
John von Neumann Institute for Computing

Parallelization of the C++ Navier-Stokes Solver
DROPS with OpenMP

C. Terboven, A. Spiegel, D. an Mey, S. Gross, V. Reichelt

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 431-438, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Parallelization of the C++ Navier-Stokes Solver DROPS with OpenMP

Christian Terbovena, Alexander Spiegela, Dieter an Meya, Sven Grossb, Volker Reicheltb

aCenter for Computing and Communication, RWTH Aachen University, 52074 Aachen, Germany

bInstitut für Geometrie und Praktische Mathematik, RWTH Aachen University, 52056 Aachen,
Germany

1. Introduction

The Navier-Stokes solver DROPS [1] is developed at the IGPM (Institut für Geometrie und Prak-
tische Mathematik) at the RWTH Aachen University, as part of an interdisciplinary project (SFB
540: Model-based Experimental Analysis of Kinetic Phenomena in Fluid Multi-phase Reactive Sys-
tems [2]) where complicated flow phenomena are investigated. The object-oriented programming
paradigm offers a high flexibility and elegance of the program code, facilitating development and
investigation of numerical algorithms. Template programming techniques and the C++ Standard
Template Library (STL) are heavily used.

In cooperation with the Center for Computing and Communication of the RWTH Aachen Univer-
sity a detailed runtime analysis of the code has been carried out and the computationally dominant
program parts have been tuned and parallelized with OpenMP.

The UltraSPARC IV- and Opteron-based Sun Fire SMP-Clusters have been the prime target plat-
forms, but other architectures have been investigated, too. It turned out that the sophisticated usage
of template programming in combination with OpenMP is quite demanding for many C++ compil-
ers. We observed a high variation in performance and many compiler failures.

In chapter 2 the DROPS package is described briefly. In chapter 3 we take a look at the perfor-
mance of the original and the tuned serial code versions. In chapter 4 we describe the OpenMP
parallelization and its performance. Chapter 5 contains a summary of our findings.

2. The DROPS multi-phase Navier-Stokes solver

The aim of the ongoing development of the DROPS software package is to build an efficient
software tool for the numerical simulation of three-dimensional incompressible multi-phase flows.
More specifically, we want to support the modeling of complex physical phenomena like the behav-
ior of the phase interface of liquid drops, mass transfer between drops and a surrounding fluid, or
the coupling of fluid dynamics with heat transport in a laminar falling film by numerical simula-
tion. Although quite a few packages in the field of CFD already exist, a black-box solver for such
complicated flow problems is not yet available.

From the scientific computing point of view it is of interest to develop a code that combines
the efficiency and robustness of modern numerical techniques, such as adaptive grids and iterative
solvers, with the flexibility required for the modeling of complex physical phenomena.

For the simulation of two-phase flows we implemented a levelset technique for capturing the
phase interface. The advantage of this method is that it mainly adds a scalar PDE to the Navier-
Stokes system and therefore fits nicely into the CFD framework. But still, the coupling of the phase
interface with the Navier-Stokes equations adds one layer of complexity.

Several layers of nesting in the solvers induced by the structure of the mathematical models re-
quire fast inner-most solvers as well as fast discretization methods since many linear systems have

431



2

to be regenerated in each time step. Apart from the numerical building blocks, software engineering
aspects such as the choice of suitable data structures, in order to decouple the grid generation and
finite element discretization (using a grid based data handling) as much as possible from the itera-
tive solution methods (which use a sparse matrix format), are of main importance for performance
reasons.

3. Portability and Performance of the Serial Program Version

3.1. Platforms
The main development platform of the IGPM is a standard PC running Linux using the popu-

lar GNU C++ compiler [3]. Because this compiler does not support OpenMP, we had to look for
adequate C++ compilers supporting OpenMP on our target platforms. Table 1 lists compilers and
machines which we considered for our tuning and parallelization efforts. It also introduces abbre-
viations for each hardware-compiler-combination, which will be referred to as ”platforms” in the
remainder of the paper.

The programming techniques employed in the DROPS package (Templates, STL) caused quite
some portability problems due to lacking standard conformance of the compilers, therefore the code
had to be patched for most compilers. Unfortunately not all of the available OpenMP-aware compil-
ers were able to successfully compile the final OpenMP code version.

From the early experiences gathered by benchmarking the original serial program and because of
the good availability of the corresponding hardware, we concentrated on the OPT+icc and USIV+guide
platforms for the development of the OpenMP version and recently on OPT+ss10 and USIV+ss10.

3.2. Runtime profile
The runtime analysis (USIV+guide) shows that assembling the stiffness matrices (SETUP) costs

about 52% of the total runtime, whereas the PCG-method including the sparse-matrix-vector-mul-
tiplication costs about 21% and the GMRES-method about 23%. Together with the utility routine
LINCOMB these parts of the code account for 99% of the total runtime. All these parts have been
considered for tuning and for parallelization with OpenMP.

It must be pointed out that the runtime profile heavily depends on the number of mesh refinements
and on the current timesteps. In the beginning of a program run the PCG-algorithm and the matrix-
vector-multiplication take about 65% of the runtime, but because the number of iterations for the
solution of the linear equation systems shrinks over time, the assembly of the stiffness matrices is
getting more and more dominant. Therefore we restarted the program after 100 time steps and let it
run for 10 time steps with 2 grid refinements for our comparisons.

3.3. Data Structures
In the DROPS package the Finite Element Method is implemented. This includes repeatedly

setting up the stiffness matrices and then solving linear equation systems with PCG- and GMRES-
methods.

Since the matrices arising from the discretization are sparse, an appropriate matrix storage format,
the CRS (compressed row storage) format is used, in which only nonzero entries are stored. It
contains an arrayval - which will be referred to later - for the values of the nonzero entries and two
auxiliary integer arrays that define the position of the entries within the matrix. The data structure
is mainly a wrapper class around avalarray<double> object, a container of the C++ Standard
Template Library (STL).

Unfortunately, the nice computational and storage properties of the CRS format are not for free. A

432



3

machine platform compiler runtime[s] runtime[s] OpenMP
original tuned support

Standard PC: XEON+gcc333 GNU C++ V3.3.3[3] 3694.9 1844.3 no
2x Intel Xeon XEON+gcc343 GNU C++ V3.4.3 2283.3 1780.7 no
2.66 GHz XEON+icc81 Intel C++ V8.1[4] 2643.3 1722.9 yes
Hyper-Threading XEON+pgi60 PGI C++ V6.0-1 8680.1 5080.2 yes
Sun Fire V40z: OPT+gcc333 GNU C++ V3.3.3 2923.3 1580.3 no
4x AMD Opteron OPT+gcc333X GNU C++ V3.3.3 2167.8 1519.5 no
2.2 GHz 64bit

OPT+icc81 Intel C++ V8.1 2404.0 1767.1 yes
OPT+icc81X Intel C++ V8.1 2183.4 1394.0 fails

64bit
OPT+pgi60 PGI C++ V6.0-1[5] 6741.7 5372.9 yes

OPT+pgi60X PGI C++ V6.0-1 4755.1 3688.4 yes
64bit

OPT+path20 PathScale 2819.3 1673.1 fails
EKOpath 2.0[6]

OPT+path20X PathScale 2634.5 1512.3 fails
EKOpath 2.0, 64bit

OPT+ss10 Sun Studio C++ 3613.1 2431.0 yes
V10 update1[7]

Sun Fire E2900: USIV+gcc331 GNU C++ V3.3.1 9782.4 7845.4 no
12x UltraSPARC IV USIV+ss10 Sun Studio C++ 7673.7 4958.7 yes
1.2 GHz (dual core) V10 update1

USIV+guide Intel-KSL 7551.0 5335.0 yes
Guidec++ V4.0[8]

IBM p690: POW4+guide Intel-KSL 5535.1 2790.3 yes
16x Power4 Guidec++ V4.0
1.7 GHz (dual core) POW4+gcc343 GNU C++ V3.4.3 3604.0 2157.8 no
SGI Altix 3700: IT2+icc81 Intel C++ V8.1 9479.0 5182.8 fails
128x Itanium2
1.3 GHz

Table 1
Compilers and machines, runtime of original and tuned serial versions, OpenMP support.
Linux is running on all platforms, except for OPT+ss10, USIV+* (Solaris 10) and POW4+* (AIX).

disadvantage of this format is that insertion of a non-zero element into the matrix is rather expensive.
Since this is unacceptable when building the matrix during the discretization step, a sparse matrix
builder class has been designed with an intermediate storage format based on STL’smapcontainer
that offers write access in logarithmic time for each element. After the assembly, the matrix is
converted into the CRS format in the original program version.

3.4. Serial Tuning Measures
On the Opteron systems the PCG-algorithm including a sparse-matrix-vector-multiplication and

the preconditioner profit from manual prefetching. The performance gain of the matrix-vector-

433



4

multiplication is 44% on average, and the speedup of the preconditioner is 19% on average, de-
pending on the addressing mode (64bit mode profits slightly more than 32bit mode).

As the setup of the stiffness matrix turned out to be quite expensive, we reduced the usage of the
map datatype. As long as the structure of the matrix does not change, we reuse the index vectors
and only fill the matrix with new data values. This leads to a performance plus of 50% on the
USIV+guide platform and about 58% on the OPT+icc platform. All other platforms benefit from
this tuning measure as well.

Table 1 lists the results of performance measurements of the original serial version and the tuned
serial version. Note that on the Opteron the 64bit addressing mode typically outperforms the 32bit
mode, because in 64bit mode the Opteron offers more hardware registers and provides an ABI which
allows for passing function parameters using these hardware registers. This outweights the fact that
64bit addresses take more cache space.

4. The OpenMP Approach

4.1. Assembly of the Stiffness Matrices
The routines for the assembly of the stiffness matrices typically contain loops like the following:

for (MultiGridCL::const_TriangTetraIteratorCL
sit=_MG.GetTriangTetraBegin(lvl),
send=_MG.GetTriangTetraEnd(lvl);
sit != send; ++sit)

Such a loop construct cannot be parallelized with afor -worksharing construct in OpenMP, because
the loop iteration variable is not of type integer. We considered three ways to parallelize these loops:

• Thefor -loop is placed in a parallel region and the loop-body is placed in asingle -worksharing
construct whose implicit barrier is omitted by specifying thenowait -directive. The problem
with this approach is that the overhead at the entry of thesingle -region limits the possible
speedup.

• Intel’s compilers and the guidec++ compiler offer the task-queuing construct as an extension
to the OpenMP standard. For each value of the loop iteration variable the loop-body is en-
queued in a work-queue by one thread and then dequeued and processed by all threads. The
number of loop iterations is rather high in relation to the work in the loop body, so again the
administrative overhead limits the speedup. We proposed an extension of the task-queuing
construct implemented by Intel for the upcoming OpenMP standard version 3 for which a
schedule clause with a chunksize can be specified.

• The pointers of the iterators are stored in an array in an additional loop, so that afterwards a
simpler loop running over the elements of this array can be parallelized with afor -worksharing
construct. We found this approach to be the most efficient giving the highest speedup.

Reducing the usage of themap STL datatype during the stiffness matrix setup as described in
chapter 3 turned out to cause additional complexity and memory requirements in the parallel version.
In the parallel version each thread fills a private temporary container consisting of one map per matrix
row. The structure of the complete stiffness matrix has to be determined, which can be parallelized
over the matrix rows. The master thread then allocates thevalarray STL objects. Finally, the
matrix rows are summed up in parallel.

434



5

If the structure of the stiffness matrix does not change, each thread fills a private temporary con-
tainer consisting of onevalarray of the same size as the arrayval of the final matrix.

This causes massive scalability problems for the guidec++-compiler. Its STL library obviously
uses critical regions to be threadsafe. Furthermore the guidec++ employs an additional allocator
for small objects which adds more overhead because of internal synchronization. Therefore we
implemented a special allocator and linked to the Sun-specific memory allocation librarymtmalloc
which is tuned for multithreaded applications to overcome this problem.

Thus, the matrix assembly could be completely parallelized, but the scalability is limited, because
the overhead increases with the number of threads used (see table 2). The parallel algorithm executed
with only one thread performs worse than the tuned serial version on most platforms, because the
parallel algorithm contains the additional summation step as described above. On the USIV+guide
platform it scales well up to about eight threads, but then the overhead which is caused by a growing
number of dynamic memory allocations and memory copy operations increases. Therefore we lim-
ited the number of threads used for the SETUP routines to a maximum of eight in order to prevent
a performance decrease for a higher thread count. On the USIV+ss10 and POW4+guide platforms
there is still some speedup with more threads. Table 2 shows the runtime of the matrix setup routines.
Note, that on the XEON-icc81 platform Hyper-Threading is profitable for the matrix setup.

code serial serial parallel
original tuned 1 2 4 8 16

XEON+icc81 1592 816 1106 733 577 n.a. n.a.
OPT+icc81 1363 793 886 486 282 n.a. n.a.
OPT+ss10 2759 1154 1233 714 428 n.a. n.a.

USIV+guide 4512 2246 2389 1308 745 450 460
USIV+ss10 4564 1924 2048 1435 796 460 314

POW4+guide 4983 2236 2176 1326 774 390 185
Table 2
C++ + OpenMP: matrix setup, runtime [s]

4.2. The Linear Equation Solvers
In order to parallelize the PCG- and GMRES-methods, matrix and vector operations, which be-

forehand had been implemented using operator overloading, had to be rewritten with C-stylefor
loops directly accessing the structure elements. Thereby some synchronizations could be avoided
and some parallelizedfor -loops could be merged.

The parallelized linear equation solvers including the sparse-matrix-vector-multiplication scale
quite well, except for the intrinsic sequential structure of the Gauss-Seidel preconditioner which
can only be partially parallelized. Rearranging the operations in a blocking scheme improves the
scalability (omp block ) but still introduces additional organization and synchronization overhead.

A modified parallelizable preconditioner (jac0 ) was implemented which affects the numerical
behavior. It leads to an increase in iterations to fulfill the convergence criterium. Nevertheless it
leads to an overall improvement with four or more threads.

The straight-forward parallelization of the sparse matrix vector multiplication turned out to have a
load imbalance. Obviously the nonzero elements are not equally distributed over the rows. The load
balancing could be easily improved by setting the loop scheduling toSCHEDULE(STATIC,128) .

435



6

The linear equation solvers put quite some pressure on the memory system. This clearly reveals
the memory bandwidth bottleneck of the dual processor Intel-based machines (XEON+icc). The
ccNUMA-architecture of the Opteron-based machines (OPT+icc) exhibits a high memory bandwidth
if the data is properly allocated. But it turns out that the OpenMP version of DROPS suffers from
the fact that most of the data is allocated in the master thread’s memory because of the usage of the
STL datatypes.

As an experiment we implemented a C++ version of the stream benchmark using the STL datatype
valarray on one hand and simple C-style arrays on the other hand. These arrays are allocated
with malloc and initialized in a parallel region. Table 3 lists the memory bandwidth in GB/s for
one of the kernel loops (saxpying) and a varying number of threads. It is obvious that the memory
bandwidth does not scale whenvalarrays are used. The master thread allocates and initializes
(after construction avalarray has to be filled with zeros by default) a contiguous memory range
for thevalarray and because of the first touch memory allocation policy, all memory pages are
put close to the master thread’s processor. Later on, all other threads have to access the master
thread’s memory in parallel regions thus causing a severe bottleneck.

The Linux operating system currently does not allow an explicit or automatic data migration. The
Solaris operating system offers the Memory Placement Optimization feature (MPO), which can be
used for an explicit data migration. In our experiment we measured the kernels usingvalarrays
after the data has been migrated by a ”next-touch” mechanism using themadviseruntime func-
tion, which clearly improves parallel performance (see table 3). This little test demonstrates how
sensitive the Opteron architecture reacts to disadvantageous memory allocation and how a ”next-
touch” mechanism can be employed beneficially. We proposed a corresponding enhancement of the
OpenMP specification in the upcoming Version 3.0. On the USIV+guide, USIV+ss10 and OPT+ss10
platforms we were able to exploit the MPO feature of Solaris to improve the performance of DROPS.

Stream Data Initialization 1 2 3 4
kernel structure method Thread Threads Threads Threads

saxpying valarray implicit 2.11 2.16 2.15 2.03
valarray implicit+madvise 2.10 4.18 6.20 8.20
C-array explicit parallel 2.15 4.26 6.30 8.34

Table 3
Stream benchmark, C++ (valarray) vs. C, memory bandwidth in GB/s on OPT+ss10

On the whole the linear equation solvers scale reasonably well, given that frequent synchroniza-
tions in the CG-type linear equation solvers are inevitable. The modified preconditioner takes more
time than the original recursive algorithm for few threads, but it pays off for at least four threads.
Table 4 shows the runtime of the solvers.

4.3. Total Performance
Table 5 shows the total runtime of the DROPS code on all platforms for which a parallel OpenMP

version could be built. Please note that we didn’t have exclusive access to the POW4 platform. Table
6 shows the resulting total speedup.

436



7

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 1 2 4 8

XEON+icc81 939 894 746 593 780 n.a. 837 750 975 n.a.
OPT+icc81 901 835 783 541 465 n.a. 668 490 415 n.a.
OPT+ss10 731 673 n.a. n.a. n.a. n.a. 596 375 278 n.a.

USIV+guide 2682 2727 2702 1553 1091 957 1563 902 524 320
USIV+ss10 2714 2652 2870 1633 982 816 2555 1314 659 347

POW4+guide 440 441 589 315 234 159 572 331 183 113
Table 4
C++ + OpenMP: linear equation solvers, runtime [s]

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 1 2 4 8 16

XEON+icc81 2643 1723 2001 1374 1353 n.a. 2022 1511 1539 n.a. n.a.
OPT+icc81 2404 1767 1856 1233 952 n.a. 1738 1162 891 n.a. n.a.
OPT+ss10 3613 2431 n.a. n.a. n.a. n.a. 1973 1234 856 n.a. n.a.

USIV+guide 7551 5335 5598 3374 2319 18904389 2659 1746 1229 1134
USIV+ss10 7674 4959 5422 3573 2255 17365056 3214 1894 1250 956

POW4+guide 5535 2790 3017 1752 1153 655 2885 1084 1099 641 482
Table 5
C++ + OpenMP: total runtime, runtime [s]

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 1 2 4 8 16

XEON+icc81 1.00 1.53 1.32 1.92 1.95 n.a. 1.31 1.75 1.72 n.a. n.a.
OPT+icc81 1.00 1.36 1.30 1.95 2.53 n.a. 1.38 2.07 2.70 n.a. n.a.
OPT+ss10 1.00 1.49 n.a. n.a. n.a. n.a. 1.83 2.93 4.22 n.a. n.a.

USIV+guide 1.00 1.42 1.35 2.24 3.26 3.99 1.72 2.84 4.32 6.14 6.66
USIV+ss10 1.00 1.55 1.42 2.15 3.40 4.42 1.52 2.39 4.05 6.14 8.03

POW4+guide 1.00 1.98 1.83 3.16 4.80 9.73 1.92 3.07 5.04 8.63 11.48
Table 6
C++ + OpenMP: speed-up

5. Summary

The compute intense program parts of the DROPS Navier-Stokes solver have been tuned and
parallelized with OpenMP. The heavy usage of templates in this C++ program package is a challenge
for many compilers. As not all C++ compilers support OpenMP, and some of those which do, fail
for the parallel version of DROPS, the number of suitable platforms turned out to be limited.

We ended up with using the guidec++ compiler from KAI (which is now part of Intel) and the Sun
Studio 10 compilers on our UltraSPARC IV-based and Opteron-based Sun Fire servers and the Intel
compiler in 32 bit mode on our Opteron-based Linux cluster.

The strategy which we used for the parallelization of the Finite Element Method implemented

437



8

in DROPS was straight forward. Nevertheless the obstacles which we encountered were manifold,
many of them are not new to OpenMP programmers.

OpenMP programs running on big server machines operating in multi-user mode suffer from a
high variation in runtime. Thus it is hard to see clear trends concerning speed-up. Exclusive access
to the UltraSPARC IV-, Opteron- and Xeon-based systems helped a lot. On the 4-way Opteron
systems thetasksetLinux command was helpful to get rid of negative process scheduling effects.

We obtained the best absolute performance and the best parallelization speed-up on the POW4+guide
platform, using a compiler which is no longer available. The best OpenMP version runs 11.5 times
faster with 16 threads than the original serial version on the same platform (POW4+guide). But as
we improved the serial version during the tuning and parallelization process, the speed-up compared
to the tuned serial version is only 5.8.

On the OPT+ss10 platform, the best OpenMP version runs 4.2 faster than the original serial ver-
sion and 2.8 faster than the tuned serial version with four threads.

An Opteron processor outperforms a single UltraSPARC IV processor core by about a factor of
four. As Opteron processors are not available in large shared memory machines and scalability levels
off with more than sixteen threads, shorter elapsed times are currently not attainable.

Acknowledgements
The authors would like to thank Uwe Mordhorst at University of Kiel and Bernd Mohr at Research
Center J̈ulich for granting access to and supporting the usage of their machines, an SGI Altix 3700
and an IBM p690, respectively.

References

[1] Sven Gross, J̈org Peters, Volker Reichelt, Arnold Reusken: The DROPS package for numerical simula-
tions of incompressible flows using parallel adaptive multigrid techniques.
ftp://ftp.igpm.rwth-aachen.de/pub/reports/pdf/IGPM211N.pdf

[2] Arnold Reusken, Volker Reichelt: Multigrid Methods for the Numerical Simulation of Reactive Multi-
phase Fluid Flow Models (DROPS).
http://www.sfb540.rwth-aachen.de/Projects/tpb4.php

[3] GNU Compiler documentation: http://gcc.gnu.org/onlinedocs/
[4] Intel C/C++ Compiler documentation:

http://support.intel.com/support/performancetools/c/linux/manual.htm
[5] PGI-Compiler documentation:

http://www.pgroup.com/resources/docs.htm
[6] Pathscale-Compiler: http://www.pathscale.com
[7] Sun Studio 10:

http://developers.sun.com/prodtech/cc/documentation/ss10docs/
[8] Guide-Compiler of the KAP Pro/Toolset:

http://developer.intel.com/software/products/kappro/

438




