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An Automated Approach to mprove Communication-Computation Overlap
in Clusters

Lewis Fishgold, Anthony Danalig, Lori Pollock®, Martin Swany

2Department of Computer and Information Sciences, UnitseadiDelaware, Newark, DE 19716
{fishgol d, danal i s, swany, pol | ock}@i s. udel . edu

Applications that execute on parallel clusters face sd#@haboncerns due to the high communi-
cation overhead that is usually associated with such emviemts. Modern network technologies
that support Remote Direct Memory Access (RDMA) can offaetzero copy communication and
reduce communication overhead by overlapping it with cotaan. For this approach to be ef-
fective though, the parallel application using the clusterst be structured in a way that enables
communication computation overlapping. Unfortunatdig trade-off between maintainability and
performance often leads to a structure that prevents éxgidhe potential for communication com-
putation overlapping. This paper describes a source#oesmptimizing transformation that can be
performed by an automatic (or semi-automatic) system irrotal restructure MPI codes towards
maximizing communication-computation overlapping.

1. Introduction

Clusters of workstations are in common use among engin@ersl@main scientists due to their
high processing power to cost ratio. The major drawback w$ter-based parallel computing as
compared to shared memory multiprocessors is the netwday deduced by the node intercon-
necting technology of clusters. Several interconnecegchmnologies such as Myrinet, Quadrics and
Infiniband can improve cluster message-passing perforenayp@roviding specialized low latency,
high bandwidth networks for clusters. Such technology baotetically reduce communication la-
tency by overlapping communication with computation tlgiethandling network traffic solely on a
network co-processor, freeing the CPU to perform usefulpaations.

Unfortunately, many existing scientific applications éoll a modular structure where the com-
putation is separated from the communication. Althoughhsarc approach makes the code easier
to maintain and alter, it prevents communication-imprgunetwork technology from being fully
utilized.

To overcome the restrictions imposed by such overlapenaide, a program can be transformed
SO as to aggressively send data as soon as it is generatedrticular, the computationally ex-
pensive part of many scientific applications consists ofag licommonly with multiple levels of
nesting) that executes some basic computation kernel. ddgested transformation aims to achieve
“pre-pushing” by performing the communication within thengputation loop using non-blocking,
asynchronous I/O operations to transfer data elements@therparallel tasks as soon as it is safe.
To evaluate the potential of this transformation, Dandliale[3] transformed potentially benefit-
ing applications manually and experimented with the r@sgilvariations to study the performance
gains. Their results show that near maximum communicat@nputation overlap can be achieved,
resulting in reduction of the communication overhead agdificant performance improvement in
comparison to the original code, as shown in Figure 1.

Although the suggested pre-push transformation can benpeetd by an experienced programmer,
there are several reasons to build an automated system.



482

MPICH Original Original
MPICH Prepush

7|/ . MPICH-GM Original
GE.) MPICH-GM Prepush
=
=6
§el
o
3
o5
n
8 4 Prgpush
g N
©
€3
o -
Z Original

2

Prepush
. 7

Communication Scheme

Figure 1. Performance improvement achieved by “pre-p@shin

Asynchronous communication can be error prone and difftoyrogram, particularly when
many processors and corresponding outstanding messag@s/alved creating a need for
explicit synchronization.

The performance of the transformed code depends on sevesttrcand application related
parameters. These parameters have to be recomputed @raeslied through extensive pro-
filing) every time the code changes, or the cluster CPUs, mgroonetwork changes.

The suggested transformations have a negative impact ongimainability of the code and in
the case where low level communication primitives (eg., iMgt's GM) are used, portability
is also affected.

Having an automated system perform the transformation g optimization to a wider
audience of applications such as legacy codes, and thossevgnogrammers are unaware of
the details of the optimization.

Significant research has focused on optimizing commumicd#tency in cluster environments

but none can handle explicitly parallel codes written us#tgl. Many compiler or language-based
techniques translate higher-level parallel construdts imessage passing primitives as appropriate.
Examples of this include UPC [4], Co-Array Fortran [11], HFF, and Fortran-D [7]. While these
approaches allow programmers to write their code in SPMI2 stigey focus on parallel optimiza-
tion in the large, rather than focusing on optimization ofssaging on a single host and do not
deliver the performance that can be achieved by carefuligdumanually parallelized applications.
Systems such as Polaris [2] and PARAMAT [9] perform soumsdurce transformations to achieve
parallelization of serial programs that are writteriFortran 77 or C without any special annotation.
Nevertheless, these systems do not accept input code apeaallelized with the use of MPI, but
rather expect code written as a serial program. Projects asicCC-MPI [8] attempt to extend the
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standard MPI in order to provide support for ttampiled communication model [16]. In this way,
communications that lend themselves to static analysideaseparated from those which do not,
and optimizations can be performed as appropriate. The diti@érence between our project and
the alternative solutions is that we aim to offer a complgttesn able to automatically (or semi-
automatically) restructure parallel applications, esiglly parallelized with the use of MPI, in order
to minimize their communication overhead by performing camication-computation overlapping.

2. Communication-Computation Overlapping Transformation

The modular structure of many scientific codes, in which sdatea is computed, stored in an ar-
ray, and then sent over the network, leaves no opportunitgdommunication-computation overlap.
Often, as soon as the data is ready to be sent, it needs to th€hysthe receivers). We propose a
transformation for such codes so that the data is pre-pushesgnt as it is generated, before it is
needed.

To achieve such an early transfer model, the computatignikcestructured into blocks, or tiles,
in which each tile executes only part of the iteration spawktaerefore performs only part of the
original computation. Consequently, each tile generatdg @ subregion of the original array and
depending on the data dependencies of the loop, it could dedbke that at the end of the tile
execution, the generated array subregion is not altereditioyef iterations (i.e., consecutive tiles).
In addition, asynchronous send and receive operationsaegtéd at the end of each tile so that
the transfer of the array subregion generated by the camnelpg tile is initiated. This transfer is
completed by the network co-processor, while the CPU cae8rcomputing the next tile of the
array. In order for such a transformation to preserve theectimess of the original code, the subject
application needs to first be analyzed. In general, to rettre code to pre-push the results of its
computation, we must first determine the following inforioat

e the communication operations in the original code and tieesponding computation loop(s)
that write(s) to the array being sent

¢ the pairs of matching send and receive operation(s), siattethe send and the receive must
be transformed in concert

e the earliest execution point where it is safe to receivegu&hed data (This is important in
cases where the receiver uses the receive array prior tcath@fthe code we are trying to
transform. In such a case, it is only safe to transfer the alé¢a the latest point of such use.)

The last two are difficult to determine and in some cases thpye statically undecidable. There-
fore, our transformation effort focuses on cases that taweae information about the communi-
cation and do not exhibit such undecidability. Such infaiiorais statically known in the case of
collective communication operations suchiv® ALLTOALL. In such operations, both sending and
receiving is implemented internally and the function calbears as an atomic, or indivisible, oper-
ation at the level of the application. In addition, the setitanof VPl _ALLTOALL require that all
participating nodes have to call it. Therefore, we do nodnieematch statically the senders to the
receivers; we know that all nodes exchange data, and they ishcespredetermined pattern. Regard-
ing the computation, our current analysis focuses on coatioutloops where every node executes
the same code. In other words, there can be no branches {i.statements) in the code that stores
data into the array that is being exchanged. Many scientiies contain frequently executed sec-
tions consisting of a multiply-nested loop in which the inlu®mps execute some computation kernel



integer As(1:NX)
integer A.(1:NX)
do iy=1, NX !outer |oop
i nteger As(1: NX) do ix=1, NX !inner conputation | oop nest
integer A.(1:NX) As(ix) = ...
'wait for commof prev. tile to conplete
do iy=1, NX !outer |oop if(ix nod K == 0) then
do ix=1, NX !inner conputation |oop to=...
C. si ze=K
As(ix) = ... 'RHS is not array ref. call async-send(.As(...),size,to,...)
enddo call async-recv(Ar(...),size,from...)
Isends As; and receives into A, endi f
call collective-com( A, A;) enddo
enddo enddo
(a) Before (b) After

Figure 2.Abstract target code segment before and after transfosmati

and store the results in an array which is then exchanged MIh_ALLTOALL at the end of each
iteration of the outer loop (see Figure 2(a)). This commaitan-computation pattern is the domain
on which our current transformation is focused. Sorting, E&&torization, Finite differences, and
multi-dimensional FFT constitute examples of algorithimat tcould fit this abstract form, and can
be transformed to exploit pre-pushing.

To demonstrate the result of the transformation, Figure®@vshan abstract target code before
and after being transformed. The tiling of the computatmopl nest is controlled by the parameter
K which sets the number of iterations of the tile loop per tilBetermining the optimal tile size
is not a trivial task, and is best performed by an automatstesy, since the value may change as
applications migrate across platforms. However, findirggdhtimal value for K is beyond the scope
of this paper. A discussion about the issues related to tHerpgance critical parameters can be
found in [3].

3. Automated Transformation Technique

3.1. Opportunitiesfor Transformation
The first step toward modifying the code is identifying ogpaities for transformation. To do so,
the following information needs to be collected:

e C,acall toMPl ALLTQOALL.
e A, the array sent bg, which is the first argument .
e A, the array received b, which is the fourth argument .

¢ /, the loop nest executed by all nodes, which finalizes all efgmin.A, beforeC is called.?
is the last loop nest not in a conditional statement, lekiqalecedingC, that mutatesd,. A,
can be mutated directly by assignment, or indirectly by ipasgl, by reference to a called
procedure. In the former case, if the source code for thegoiare is unavailable, it cannot be
guaranteed thatl, is written. To resolve this uncertainty, the user must berigdgmaking
the system semi-automatic), but/fis the only loop preceding, then it is a conservative
assumption to considérto be a mutator.
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3.2. Compute-Copy Pattern
For each transformation opportunity, we determine theepatby which values are computed and
copied intoA,. We currently consider two cases:

direct A, is the LHS of an assignment statement where the RHS is notray i@&ference, as seen
in Figure 2. Section 3.3 describes how to analyze codegfittiis pattern.

indirect In this case, the contents of, are computed indirectly in the sense that they are first
computed in a procedur®, which stores them in a temporary array, and are then copied t
A, afterwards. As in Figure 3(a}d, appears on the LHS of an assignment where the RHS
contains a reference to a different arraly, Each call computes a portion of the final results
and writes them to4, which is passed by reference. After the callRpthe contents o4,
are copied taA, in a copy loop,/.,. The purpose of this pattern is to aggregate the partial
results computed by each call ®so that they can be sent together at the end dihe goal
of Section 3.4 is to remové,,, and directly send the contents 4f, as this avoids the copy
and is thus more efficient.

3.3. Handling the Direct Pattern

If A, is written directly, we first determine which parts of the demray, A, can be safely sent
at a given point in the iteration space/ofif an array reference4,, overwrites elements previously
written by another array referencd;, then those elements are unsafe to send betwigeand.A,.
Using array dependence analysis to find output dependebsgsve determine whether the element
referenced by a given array reference is safe to send aétereference is reached during execution.
A safe array reference, denotéd, is one with no output dependences on it and representstés la
element to be finalized.

We could transform the program so that elements referenged/bare sent one at a time, as
each is computed. Although correct, it is desirable for waasof efficiency to aggregate these
single element sends into fewer, larger send operati@rmay access analysis[12] can enable this
aggregation, by determining the regionf written during a single tile. To simplify our prototype
implementation, we use the simplest, most course-graioegisa representation, known as a partial
triplet, which contains the symbolic upper and lower boumcm index expressiony,, denoted
asu(i;) andl(ix) respectively. This analysis determines the size, deneted of the blocks of
contiguously accessed array elementdylocks, written during the runtime ok iterations of/, and
the offsets of the blocks, denoted f sets.

Using the results from this analysis, a communication loegt nan be generated to iterate through
all o € of fsets in order to initiate the appropriate asynchronous comnatian calls to transmit
the generatetllocks. Note that if the array access pattern is regular, all tha daght be in just one
continuous block. This is the optimal case, as the trandféreodata can be performed with a single
transfer, achieving minimal overhead and high bandwidth.

3.4. Handling the Indirect Pattern

In the case thatd, is written indirectly, as in Figure 3, a copy loofy,,, aggregates temporary
results into.A,, which will be sent once all computation has concluded. &we want to send
results as they are generated in order to overlap commugnocatth computation, this aggregation
is unnecessary. Therefore, we can directly send the cantdéod;, which can reduce runtime by
eliminating the time taken to copy; to A,. The flow of data fromA4, to A, can be represented as

copy send

A, — A, — A,.. By transitivity, we can eliminate the copy and still contpléhe same operation
by the equivalent4, send 4.
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i nteger Ag(1:10,1:10,1:10)
i nteger A:(1:100)
doiy =1, 10 !loop nest ¢ i nteger A (1:10,1:10,1:10)
call P(..., A) i nteger Ay(1:100)
do ix =1, 100 !¢, doiy =1, 10 !l oop nest ¢
tx = ix %10 call P(..., A
ty = ix/10 call async-send( Ai...),...)
As(tx, ty,iy) = Alix) call async-recv(A.(...),...)
enddo enddo
enddo enddo
(a) Before (b) After

Figure 3.Abstract indirect pattern code segment before and afteovirg the redundant copy

To determine the region o4, that has been finalized during a tile, we cannot directlyyzeathe
loop that wrote ta4, since it is inside a procedure with source code that is utebai Therefore,
we have to infer the access patterndfindirectly by analyzing.,. It is reasonable to assume that
the region of 4, accessed when being copied.AQ is the one that is finalized by one call to the
procedure. In addition, if., is executed more than once per tile, which is usually the, ses@eed
to aggregate the temporary results, but not to the degredhidna were originally aggregated. To
achieve this, we expand the capacity4fby adding an extra dimension, and modify the reference
to A; that is passed to the procedure accordingly. Finally, tealti@g communication code must
preserve the original mapping fros, to A, that was induced by,,,. In other words, the blocks of
A; must be sent to4,, in the same order that blocks gf;, were copied to blocks afi,. Further
details for removing the redundant copy are beyond the sobites paper, but can be found in [5].

3.5. Communication

In this paper, we focus on transforming communication usiRg_ALLTOALL [10], which di-
vides arrays intaV P partitions along the last dimension, each correspondirg ddferent node.
To preserve the semantics and efficiencyvBt _ALLTQOALL, we must ensure that data is written
for each of the nodes to receive during every tile. We canauae that the entirety of the last
dimension is traversed if the loop inducing the traversaheflast dimension, theode loop, is not
the outer loop, in which iterations are being split intodildf the node loop is the outer loop, we
could use loop interchange [1] to exchange the outermogt\ath one of the inner loops. If data
dependences do not allow us to perform the interchangeetharstics ofvPI _ALLTQOALL can still
be preserved by having all the nodes send to a subset of thes mlodling each tile, but this is not
as efficient as network congestion may ensue if all of the sagde competing to communicate with
one or a few nodes. The method for generating communicatida o this case is given in [5]. In
Figure 4, we show the replacement communication code tleaepres the semantics and efficiency
of MPl _ALLTOALL when the node loop is outermost.

3.6. Transforming the Program
After the previous stages of analysis are performed, westoam the program according to the
following steps:

1. Insert the communication code shown in Figure 4 at the étliedoody of/.
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integer As(...,S2)

doj = 1,NP-1
to = mod( mynumtj , NP)
call npi.dsend(As(...,(to-1)*(NP/SZ)),...)
from = nmod( NP+nynum j , NP)
call mpidrecv(A.(...,(from1)*(NP/Sz)),...)
enddo

Figure 4. Communication Code

2. Insert a blocking call to wait for all outstanding receifeom the previous tile to complete,
before the code inserted in step 1.

3. Insert code aftef, to exchange any leftover elements not sent by the lastwihéch result
from K unevenly dividing the number of iterations 6fi.e., / mod K ).

4. Insert code, aftef and before’ to wait for the arrival of the last blocks of data after the end
of /.

5. Remove’, the original communication.

4. Implementation and Evaluation

The automated approach presented in the last section wasnrapted as a Fortran 90 source-
to-source code transformer, called the Compuniformenguttie Nestor program transformation
framework [14]. Using a source-to-source transformer, weodple our transformation from the
specifics of any particular compiler designed for a paréicakchitecture, allowing our optimization
to be complemented with traditional compiler optimizasorNestor is a lightweight framework
for implementing transformations to Fortran 90 code, plng a parser, a transformable IR, and
unparser. Nestor also includes a data dependence anagtiwhich uses Petit and the Omega
Test [13]. At this time, some portions of the implementatoa semi-automatic, in that they require
some user input, due to limitations in the built-in analyisls; future work will develop these
capabilities more fully.

We have performed a preliminary evaluation of our prototgipeed at testing the correctness and
performance of the transformation. The evaluation allog/unot only verify the correctness of the
implementation, but also the techniques that underly it. Whiate a test program which is simple,
yet tests many of the features of the transformation proc@$®e test code exhibits the indirect
computation pattern, which complicates the transfornmasimce we remove the redundant copy
loop. The test code as transformed by our system compilesxaualites, producing output identical
to that of the original, suggesting the correctness of athrigue and implementation.

5. Conclusions and Future Work

In this paper, we presented novel techniques to automateathsformation of explicitly parallel
codes to maximize communication-computation overlap. Bitwader impact of this work is the
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performance improvement of parallel MPI codes on netwourdtesters, enabling more scalable ap-
plication of the parallel codes to larger numbers of prooessenefiting the large community of
domain scientists using such technologies. Future workid®s creating heuristics to deal with
some common idiosyncrasies of real-world codes, strengigehe implementation by incorpo-

rating more sophisticated program analysis, targetingrdifpes of collective communication, and
evaluating the system’s performance on a variety of realdvoodes, which should inform future

work on extending the system’s generality.

References

[1] Randy Allen and Ken Kennedy. Automatic loop interchan§e&sPLAN Not., 39(4):75-90, 2004.

[2] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflingbr Padua, P. Petersen, W. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The Bexieration in Parallelizing Compilers. In
Seventh Workshop on Languages and Compilers for Parallel Computing, 1994.

[3] Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martingany. Transformations to Parallel Codes for
Communication-Computation Overlafupercomputing, 2005.

[4] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC Speation v. 1.1. ht t p: / / upc. gwu.
edu/ docunent ati on, 2003.

[5] Lewis Fishgold. An Automated Approach to Improve Comnoation-Computation Overlap in Clus-
ters. Senior Thesis. University of Delaware, 2005.

[6] High Performance Fortran Forum. High Performance Rorttanguage specification, version 1.0.
CRPC-TR92225, Rice University, Houston, TX, 1993.

[7] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. plmmoptimizations for Fortran D on
MIMD distributed-memory machines. Bupercomputing, pages 86—100, 1991.

[8] Amit Karwande, Xin Yuan, and David K. Lowenthal. CC-MPk Compiled Communication Capa-
ble MPI Prototype for Ethernet Switched Clusters. A@GM S GPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2003.

[9] C. Kessler and W. Paul. Automatic parallelization bytpat matching. IrProceeding of Second Int.
Conference of the Austrian Center for Parallel Computation, pages 166-181, 1993.

[10] MPI Forum. MPI. A message-passing interface standetdl. Technical report, University of Ten-
nessee, Knoxville, June 12, 1995.

[11] R. W. Numrich and J. K. Reid. Co-Array Fortran for paghlbrogramming. ACM Fortran Forum 17, 2,
1-31, 1998.

[12] Yunheung Paek, Jay Hoeflinger, and David Padua. Efti@ed precise array access analystCM
Trans. Program. Lang. Syst., 24(1):65-109, 2002.

[13] William Pugh. The omega test: a fast and practical iatggrogramming algorithm for dependence
analysis. IPACM/IEEE Conference on Supercomputing, pages 4—13. ACM Press, 1991.

[14] Georges-André Silber and Alain Darte. The Nestordigr A tool for implementing Fortran source to
source transformations. High Performance Computing and Networking (HPCN'99), volume 1593 of
Lecture Notes in Computer Science, pages 653—-662. Springer Verlag, April 1999.

[15] Michael Joseph WolfeHigh Performance Compilers for Paralledl Computing. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[16] X. Yuan, R. Melhem, and R. Gupta. Algorithms for Suppayt Compiled Communication.|EEE
Transactions on Parallel and Distributed Systems, 14(2):107-118, 2003.





