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A New Algorithm for Join Processing with the Internet Transfer Delays

Kenji Imasaki a, Sivarama Dandamudia

aSchool of Computer Science, Carleton University 1125 Colonel By Drive, Ottawa, Canada

This paper focuses on cluster-based parallel database systems in which only one of the nodes has
the database and the other nodes, which have no initial data, are used for parallel query processing.
In such a system, the load of each node changes dynamically depending on the activities of the local
users. In addition, in database query processing, data skew exists. With the increasing Internet con-
nectivity, it also becomes necessary to query databases spread around the world. In this scenario, the
system can experience arrival delays and/or the transfer rate variations while receiving the join input
relations. This paper investigates join processing algorithms under these conditions and proposes
a new join algorithm called Symmetric Chunking Hash Join (SCHJ) that divides the hash buckets
into chunks and uses them for load balancing. The SCHJ is compared with two incremental hash
mapping algorithms. The experimental results conducted on a Linux cluster show that the SCHJ
algorithm is the best among these algorithms.
1. Introduction

With the availability of Giga-hertz processors, Giga-byte memory, and Giga-bit bandwidth com-
munication networks, huge parallel processing power from parallel computers can be used for var-
ious types of scientific computing. However, this power does not come for free as parallel systems
are very expensive. Also, with the fast pace of technological advances, constituent components of
the parallel computers quickly become obsolete. Cluster systems have been introduced as an alterna-
tive to such parallel systems. Database query processing can also benefit from parallel execution on
such cluster systems. The query processing is managed by a Parallel Database Management System
(PDBMS).

With the advent of cluster computing environments, parallel query processing on a cluster system
has been proposed as an alternative to parallel database systems. In general, there are two approaches
to implementing a PDBMS on a cluster system. One is the same as a traditional PDBMS: the data
are de-clustered and a query is executed in parallel. Most of the recent commercial PDBMSs use this
approach. The other approach is to use an existing dedicated DBMS and processing nodes (PNs)
in clusters for parallel processing to take the query load off the DBMS [3,7]. We call this system a
cluster-based PDBMS (cPDBMS) to distinguish the two approaches. This paper focuses on query
processing in a cPDBMS.

When processing a query, choosing an efficient parallel query processing algorithm is impor-
tant. Query processing can be improved by exploiting intra-operator (single-join), inter-operator
(multiple-join), and inter-query (multiple query) parallelism [1].

Among these three types of parallelism, the single-join operation has attracted a lot of attention,
since it is the most expensive operation in query processing. Hash join algorithms are clearly superior
than other algorithms for the single-join operation [11]. However, hash join-based algorithms suffer
from various kinds of skew [9]. Thus, the choice of load balancing/sharing algorithms becomes
important since the slowest PN which has the heaviest data skew dictates the performance of the
overall system.

Many researchers have proposed load sharing/balancing algorithms for the hash join algorithm
[2,7,11]. Also, Hua et al. [5] compared the performance of the following load balancing algorithms
on a shared-nothing parallel computer: (1) no load balancing, (2) conventional bin-packing, (3)
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sampling, and (4) incremental methods. They concluded that the sampling method is the best.
These load balancing/sharing algorithms for PDBMSs on parallel computers do not work for

cPDBMSs for the following reasons.
Firstly, these algorithms only deal with PNs with pre-partitioned data. However, PNs in clusters

are dynamically determined and usually do not have any of the data needed for join processing. The
data should be sent from DBMSs to a PN prior to the join processing. This phase is not considered
in these algorithms. This situation can be seen as the extreme case of tuple placement skew [9].
In tuple placement skew, some PNs read more tuples while others wait for them to finish reading
the whole relation. Secondly, these algorithms do not consider the effect of non-query background
load. Even with the adaptive approach, it is difficult to know how much work a PN should transfer
to another. Besides, it is not clear whether the transfer is effective or not in the case of clusters in
which the load on each PN changes very frequently. In addition, no algorithm considers the effect of
the combination of background load and data skew. Lastly, input data arrival delay and data transfer
rate fluctuation are not considered. This is very important, especially in the case of data integration.

Therefore, a new load balancing/sharing algorithm is needed to improve the performance of join
processing on clusters. This paper proposes a new load balancing/sharing algorithm for cPDBMSs.
This algorithm, called Symmetric Chunking Hash Join (SCHJ), divides the hash buckets into chunks
and uses them for load balancing. Also, the algorithm is based on the symmetric join algorithm,
which does not distinguish between the two input relations.
2. Symmetric Join Algorithms

The symmetric hash join algorithms were proposed by Wilchut et al. [14]. Also, recently devel-
oped algorithms for data integration systems (i.e., XJoin [13]) are based on symmetric single-join
algorithms. We combine symmetric hash join algorithms with the ChunkHJ algorithm proposed in
[7]. In this section, we first explain the environment. Then, the load balancing/sharing algorithms
are described. Next, experimental environments, including the Internet transfer delay model, are
discussed.
2.1. Single-Join Processing Environment

This subsection presents the environments for symmetric single-join processing. In this environ-
ments, data is coming from remote sites to the local cluster , which consists of several processing
nodes with single or dual CPUs. The local cluster is used for parallel query processing.

We developed a system to simulate query processing in the local cluster in this model. A descrip-
tion of each component of this system is shown in Table 1. All components are implemented by
Java threads, which run concurrently on PNs. The main focus of this paper is on the JoinManager,
JoinExecutors, and the Database. The JoinManager reads data from a Database and coordinates load
balancing/sharing of several JoinExecutors.

With the same idea as ChunkHJ, a lot of hash bucket chunks are created using threshold values
for load balancing/sharing purpose. In order to ensure the correctness of the join execution, a Join
State Matrix (JSM) resides on the JoinManager is used. Each entry in the JSM represents the join
status of matching pairs for each bucket.

2.2. Load Sharing/Balancing Techniques for Symmetric Hash Join Algorithms
We designed and implemented several load balancing/sharing algorithms for symmetric hash

joins. The main focus is to determine hash mapping from hashId to JoinExecutorId. It is stored
in hashMappingTable for load sharing/balancing. We developed three algorithms to decide the hash
mapping. The following subsections explain these algorithms in detail. The functions used in the
pseudocode description in the following subsections are summarized in Table 2. The recv, send, and
broadcast functions are based on the MPI functions.
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Class Description
JoinMgr makes load-balancing decision (JM)
JoinExec executes local joins (JE)
TranExec transfers chunks
DBRead reads rel. and puts into buffer (DR)
DBMgr accepts a read request

and invokes DRs
Backgrd simulates non-query process

by busy looping
HashGen uses function to

generate buckets (HG)
ChunkStr stores the chunk and deals with I/Os

Table 1
Major components descriptions.

Name Description
recv receives a msg from the master

or a slave (srcId) with message tag
send sends a msg with a message tag

to the master or a slave (destId)
broad broadcasts a msg to all slaves
apHash applies a hash function

and creates n hash buckets
read reads from DBMS within the range
execLJ executes the local join algorithm

and stores results in the result buffer;

Table 2
Functions used in the pseudocode description.

The pseudocode for JoinManager is shown in Algorithm A.1. The pseudocode for HashGenerator
is also shown in Algorithm A.2. expandJSM is used to expand the JSM entry according to the
argument info (a pair of hashId and chunkId) sent from HashGenerator. It also fills the expanded
matrix entries with “R”(Ready) entry. FindJE is the sender-initiated part of the algorithm that tries
to find an idle JoinExecutor with the maximum number of matching pairs for this bucket. Each
algorithm has a different version of findJE as we will explain later. FindBucket is used to find a
suitable bucket pair with an idle JoinExecutor. For the hash mapping-based algorithm (non-SCHJ
algorithms), hash mapping is used to find a suitable bucket pair. For SCHJ, the algorithm described
in Section 2.3 is used. Pseudocode for JoinExecutor is shown in Algorithm A.3. RSTransfer is used
to transfer the bucket among DB and JoinExecutor for load balancing/sharing purpose.
2.3. Symmetric Chunking Hash Join

This algorithm (SCHJ) is based on ChunkHJ [7]. Thus, hash mapping is not used. The pseu-
docode of findJoinExecutor(h,cId,chunkSize) of SCHJ is shown in Algorithm A.4. In this algorithm,
findSlave [7] is used. It finds an idle slave1 with the other matching bucket. However, the buckets
which have “R” entries in JSM are considered.

Every time a JoinExecutor finishes the job, the JoinManager invokes findBucket (Algorithm A.5)
after receiving a job request message from a JoinExecutor. findBucket selects a chunk pair using
findBucket(LT,chunkSize). Then the findBucket(HT,chunkSize) algorithm [7] finds a bucket in which
the number of tuples is greater than the value specified in the parameter.

After a bucket chunk pair is selected, chunk transfer is done using RSTransfer. If at least one of the
chunk pairs is not present on a JoinExecutor, then it is sent from the source node to the destination
node by TransferExecutor on the source node. The source node is determined randomly.

This algorithm may perform well in the case that background load and/or data skew exist since
load balancing/sharing is done in a dynamic and incremental way. However, too many transfers may
cause performance degradation.
2.4. Greedy Incremental Hash Mapping and JSM-based Incremental Hash Mapping

Greedy Incremental Hash Mapping (GIHM) and JSM-based Incremental Hash Mapping (JIHM)
try to deal with the Internet transfer delay that occurs in the data integration systems. The basic

1The terms “slave” and “JoinExecutor” are used interchangeably.
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idea of these algorithms is to delay JoinExecutors to work on a bucket until there is enough work
available in the bucket. The unit of work measurement is the number of tuples (GIHM) or the number
of join-ready entries in JSM (JIHM).

GIHM uses a greedy algorithm and incrementally determines the hash mapping according to the
arrivals of hash chunks. The pseudocode of findJE(h) (GIHM) is shown in Algorithm A.6. Find-
Bucket uses hash mapping (omitted here). This algorithm is greedy in the sense that the JoinManager
looks for an idle JoinExecutor and assigns the JoinExecutor to the hashId (hash mapping) immedi-
ately. When there are several JoinExecutors, one of them is chosen randomly as a target JoinEx-
ecutor. After the target JoinExecutor is selected, the JoinExecutor receives the hash chunk from
TransferExecutor in the same way as SCHJ and starts the join.

In JIHM, JoinManager waits for the hash mapping assignment until the number of JSM-ready
entries reaches a pre-defined number.

JIHM and GIHM may perform well when the arrival relation is delayed due to dynamic charac-
teristics of the Internet transfer.

3. Experimental Environment

The LINUX cluster that we used in our experiments consists of 4 dual CPU nodes (Xeon 2.4 GHz
and 1 GB main memory) and 7 single CPU nodes (P4 2.4 GHz and 1 GB main memory). Each node
runs the Red Hat 8.0 Linux.

MPI (Message Passing Interface) [10] is now the de facto standard for programming languages
for parallel processing. We use mpich 1.2.5.2 since it has thread-safe architecture and our simulation
uses several threads running concurrently on PNs.

We use mpiJava 1.2.5 [4] with JDK 1.4.1 to combine the advantage of MPI and Java. Mpi-
Java is an object-oriented Java interface to the standard MPI. MpiJava itself does not assume any
special extensions to the Java language. It is portable to any platform that provides compatible Java-
development and native MPI environments. We did not use pure Java parallel processing such as
RMI for performance reasons.

We set memory size for a component to 24MB and node allocation sequence to interleave (single
CPU, dual CPUs, single, ...) and background loop period to 1 second.

The experimental database used in the experiments consists of 1 million tuples. We created 10
relations with different random seeds for each parameter setting. In this experiments, scalar skew
model [7]. In scalar skew mode, for a relation of size |R|, in each attribute the value 1 appears in a
fixed number of tuples, while the remaining tuples contain values uniformly distributed between 2
and |R|.

In order to model data transfer delay over the Internet, we first measured the transfer time of
different message size by UNIX ping command [12] 100 times at 3 different times of the day from
our office in Ottawa to several locations spanning a range of distances from University of Toronto,
University of California Los Angles (UCLA), to University of Tokyo.

Figure 1 and Table 2 show ping transfer time and approximate functions for each location.
We decided to use hypo-exponential distribution to simulate data transfer rate fluctuation over

the Internet since coefficient of variation (CV) (= standard deviation/average time) is below 1. As
a result, we use the following model to get the transfer times (ActualTransferTime) of data as a
function of size:

• MeanTransferTime = a*size + b (column 4 of Table 2)
• ActualTransferTime = Hypo exponential (MeanTransferTime,dev) where dev is its standard

deviation
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Figure 1. Ping transfer time: trend line is shown
in column 3 of Table 2.

Location Approx. Transfer Func.
(trend lines in Fig. 1)

Univ. of Toronto t=0.064×size+28.839
UCLA t=0.0637×size+55.416
Univ. of Tokyo t=0.0638×size+117.57

Figure 2. Approximate transfer functions.

We believe that this model is the first step to model the Internet transfer delay accurately. The
statistical analysis of this model is our future work.

We insert a sleeping function after reading the relation and before applying the hash function with
a duration that corresponds to the above model.

In the experiments, it is assumed that one relation resides on the local area network and the other
relation resides in another location (either at Toronto, UCLA, or Tokyo). The reason for this decision
is that if both of them reside on remote locations, then it is better to execute the join on one of the
remote locations.

4. Experimental Results

The experimental results obtained by executing the symmetric hash join algorithms and their load
balancing/sharing algorithms described in Section 2.2 are presented in this section under the data
skew, background load, and the Internet transfer delay conditions. The execution is repeated until
99% confidence interval is obtained. For GIHM, we use 5, 10, and 20 as its threshold values. The
complete results can be found in [6].

4.1. Performance with the Internet Transfer Delay and Data Skew
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Figure 3. Performance of algorithms with scalar data skew factor of 20,000.
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Figures 3 show the performance of the algorithms when there is no background load and the
scalar skew factor is 20000 which changing DB location. SCHJ is marginally better than the other
algorithms for all DB locations and all the degrees of skew.

In the figure, the delay caused by the Internet transfer delay from one location to another location
is 4% (from Toronto to UCLA) and 25% (from UCLA to Tokyo). Table 1 shows the delay is 13%
(from Toronto to UCLA) and 26% (from UCLA to Tokyo). Thus, when the delay is small the
algorithms can absorb the delay. However, as the distance becomes long, the algorithms are affected
by the delay.

Another interesting point is that the skew effects on the performance are not as large as the case
without the Internet transfer delay [6]. This is because JoinExecutors can work on the join processing
on skewed bucket while waiting for the relations to arrive as long as there is no background load on
them. If there is a background load, it delays the join execution as we will see in Section 4.3.

4.2. Performance with the Internet Transfer Delay and Background Load
Figure 4 shows the performance of the algorithms as the function of background load when the

DB location is Tokyo. This plot shows that the effect of the background load is small on SCHJ
compared to the other algorithms because of its adaptive load balancing/sharing mechanism. Thus,
the higher background load, the higher the improvement. SCHJ improvements over GIHM are 2%
and 5% when the background load is 3 and 6 processes, respectively.
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Figure 5. Performance of the algorithms with
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4.3. Performance with the Internet Transfer Delay, Data Skew and Background Load
Figure 5 shows the performance of the algorithms as a function of the number of background load

processes when the skew factor is 20000 and the DB location is Tokyo. The figure shows that SCHJ
is the least affected by the background load. Thus, the higher the background load, the more SCHJ
improves compared to other algorithms, which are affected by the change in background load.

Performance of SCHJ is 11% better than JIHM10, which shows the effectiveness of SCHJ. JIHM10
is better than the other JIHMs and GIHM. When the skew factor is high, the effect of the background
load is severe on GIHM. GIHM is good for moderate skew case and low background load. In case
of high skew and high background load, it does not perform well because of its greedy algorithm
which results in poor hash mapping decision. On the other hand, JIHM waits for more data to arrive
before it makes a decision. Among the various JIHM algorithms, smaller number (5 or 10) of ready
JSM entries is better in these cases. If it is 20, it waits too long and keeps JEs idle long.
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5. Conclusions
In this paper, we first proposed Symmetric Chunking Hash Join (SCHJ). We also proposed Greedy

Incremental Hash Mapping (GIHM) and JSM-based Incremental Hash Mapping (JIHM) mainly for
the Internet transfer delay case. They are compared with SCHJ for the Internet transfer delay model.
In the model, one of the relations resides locally and the other resides at a remote location that has
a dynamic transfer delay depending on the geographical distance. The reason for assuming a local
relation is that if both of them reside on remote locations, then it is better to execute the join on one
of the remote locations.

We draw the following conclusions: (1) With only the Internet transfer delay or with data skew
(scalar skew), SCHJ is marginally better than the other algorithms. In this case, data skew can be
absorbed by the arrival delay if there is no background load for all algorithms. (2) The greater the
background load, the better the SCHJ performance because of the load balancing mechanism. (3)
The improvement of SCHJ becomes greater with the increasing data skew or the background load.
(4) When there is modest skew and background load, GIHM is better than the JIHM algorithms but
worse than SCHJ (5) When there is extreme skew and background load, JIHM is better than the
GIHM algorithm but worse than SCHJ.
References

[1] David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High-Performance Database
Systems. Communications of the ACM, 35(6):85–98, June 1992.

[2] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and Srinivasan Seshadri. Practical Skew
Handling in Parallel Joins. In The 18th VLDB, pages 27–40, August 1992.

[3] Matthiew Exbrayat and Lionel Brunie. A PC-NOW Based Parallel Extension for a Sequential DBMS.
In PC-NOW, pages 91–100, May 2000.

[4] HP Java Project. mpiJava Home Page. available at http://www.javagrande.com/mpiJava.html.
[5] Kien A. Hua and Wallapak Tavanapong. Performance of Load Balancing Techniques for Join Operations

in Shared-nothing Database Management Systems. Journal of Parallel and Distributed Computing,
56(1):17–46, January 1999.

[6] Kenji Imasaki. Parallel Query Processing on a Cluster-based Database System. PhD thesis, School of
Computer Science, Carleton University, September 2004.

[7] Kenji Imasaki and Sivarama Dandamudi. An Adaptive Hash Join Algorithm on a Network of Worksta-
tions. In IPDPS, April 2002.
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Algorithm A.1: JOINONJOINMANAGER(cS)

{Input: cS for chunk size; Output: none}
send(HashGenerator, “RelationRead”, “R”)
send(HashGenerator, “RelationRead”, “S”)
repeat






































































recv(source, tag , info) {info:hashId/chunkId}
if (tag is “JSMUpdate”) {from HG}

then















expandJSM(info)
JEx← findJE(info, cS);
{different for each algorithm}

send(src, “JSMUpdateReply”, JEx)
else if (tag is “JobRequest”){from JE}

then















change corresponding completed JSM
entries to “F”
chunkPair ← findBucket(cS)
RSTransfer(chunkPair)

until ((finished reading relations(R and S)) and
(JSM entries are all “F”))

broadcast(“ProcessEnd”, null){to all JEs/HGs}

Algorithm A.2: JOINONHG(X, pS, cS)

{applies hash function on tuples of X}
{Input: relation X;
pS for partition size for relation X;
cS for chunk size; Output: none}
repeat
recv(JoinManager, “RelationRead”, X)
{Read relation X by Database and
DatabaseReader}

nPartitions← |X|/pS
for i← 0 to nPartitions

do















X i ← read(X, i ∗ pS, (i + 1) ∗ pS − 1)
{actual reading is done
by DatabaseManager}

X i
ALL
← applyHash(X i, cS)

until recv(JoinManager, “ProcessEnd”, null)

Algorithm A.3: JOINONJE()

{Symmetric Hash Join on a JoinExecutor}
{Input: none; Output: none}
repeat






















recv(TransferExecutor, “Relation”, Xh)
if(X is R)

then execLJ(Xh, Sh)
else execLJ(Rh, Xh)

send(JoinManager, “JobRequest”, null)
until recv(JoinManager, “ProcessEnd”, null)

Algorithm A.4: FINDJESCHJ (h, cId, cSize)

{find a JoinExecutor(JEx) using Chunk HJ}
{Input: h for hashValue; cId for chunkId; cSize;
Output: destination JE index}
SLx← findSlave(“LT”, h) {shown in [7]};
{LT : SLx should have other paring bucket.}
if (SLx is null)

then SLx← findSlave(“HT”, h)
{HT : SLx does not need the other pairing bucket.}
return (SLx)

Algorithm A.5: FINDBUCKET(cSize)

{Find suitable bucket chunk pair from JSM Entry}
{Input: chunkSize;
Output:bucketPair(hashId,chunkId1,chunkId2)}
bucketPair ← findBucket(“LT”, cSize)

{find local hash bucket but use JSM [7]}
if (bucketPair is null)

then bucketPair ← findBucket(“HT”, cSize)
return (bucketPair)

Algorithm A.6: FINDJEGIHM (h)

{Decide destination JoinExecutor}
{Input: h hashValue;
Output: destination JE index
if (hashMappingTable.containsKey(h))

then return (hashMappingTable.get(h))

else







x← random selection from idle JE list
hashMappingTable.insert(h, x)
return (x)
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