will issue the corre-
spondingDDS Read-DDS UnRead andDDS Write-DDS UnWrite pairs, and thereference
to each shared data item based on DDS internal data structures.

The performance of PVFS and FSDDS was similar except for our second application (FFT) on
4 processors. On this application/configuration, the replacement policy of DDS had an adverse
effect because the amount memory was relatively small. However, the data caching of DDS does
work in general, as can be seen from the slightly better performance that FSDDS shows on 8 and
16 processors (3-10%). We are working on using different replacement policies and data striping
methods to improve the performance of FSDDS.
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