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Comparing Two Parallel File Systems. PVFSand FSDDS

Jorge Buenabad-Chavesantiago Dominguez-Domingiez

2Seccion de Computacion, CINVESTAV, Apartado Postal 48;México D.F., 07360, México.

1. Abstract

Parallel file systems are used to improve the performanceutbicore parallel applications.
The Parallel Virtual File System (PVFS) uses caching botimiarove performance and to support
logical views of data in order to simplify programming. Thke fsystem atop the data diffusion
space (FSDDS) maps files onto an all-software distributadeshmemory, and thus implicitly uses
a relatively large cache. In this paper, we contrast theraragiing interface of PVFS and FSDDS
and present some experimental results on their performasing two applications.

2. Introduction

Parallel file systems stripe file data across different I/@asoso that data can be accessed in par-
allel on multiple, concurrent read/write operations toghme file. They are essential to improve the
performance of out-of-core applications. First designseviargeted at massively parallel systems.
Today the ubiquity of PC clusters and the availability of wfeee designs and of other software
tools have made their use and research wide-spread [2BBL}.

Parallel data access is a key factor for good performandeishoot the only one. Different
applications manage different data structures in diffewaays [10,12]. In parallel applications, this
implies a logical data partitioning among the processorgkvimay, or may not, match the physical
data partitioning (striping) of data across 1/0 nodes by mlpe file system [13]. This mismatch
tends to increase the number of 1/0O operations, resultiq@por performance. Some 1/O interfaces
reduce the number of 1/0O operations through caching: rgadniting larger amounts of data than
that requested by applications. Some interfaces also @applications to specify a logical view of
the data and access it accordingly. On a read, the interéacisrall the data blocks that contain the
logical data (possibly in parallel from different 1/0 nodleshuffles the data according to the logical
view and delivers it to the application. This also requirashing.

In this paper we compare two parallel file systems: PVFS add’s PVFS (Parallel Virtual
File System) was designed for Linux clusters [2], and hasaeghgeneral acceptance. It can be used
with the MPI-10 interface which allows applications to asselata according to logical views.

FSDDS stands for File System atop the Data Diffusion Spad@S)j4]. DDS is another all-
software distributed shared memory, and FSDDS supportaéfging onto its shared address space.
DDS manages some memory as a cache in each node to dynamiegllyhared data; FSDDS thus
benefits of a relatively large cache.

In this paper we contrast the programming interface anceptesome experimental results on the
performance of PVFS and FSDDS. In Sections 3 and 4 we preaekgtound to PVFS and FSDDS,
respectively. In Section 5 we compare their performancaingn2 parallel applications on different
processor counts. We conclude in Section 6.
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3. TheParallel Virtual File System

The Parallel Virtual File System (PVFS) was designed foukiolusters. It supports several APIs
to access PVFS files, can be mounted as a UNIX file sydeep(@ndrm commands work on PVFS
files), and is rather easy to install and use [2]. It is opee/Boftware.

File data in PVFS is striped across different /0 nodes basdtiree metadata parametgisount
specifies the number of 1/0O nodes across which data is strigesd specifies the I/O node where
the striping begins; anskize specifies the stripe size. PVFS handles default values éosttiping
metadata, which the user can change for each file. File ddtan@tadata are stored in files in the
local file system in each node, both for simplicity and fortpbility.

PVFES is organised as a client/server system. Server nodeshaad disk space and are those
across which file data is striped; they are called 1/0O nodéenthodes are those where application
processes run, issuing read/write requests to 1/O nodeg;ate called compute nodes. PVFS soft-
ware allows each node to be either a compute node or an I/Q notbeth. Application processes
are linked to a PVFS library which allows them to communiaaitiy 1/0O nodes through TCP.

3.1. PVFSAPIs

PVFS files can be accessed with different APIs: a native PVPE the UNIX/POSIX API [6],
and the MPI-IO interface [8]. The native API offers similanttions to the UNIX one for accessing
files. It also supports functions to access noncontiguotesidaa file in a single call. The MPI-IO
interface offers typical functions for accessing a file,ddab offers functions to define logical views,
and collective 1/O functions which may, or may not, be based togical view.

Figure 1 shows in C language code the main points involveleardefinition and use of a logical
data view using MPI-10. The logical view is that, for &hx N matrix andp processors, processor 0
uses only the firsV/p elements in each row, processor 1 uses only the setgpelements in each
row, and so on. (This view is useful to implement a matrix mplittation algorithm,C = A x B,
where each processor computes a partial value of each el@mmaatrix C; before reading A, each
processor will have realy /p rows of matrix B; see Section 5.)

MPI _Dat at ype newt ype; /* the new | ogical view */
int ndinms=2,

array_of _gsi zes[ 0] =N /* size of each di nmension*/
array_of gsizes[1] =N

array_of _distribs[0] = MPI_DI STRI BUTE_BLOCK; /* divide rows by block */
array_of _distribs[1] = MPI_Dl STRI BUTE_NONE; /* do not divide colums */
array_of _dargs[ 0] = MPI _DI STRI BUTE_DFLT_DARG /* block = rowsize/ processors */
array_of _dargs[ 1] = MPI _DI STRI BUTE_DFLT_DARG /* not applicable */

array_of _psizes[ 0] = 0; /* conpute rowsize/ processors */
array_of _psizes[ 1] = 1; /* do not conpute */

MPI _Dins_create( nprocs, ndinms, array_of psizes); /* divide rows/nprocs */

MPlI _Type_create_darray(nprocs, nyrank, ndins, /* define view */

array_of _gsizes, array_of _distribs, array_of_dargs,

array_of _psizes, MPI_ORDER C, MATRI X _MPI _TYPE, &newtype);
MPl _Type_comit( &newtype ); /* 1ogical view handle */
MPl _Type_si ze( newtype, &bufcount );

MPl _File_open( MPI _COW WORLD, ..., &f ); /* use viewon file */
MPl _File_set_viewm f, 0, MATRI X _MPI _TYPE, newtype, "native", MPlI_Info );

MPl _File_read_all( f, readbuf, N, MATRI X MPI _TYPE, &status );

MPl _File_close( & );

Figure 1. Logical view for a PVFS file using MPI-IO.
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A logical view is defined using three (type int) arraysray_of_gsizes holds the size of each di-
mension in the array upon which the logical view is defireeday _of_distribs says whether a dimen-
sion is distributed and how (NONE, BLOCK, or CYCLICG)yray_of_dargs specifies the size of the
distribution unit (BLOCK may use the default SizeOfDimeamgiNumberOfProcessors; CYCLIC
requires a unit size); anarray_of_psizes specifies programmer-defined number of elements to dis-
tribute to each processor if defaults are to be ignored. Téw is then created and rawtype is
defined with it. The view is then attached to a file and used.

4. FSDDS: A File System atop the Data Diffusion Space

FSDDS is a parallel file system for the Data Diffusion SpacBf) an all-software distributed
shared memory for PC Clusters. FSDDS supports typical inmgtto access files but also allows
mapping files onto the shared address space of DDS.

4.1. DDS

DDS supports a shared address space for parallel apphsatimning on distributed memory
platforms under the SPMD (Single Program Multiple Data) ei¢d]]. The size of the shared address
space can be up 2§ bytes, either on 32-bit or on 64-bit architectures. Shamd diffuses in the
memory of each processor using the data, or in the disk sgaach processor if need be, under a
multiple-readers-single-writer protocol.

DATA DIFFUSION SPACE

MEM _BLK

Application

DDSP | |

=
=)

NODE_0

Figure 2. The DDS Architecture.

Figure 2 shows the DDS architecture. In each node runs ancapph process and a DDSP
process. The data diffusion spacesxra to the address space of each process running a parallel
application. Shared data is dynamically mapped into theessdspace of whichever application
process is using the data. lacal directory is used to determine if a shared data item is already
mapped (looking up its address). If it is not mapped, thersggopbDDSP process sends a request
to its home directory (HD) node, which is identified using the hash functitem-address modulo
number-of-nodes. A home directory holds the location (node) and state infdrom (exclusive,
shared, master shared) of a data item. DDSP processes cacatetthrough TCP sockets.
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4.2. File Management based on DDS

FSDDS provides applications with file management based o8 [P As in other parallel file
systems, in FSDDS: file data is striped across different B@es, metadata is used to describe the
striping, and compute nodes and I/O nodes interact as slat servers, respectively. Data striping
and metadata management are based on those of PVFS. Alsd¥&8) a node can be either a
compute node or an I/O node.

When a file is opened under FSDDS, it is automatically mappead the shared address space of
DDS. The first tera byte of DDS is reserved for shared datarayar(i.e., not file data); the following
tera bytes are used one for each file that is open. Thus fileshardd data are accessed in the same
way, and under the multiple-readers-single-writer prot@xerted by DDS. (The API of FSDDS is
described in Section 4.3.)

For each data item in a file, its I/O node is also its home dirgabhode; and these two roles are
carried by the DDSP process in that node. However, recdlthiedhome node of a shared (array) data
item is determined with the hash functidam-address modul o number-of-nodes, while the I/O node
of a file data item is determined through metadata. Whetteehésh function or metadata is used
depends on the address of each data item: the address oftél@atas will be equal to or greater
than 1 tera byte because of the mapping of files describedealitns distinction also entailed some
changes to the DDS replacement policy, as described beiawger to improve performance.

In each node, when the memory becomes full, a less recergty itesm is chosen and an action
is taken depending on its status. If the statushased, the item is just discarded. If it isxclusive
and the item belongs to an array (not a file), the item is swéypp¢o a local temporary file. If it is
exclusive and the item belongs to an FSDDS file, the item is sent to itsd@e, unless theurrent
node is that I/0 node, in which case the item is just swappéao its FSDDS local file. If the
status of the item imaster shared and the item belongs to an array, the item is sent to its horde,no
unless the current node is the home node, in which case timeistsent to another node chosen
randomly. If the status of the item msaster shared and the item belongs to an FSDDS file, the item
is swapped out onto a local temporary file, or its FSDDS lotalffthe current node is its I/O node.

4.3. API

Figure 3 shows the addition of two matricés,= A + B, using an FSDDS file for each matrix.
DDS Init is the first DDS function that must be called; it establishesimunication with the
sibling DDSP process, which allocates the (DDS) cache mgtoastore shared data, and initialises
the local directory and the home directory. A file is opensglited withD DS _Open; then its
data is automatically mapped onto DDS. Each processor cesR@OW S/nprocs rows. Before
accessing data, each processor must gain access to igthcaliing D DS _Write or DDS_Read.
When these procedures return, the relevant data is alreablg processor memory, and will remain
there until the corresponding DS _UnWrite or DDS _UnRead is issued.

Data is actually accessed through pointers held in the drtay¢hmem, and the variablesf f_fa,
of f_fbandof f_fc, which are associated to the file descriptors, andaaly shared between the
DDSP process and the application process. Those variatdagdated by DDSP according both
to the address of the data requested With.S_Read or DDS _Write, and to the shared address
allocated to the array when it was opened.

5. Performance Evaluation

To evaluate the performance of PVFS and FSDDS we ran twocgtigins on a 16-node PC cluster
using different numbers of processors. Each node in theéerlasnsisted of one Intel Celeron 1.7
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int fa, fb, fc; /* Definition of file descriptors */
mai n(int argc, char **argv) {

DDS I nit (NULL, NULL, nynod); /* initializing DDS*/

fa = DDS_Open("matri xA", O RD | O CREAT, NULL);

fb = DDS_Cpen("matrixB', O RD| O CREAT, NULL);

fc |~

DDS Open("matri xC', O RDWR | O CREAT, NULL);

rows = ROAE/ nprocs; /* Each processor conputes ROAS/ nprocs rows. */
of fset = nyid * (ROWS/ nprocs);
for (r=0; r < rows; r++){

i =r + offset;

DDS Read( fa, i*COLUWNS, COLUMWNS); /* gaining access */

DDS Read( fb, i*COLUWNS, COLUMWNS); /* to shared data */

DDS Wite(fc, i*COLUWS, COLUWNS);

for (j=0; j<NCA; j++){ /* using shared data */

(dds_shmenfoff_fc+i])[j] = (dds_shmenfoff_fa+i])[j] +

(dds_shnenmoff_fb+i])[j] ;

}

DDS UnWite(fc, i*COLUWNS, COLUWS);
DDS_UnRead(fa, i*COLUWNS, COLUWNS);
DDS_UnRead(fb, i*COLUWNS, COLUWNS);

} /* Close files */
DDS Close(fa); DDS O ose(fb); DDS dose(fc);
DDS _Finalize(); /* Finalize DDS*/

}

Figure 3. FSDDS programming model example: matrix multgdiion.

GHz processor, 512 MB RAM memory, and a hard disk. Hard disksoé different make and
storage capacity (4 and 8 GB). All nodes were interconnetiedigh a 3COM Fast Ethernet switch
with 48 ports. The operating system was Linux RedHat 9.0.

The runs with PVFES used the MPI-10 interface to issue calledfO operations. Both the runs
with PVFS and the runs with FSDDS used data stored in filedl tarass, all the nodes function both
as compute nodes and as I/0O nodes (data is physically pagdiamong all nodes). The striping of
files was different for each application and is describeduwel

5.1. Application 1: Matrix Multiplication

Our first application is a matrix multiplication algorithi1), C = A x B. For N x N matrices
andp processors, processor 0 computes the partial result ofeantent in C using the firsV/p
elements of the corresponding row in A and the fi¥g{p elements of the corresponding column in
B; processor 1 does the same using the secdndelements ..., etc. Each processor computes the
partial results of an entire row in C in one go, and then addmtto the actual elements in C. All
processors start computing the first row in C. This algorithatches the data access pattern with
the physical data partitioning in secondary storage (byst@ecording to the row-major order of the
C language), and allowed us to validate the synchronisaig@ted to maintain data coherence on
writing matrix C.

In all our experiments, each matrixis000 x 10000 long type elements (4 bytes each), is stored
in a file by rows, and each file is striped acr@gsrocessors (nodes). Under PVFS wiitldividual
(non-collective) read/write operations (PVFS-1), andemeSDDS, the stripe size in all matrices was
N/p rows. We also ran a PVFS version where each processor udestivel read/write operations
(PVFS-C), using a stripe of siz€/p data elements for matrix A only.

Figure 4.a shows the number of read and write requests uMis, PVFS-C and FSDDS. Both
PVFS versions incur the same number of read requests betteysdiffer only in the kind of read
they use: each read operation is for the same amount of dateerFSDDS, some reads for rows in
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Matrices 10k x 10k

40000
35000 (-
30000 |-
PVFS-I/C FSDDS
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10000 [~
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(a) Read and write requests. (b) Execution time.

Figure 4. MM under PVFS and FSDDS.

matrix A were satisfied from copies in other memory nodesvAtkions incur the same number of
write requests because they use the same write unit, a rosertVFS-I/C, each row is written out
by one processor once it is computed. Under FSDDS, rows imntatare held in memory as much
as possible; hence some of them are written out only whenléhis ttlosed.

Figure 4.b shows the execution time of MM under PVFS-I, P\G-&nd FSDDS. All versions
show about the same execution time, even though under FSBE3SHan half read requests are
incurred. The reason for this is data caching. All procesaocess each row in matrix A starting at
the first row, and once they finish computing the partial rssofl the corresponding row in C, they
discard it; in contrast, each processor holds the rows ofixait uses throughout the computation.
That is, each processor is accessing each row in each mawiks memory only once, both under
PVFS and under FSDDS. This implies that in PVFS some readsvdagisfied from copies in main
memory too, most likely from the cache of I/0O nodes. FSDDS\&hslightly better performance, on
8 and 16 processors, because PVFS versionsMsed Gather() to collect all the partial results for
a row in matrix C, and thus incur synchronisation cost, morths larger the number of processors.
Under FSDDS, each processor writes exclusively its paggllts as they gain access to each row.

5.2. Fast Fourier Transform

Our second application applies the Fast Fourier Transf&fiT ) to restore degraded or defocused
images. For an image & x N pixels, a matrix of sizeV x N x 8 (float type) bytes is used. From
this matrix, anmages matrix is created which corresponds to an autocorrelation proGégsimages
matrix contains\/ x M images, wheré/ = 2N, and is of Siz& N x 2N x (N x N)x 8 = (N*) x 32
bytes. To the images matrix, our application applies the &6-llows. Processor 0 applies the FFT
to the first M /p rows and to the firsfl//p columns (of images) along rows in each image matrix
(1st), along columns in each image matrix (2nd), jumpingtlgh rows in different image matrices
(3rd), and jumping through columns likewise (4th); procesksapplies the FFT to the second/p
rows and to the secontf/ /p columns (of images), ..., and so on. Figure 5 shows an imagé$xm
for N = 2, and its partitioning for 4 processors.

We ran FFT on 4, 8 and 16 processors, both under PVFS (noeetioé) and under FSDDS. In all
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Figure 5. FFT: The images matrix fof = 2, and its partitioning for 4 processors.

runs, the stripe size wa¥//p rows of images, and the images matrix was of ${4€8)*) x 32 = 8
GB, and could not be held entirely in memory in all processmurnt configurations.

Figure 6.a shows the number of 1/0O requests per process@adn processor-count configura-
tion, the number of I/O requests under FSDDS was smallenthdar PVFS because, under FSDDS,
some reads were satisfied from copies in other memory nodeésiecause writes occurred in mem-
ory copies which were committed to disk only when there wasoatage of memory or until the file
was closed.

FFT

j PVFS ——
6000 |- *\\ DS -
5000 [
PVFS FSDDS ool
Processors| Reads | Writes Reads | Writes 2
4 49152 | 49152 48729 | 48732 g’
8 24576 | 24576 23638 | 23638 R er
16 12288 | 12288 9934 9934
2000 [
1000
2 4 6 8 10 12 14 16 18
Processors
(a) Read and write requests. (b) Execution time.

Figure 6. FFT under PVFS and FSDDS.

Figure 6.b shows the execution time of FFT, both under PVEB-gollective) and FSDDS, on
4, 8 and 16 processors. On 4 processors, even though the nahtbads and writes under FSDDS
was smaller than the number of reads and writes under PVE$&x#cution time under FSDDS was
much greater because the available memory was relativedif,sand thus the replacement policy of
FSDDS was exerted frequently. On 8 and 16 processors, ter laremory available meant less use
of the replacement policy, improving performance.



514

6. Conclusionsand Future Work

We have outlined the use of PVFS and FSDDS, and presentedesgragmental results on their
performance. Files in PVFS can be accessed rather simplyghra UNIX-like interface; the MPI-
IO interface can also be used to define logical data views.uBkeof views is not simple, however,
even though there is some logic behind it. FSDDS interfacpiite cumbersome, because DDS
internal data structures are exposed. We are working ondbigml of an extension to the C lan-
guage and its preprocessor to avoid the use of the DDS ingdatirely. We envisage parallel
applications will use arrays and files as a shared memorypitprocessor will issue the corre-
spondingD DS _Read-DDS_UnRead and DDS _Write-DDS _UnWrite pairs, and theeference
to each shared data item based on DDS internal data stracture

The performance of PVFS and FSDDS was similar except for ecorsd application (FFT) on
4 processors. On this application/configuration, the m@pteent policy of DDS had an adverse
effect because the amount memory was relatively small. Mewé¢he data caching of DDS does
work in general, as can be seen from the slightly better padiace that FSDDS shows on 8 and
16 processors (3-10%). We are working on using differentarmnent policies and data striping
methods to improve the performance of FSDDS.
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