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Applications that execute on parallel clusters face scalability concerns due to the high communi-
cation overhead that is usually associated with such environments. Modern network technologies
that support Remote Direct Memory Access (RDMA) can offer true zero copy communication and
reduce communication overhead by overlapping it with computation. For this approach to be ef-
fective though, the parallel application using the clustermust be structured in a way that enables
communication computation overlapping. Unfortunately, the trade-off between maintainability and
performance often leads to a structure that prevents exploiting the potential for communication com-
putation overlapping. This paper describes a source-to-source optimizing transformation that can be
performed by an automatic (or semi-automatic) system in order to restructure MPI codes towards
maximizing communication-computation overlapping.

1. Introduction

Clusters of workstations are in common use among engineers and domain scientists due to their
high processing power to cost ratio. The major drawback of cluster-based parallel computing as
compared to shared memory multiprocessors is the network delay induced by the node intercon-
necting technology of clusters. Several interconnection technologies such as Myrinet, Quadrics and
Infiniband can improve cluster message-passing performance by providing specialized low latency,
high bandwidth networks for clusters. Such technology can theoretically reduce communication la-
tency by overlapping communication with computation through handling network traffic solely on a
network co-processor, freeing the CPU to perform useful computations.

Unfortunately, many existing scientific applications follow a modular structure where the com-
putation is separated from the communication. Although such an approach makes the code easier
to maintain and alter, it prevents communication-improving network technology from being fully
utilized.

To overcome the restrictions imposed by such overlap-naı̈ve code, a program can be transformed
so as to aggressively send data as soon as it is generated. In particular, the computationally ex-
pensive part of many scientific applications consists of a loop (commonly with multiple levels of
nesting) that executes some basic computation kernel. The suggested transformation aims to achieve
“pre-pushing” by performing the communication within the computation loop using non-blocking,
asynchronous I/O operations to transfer data elements among the parallel tasks as soon as it is safe.
To evaluate the potential of this transformation, Danalis et al. [3] transformed potentially benefit-
ing applications manually and experimented with the resulting variations to study the performance
gains. Their results show that near maximum communication-computation overlap can be achieved,
resulting in reduction of the communication overhead and significant performance improvement in
comparison to the original code, as shown in Figure 1.

Although the suggested pre-push transformation can be performed by an experienced programmer,
there are several reasons to build an automated system.
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Figure 1. Performance improvement achieved by “pre-pushing”

• Asynchronous communication can be error prone and difficultto program, particularly when
many processors and corresponding outstanding messages are involved creating a need for
explicit synchronization.

• The performance of the transformed code depends on several cluster and application related
parameters. These parameters have to be recomputed (or rediscovered through extensive pro-
filing) every time the code changes, or the cluster CPUs, memory, or network changes.

• The suggested transformations have a negative impact on themaintainability of the code and in
the case where low level communication primitives (eg., Myrinet’s GM) are used, portability
is also affected.

• Having an automated system perform the transformation opens the optimization to a wider
audience of applications such as legacy codes, and those whose programmers are unaware of
the details of the optimization.

Significant research has focused on optimizing communication latency in cluster environments
but none can handle explicitly parallel codes written usingMPI. Many compiler or language-based
techniques translate higher-level parallel constructs into message passing primitives as appropriate.
Examples of this include UPC [4], Co-Array Fortran [11], HPF[6], and Fortran-D [7]. While these
approaches allow programmers to write their code in SPMD style, they focus on parallel optimiza-
tion in the large, rather than focusing on optimization of messaging on a single host and do not
deliver the performance that can be achieved by carefully tuned, manually parallelized applications.
Systems such as Polaris [2] and PARAMAT [9] perform source-to-source transformations to achieve
parallelization of serial programs that are written inFortran 77 or C without any special annotation.
Nevertheless, these systems do not accept input code already parallelized with the use of MPI, but
rather expect code written as a serial program. Projects such as CC-MPI [8] attempt to extend the
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standard MPI in order to provide support for thecompiled communication model [16]. In this way,
communications that lend themselves to static analysis canbe separated from those which do not,
and optimizations can be performed as appropriate. The maindifference between our project and
the alternative solutions is that we aim to offer a complete system able to automatically (or semi-
automatically) restructure parallel applications, explicitly parallelized with the use of MPI, in order
to minimize their communication overhead by performing communication-computation overlapping.

2. Communication-Computation Overlapping Transformation

The modular structure of many scientific codes, in which somedata is computed, stored in an ar-
ray, and then sent over the network, leaves no opportunity for communication-computation overlap.
Often, as soon as the data is ready to be sent, it needs to be used (by the receivers). We propose a
transformation for such codes so that the data is pre-pushed, or sent as it is generated, before it is
needed.

To achieve such an early transfer model, the computation loop is restructured into blocks, or tiles,
in which each tile executes only part of the iteration space and therefore performs only part of the
original computation. Consequently, each tile generates only a subregion of the original array and
depending on the data dependencies of the loop, it could be the case that at the end of the tile
execution, the generated array subregion is not altered by future iterations (i.e., consecutive tiles).
In addition, asynchronous send and receive operations are inserted at the end of each tile so that
the transfer of the array subregion generated by the corresponding tile is initiated. This transfer is
completed by the network co-processor, while the CPU continues computing the next tile of the
array. In order for such a transformation to preserve the correctness of the original code, the subject
application needs to first be analyzed. In general, to restructure code to pre-push the results of its
computation, we must first determine the following information:

• the communication operations in the original code and the corresponding computation loop(s)
that write(s) to the array being sent

• the pairs of matching send and receive operation(s), since both the send and the receive must
be transformed in concert

• the earliest execution point where it is safe to receive pre-pushed data (This is important in
cases where the receiver uses the receive array prior to the part of the code we are trying to
transform. In such a case, it is only safe to transfer the dataafter the latest point of such use.)

The last two are difficult to determine and in some cases they can be statically undecidable. There-
fore, our transformation effort focuses on cases that reveal more information about the communi-
cation and do not exhibit such undecidability. Such information is statically known in the case of
collective communication operations such asMPI ALLTOALL. In such operations, both sending and
receiving is implemented internally and the function call appears as an atomic, or indivisible, oper-
ation at the level of the application. In addition, the semantics ofMPI ALLTOALL require that all
participating nodes have to call it. Therefore, we do not need to match statically the senders to the
receivers; we know that all nodes exchange data, and they do so in a predetermined pattern. Regard-
ing the computation, our current analysis focuses on computation loops where every node executes
the same code. In other words, there can be no branches (i.e.,if statements) in the code that stores
data into the array that is being exchanged. Many scientific codes contain frequently executed sec-
tions consisting of a multiply-nested loop in which the inner loops execute some computation kernel
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integer As(1:NX)
integer Ar(1:NX)
...
do iy=1, NX !outer loop

do ix=1, NX !inner computation loop
...
As(ix) = ... !RHS is not array ref.

enddo
!sends As and receives into Ar

call collective-comm(As,Ar)
enddo

(a) Before

integer As(1:NX)
integer Ar(1:NX)
...
do iy=1, NX !outer loop

do ix=1, NX !inner computation loop nest
As(ix) = ...
!wait for comm of prev. tile to complete
if(ix mod K == 0) then

to=...
size=K
call async-send(As(. . .),size,to,...)
call async-recv(Ar(. . .),size,from,...)

endif
enddo

enddo

(b) After

Figure 2.Abstract target code segment before and after transformation

and store the results in an array which is then exchanged using MPI ALLTOALL at the end of each
iteration of the outer loop (see Figure 2(a)). This communication-computation pattern is the domain
on which our current transformation is focused. Sorting, LUFactorization, Finite differences, and
multi-dimensional FFT constitute examples of algorithms that could fit this abstract form, and can
be transformed to exploit pre-pushing.

To demonstrate the result of the transformation, Figure 2 shows an abstract target code before
and after being transformed. The tiling of the computation loop nest is controlled by the parameter
K which sets the number of iterations of the tile loop per tile.Determining the optimal tile size
is not a trivial task, and is best performed by an automated system, since the value may change as
applications migrate across platforms. However, finding the optimal value for K is beyond the scope
of this paper. A discussion about the issues related to the performance critical parameters can be
found in [3].

3. Automated Transformation Technique

3.1. Opportunities for Transformation
The first step toward modifying the code is identifying opportunities for transformation. To do so,

the following information needs to be collected:

• C, a call toMPI ALLTOALL.

• As, the array sent byC, which is the first argument toC.

• Ar, the array received byC, which is the fourth argument toC.

• ℓ, the loop nest executed by all nodes, which finalizes all elements inAs beforeC is called.ℓ
is the last loop nest not in a conditional statement, lexically precedingC, that mutatesAs. As

can be mutated directly by assignment, or indirectly by passing As by reference to a called
procedure. In the former case, if the source code for the procedure is unavailable, it cannot be
guaranteed thatAs is written. To resolve this uncertainty, the user must be queried (making
the system semi-automatic), but ifℓ is the only loop precedingC, then it is a conservative
assumption to considerℓ to be a mutator.
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3.2. Compute-Copy Pattern
For each transformation opportunity, we determine the pattern by which values are computed and

copied intoAs. We currently consider two cases:

direct As is the LHS of an assignment statement where the RHS is not an array reference, as seen
in Figure 2. Section 3.3 describes how to analyze codes fitting this pattern.

indirect In this case, the contents ofAs are computed indirectly in the sense that they are first
computed in a procedure,P, which stores them in a temporary array, and are then copied to
As afterwards. As in Figure 3(a),As appears on the LHS of an assignment where the RHS
contains a reference to a different array,At. Each call computes a portion of the final results
and writes them toAt which is passed by reference. After the call toP, the contents ofAt

are copied toAs in a copy loop,ℓcp. The purpose of this pattern is to aggregate the partial
results computed by each call toP so that they can be sent together at the end ofℓ. The goal
of Section 3.4 is to removeℓcp, and directly send the contents ofAt, as this avoids the copy
and is thus more efficient.

3.3. Handling the Direct Pattern
If As is written directly, we first determine which parts of the send array,As, can be safely sent

at a given point in the iteration space ofℓ. If an array reference,A2, overwrites elements previously
written by another array reference,A1, then those elements are unsafe to send betweenA1 andA2.
Using array dependence analysis to find output dependences [15], we determine whether the element
referenced by a given array reference is safe to send after that reference is reached during execution.
A safe array reference, denotedAf

s , is one with no output dependences on it and represents the latest
element to be finalized.

We could transform the program so that elements referenced by Af
s are sent one at a time, as

each is computed. Although correct, it is desirable for reasons of efficiency to aggregate these
single element sends into fewer, larger send operations.Array access analysis [12] can enable this
aggregation, by determining the region ofAs written during a single tile. To simplify our prototype
implementation, we use the simplest, most course-grained access representation, known as a partial
triplet, which contains the symbolic upper and lower bound of an index expression,ik, denoted
asu(ik) and l(ik) respectively. This analysis determines the size, denotedsize, of the blocks of
contiguously accessed array elements, orblocks, written during the runtime ofK iterations ofℓ, and
the offsets of the blocks, denotedoffsets.

Using the results from this analysis, a communication loop nest can be generated to iterate through
all o ∈ offsets in order to initiate the appropriate asynchronous communication calls to transmit
the generatedblocks. Note that if the array access pattern is regular, all the data might be in just one
continuous block. This is the optimal case, as the transfer of the data can be performed with a single
transfer, achieving minimal overhead and high bandwidth.

3.4. Handling the Indirect Pattern
In the case thatAs is written indirectly, as in Figure 3, a copy loop,ℓcp, aggregates temporary

results intoAs, which will be sent once all computation has concluded. Since we want to send
results as they are generated in order to overlap communication with computation, this aggregation
is unnecessary. Therefore, we can directly send the contents of At, which can reduce runtime by
eliminating the time taken to copyAt to As. The flow of data fromAs to Ar can be represented as

At

copy−→ As
send−→ Ar. By transitivity, we can eliminate the copy and still complete the same operation

by the equivalentAt
send−→ Ar.
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integer As(1:10,1:10,1:10)
integer At(1:100)
do iy = 1, 10 !loop nest ℓ

call P(..., At)
do ix = 1, 100 !ℓcp

tx = ix % 10
ty = ix/10
As(tx,ty,iy) = At(ix)

enddo
enddo

(a) Before

integer As(1:10,1:10,1:10)
integer At(1:100)
do iy = 1, 10 !loop nest ℓ

call P(..., At)
call async-send(At(. . .),...)
call async-recv(Ar(. . .),...)
enddo

enddo

(b) After

Figure 3.Abstract indirect pattern code segment before and after removing the redundant copy

To determine the region ofAt that has been finalized during a tile, we cannot directly analyze the
loop that wrote toAt since it is inside a procedure with source code that is unavailable. Therefore,
we have to infer the access pattern ofAt indirectly by analyzingℓcp. It is reasonable to assume that
the region ofAt accessed when being copied toAs is the one that is finalized by one call to the
procedure. In addition, ifℓcp is executed more than once per tile, which is usually the case, we need
to aggregate the temporary results, but not to the degree that they were originally aggregated. To
achieve this, we expand the capacity ofAt by adding an extra dimension, and modify the reference
to At that is passed to the procedure accordingly. Finally, the resulting communication code must
preserve the original mapping fromAt to As that was induced byℓcp. In other words, the blocks of
At must be sent toAr, in the same order that blocks ofAt were copied to blocks ofAs. Further
details for removing the redundant copy are beyond the scopeof this paper, but can be found in [5].

3.5. Communication
In this paper, we focus on transforming communication usingMPI ALLTOALL [10], which di-

vides arrays intoNP partitions along the last dimension, each corresponding toa different node.
To preserve the semantics and efficiency ofMPI ALLTOALL, we must ensure that data is written
for each of the nodes to receive during every tile. We can guarantee that the entirety of the last
dimension is traversed if the loop inducing the traversal ofthe last dimension, thenode loop, is not
the outer loop, in which iterations are being split into tiles. If the node loop is the outer loop, we
could use loop interchange [1] to exchange the outermost loop with one of the inner loops. If data
dependences do not allow us to perform the interchange, the semantics ofMPI ALLTOALL can still
be preserved by having all the nodes send to a subset of the nodes during each tile, but this is not
as efficient as network congestion may ensue if all of the nodes are competing to communicate with
one or a few nodes. The method for generating communication code in this case is given in [5]. In
Figure 4, we show the replacement communication code that preserves the semantics and efficiency
of MPI ALLTOALL when the node loop is outermost.

3.6. Transforming the Program
After the previous stages of analysis are performed, we transform the program according to the

following steps:

1. Insert the communication code shown in Figure 4 at the end of the body ofℓ.
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integer As(...,SZ)
...
do j = 1,NP-1

to = mod(mynum+j,NP)
call mpi isend(As(...,(to-1)*(NP/SZ)),...)
from = mod(NP+mynum-j,NP)
call mpi irecv(Ar(...,(from-1)*(NP/SZ)),...)

enddo

Figure 4. Communication Code

2. Insert a blocking call to wait for all outstanding receives from the previous tile to complete,
before the code inserted in step 1.

3. Insert code afterℓ, to exchange any leftover elements not sent by the last tile,which result
from K unevenly dividing the number of iterations ofℓ (i.e.,ℓ mod K ).

4. Insert code, afterℓ and beforeC to wait for the arrival of the last blocks of data after the end
of ℓ.

5. RemoveC, the original communication.

4. Implementation and Evaluation

The automated approach presented in the last section was implemented as a Fortran 90 source-
to-source code transformer, called the Compuniformer, using the Nestor program transformation
framework [14]. Using a source-to-source transformer, we decouple our transformation from the
specifics of any particular compiler designed for a particular architecture, allowing our optimization
to be complemented with traditional compiler optimizations. Nestor is a lightweight framework
for implementing transformations to Fortran 90 code, providing a parser, a transformable IR, and
unparser. Nestor also includes a data dependence analysis tool which uses Petit and the Omega
Test [13]. At this time, some portions of the implementationare semi-automatic, in that they require
some user input, due to limitations in the built-in analysistools; future work will develop these
capabilities more fully.

We have performed a preliminary evaluation of our prototypeaimed at testing the correctness and
performance of the transformation. The evaluation allows us to not only verify the correctness of the
implementation, but also the techniques that underly it. Wewrote a test program which is simple,
yet tests many of the features of the transformation process. The test code exhibits the indirect
computation pattern, which complicates the transformation since we remove the redundant copy
loop. The test code as transformed by our system compiles andexecutes, producing output identical
to that of the original, suggesting the correctness of our technique and implementation.

5. Conclusions and Future Work

In this paper, we presented novel techniques to automate thetransformation of explicitly parallel
codes to maximize communication-computation overlap. Thebroader impact of this work is the
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performance improvement of parallel MPI codes on networkedclusters, enabling more scalable ap-
plication of the parallel codes to larger numbers of processors, benefiting the large community of
domain scientists using such technologies. Future work includes creating heuristics to deal with
some common idiosyncrasies of real-world codes, strengthening the implementation by incorpo-
rating more sophisticated program analysis, targeting other types of collective communication, and
evaluating the system’s performance on a variety of real-world codes, which should inform future
work on extending the system’s generality.
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