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NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 383-390, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Parallel Simulation of Tsunamis Using a Hybrid Software Approach

X. Caiab, G. K. Pedersenc, H. P. Langtangenab, S. Glimsdalab

aSimula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway

bDepartment of Informatics, University of Oslo, P.O. Box 1080, Blindern, N-0316 Oslo, Norway
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Simulation of tsunamis in large ocean domains, such as the Indian Ocean, presents a huge com-
putational and software challenge, which the traditional parallel software alone can not meet. To
effectively use the computational resources, we should allow different mathematical models, dif-
ferent numerical methods, and different mesh types/resolutions in different areas of the vast ocean
domain. This ensures that complex mathematical models and high mesh resolution are only used
where necessary. Such a parallel hybrid tsunami simulator calls for a very flexible software approach
that can mix different models, methods and meshes, maybe even incorporate “alien software”. This
paper thus explains how this can be achieved by combining overlapping domain decomposition and
object-oriented programming. Some preliminary simulation results of the Indian Ocean Tsunami
are also provided to demonstrate the applicability of the proposed software approach.

1. Introduction

The tragic event of the Indian Ocean Tsunami on December 26, 2004 has once again grimly
reminded us about the importance of tsunami modeling and simulation. This challenging research
field spans a wide spectrum and involves many interplayed topics, such as earthquake modeling,
ocean wave propagation and coastal modeling. The main focus of the present paper is to investigate
how to effectively simulate the propagation of tsunami over a vast ocean. Although the topic of water
wave propagation has been subject to extensive research, the particular case of simulating the Indian
Ocean Tsunami presents a new challenge because of the huge size of the computations. Moreover,
many complex features need to be considered in ocean wave propagation, such as the locally rapidly
changing bathymetry, dispersion, nonlinear effects, and complicatedly shaped coastlines.

To obtain a balance between numerical accuracy and computational efficiency, we should only ap-
ply advanced numerical techniques and high mesh resolutions to small areas where necessary, while
resorting to simpler numerical techniques and coarser meshes in the remaining areas. In terms of
mathematical models, this means a choice between the most widely used linear wave equations and
the more complex Boussinesq wave equations, which involve both weak dispersion and nonlinear
effects. Perhaps also the Navier-Stokes equations may sometimes be used in certain small areas. In
terms of numerics, there is a choice between finite differences, finite volumes, and finite elements.
The finite difference method (FDM) results in the fastest computations, at least on a uniform mesh
of rectangular shape. The finite volume method (FVM) or the finite element method (FEM), on
the other hand, run slower but are better adapted to unstructured meshes and resolution variations
needed for treating, e.g., areas of rapidly changing ocean bottom topography.

Considering the fact that there already exist many software packages for wave simulation, and that
parallel computing must be used for detailed ocean modeling, an ideal tsunami simulator should be
built by a hybrid software approach. More specifically, the entire ocean domain is divided into many
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subdomains, and independent solvers are assigned to the subdomains. Each subdomain solver has
its own mathematical model, together with the matching numerical method and subdomain mesh.
Therefore, different subdomains may use different mathematical models, different numerical meth-
ods, different meshes and even different software! Of course, to make the above hybrid divide-and-
conquer simulator to work, we need a numerical framework overseeing all the subdomains. This
can be achieved by the overlapping domain decomposition (DD) strategy [5,15], which was origi-
nally designed for using a same mathematical model everywhere, but can be extended to act as an
“umbrella” for the subdomains in the hybrid tsunami simulator. The communication between the
subdomains is controlled by the DD framework and implemented as exchanging messages using
MPI [7,10]. In respect of programming, the framework of DD can be implemented in an object-
oriented style [1], making it easier to encompass different types of subdomain solvers and to adopt
“alien software” when necessary.

The remaining text of the paper is organized as follows. Section 2 explains two mathematical
models commonly used for simulating wave propagation and the additive Schwarz scheme needed
as the numerical foundation of the parallel hybrid tsunami simulator. Section 3 then concentrates on
the implementation aspect, based on object-oriented programming. Thereafter, Section 4 presents
some preliminary parallel simulation results of the Indian Ocean Tsunami. Finally, some concluding
remarks and comments about future work are given in Section 5.

2. Mathematics and Numerics

2.1. Boussinesq Water Wave Equations
The nonlinear Boussinesq water wave equations can be used to simulate ocean waves; see e.g. [14,

11,2,16]. In comparison with the standard linear wave equations, the Boussinesq equations can
model weakly dispersive and nonlinear waves. There exist several variants of the Boussinesq equa-
tions, among which we will consider the following two coupled partial differential equations:
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where the primary unknowns are the surface elevationη(x, y, t) and the depth averaged velocity
potentialφ(x, y, t). In the above equationsH(x, y) denotes the water depth, and the constantsε and
α are used to control the magnitude of dispersion and nonlinearity, respectively. Withε = α = 0 we
recover the standard linear wave equations from (1)-(2).

A standard numerical strategy for solving (1)-(2) first carries out the temporal discretization, with
centered differences on a staggered grid in time [13]:
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Here, index̀ denotes the discrete time levels and∆t is the time step size. Note thatη is sought
at integer time levels (`) andφ is sought at half-integer time levels (` + 1

2
). The remaining part

of the numerical scheme is to carry out the spatial discretization of the above two semi-discretized
equations at each time step, using FDM or FEM, and solve forη` andφ`+

1
2 . The readers are referred

to [9,4] for more details.
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2.2. The Parallel Multi-Subdomain Strategy
As we can see in the preceding text, the computational task at time step` is to findη` andφ`+

1
2

based on the solutions from the previous time step:η`−1 andφ`−
1
2 . To incorporate parallelism, we

use the additive Schwarz scheme [5,15], which is an overlapping DD method. The entire ocean
domainΩ is first decomposed into a set ofoverlappingsubdomainsΩs, 1 ≤ s ≤ P . Overlapping
zones are present between neighboring subdomains. In the context of solving discretized Boussinesq
equations at time step̀, the additive Schwarz scheme is transformed into the following parallel
numerical strategy:

• Setη`,0s = η`−1|Ωs, whereη`−1|Ωs denotes the restriction of the global solutionη`−1 (from time
step`− 1) onto subdomains.

• Carry out the following Schwarz iterations fork = 1, 2, 3, . . . until convergence ofη among
the subdomains:

1. On each subdomain find an improved local solutionη`,ks based onη`,k−1
s andφ`−

1
2 |Ωs.

2. Compose a temporary global solutionη`,k by “sewing together” the latest subdomain so-
lutions

{
η`,ks

}
. In each overlapping zone between two or more neighboring subdomains,

averaging between different subdomain solutions is enforced. In case neighboring sub-
domains have different mesh resolutions in an overlapping zone, interpolation between
the subdomain meshes is used in the averaging.

• Setφ
`+ 1

2
,0

s = φ`−
1
2 |Ωs and carry out the Schwarz iterations with respect toφ as above.

It should be noted that the above numerical strategy extends the multi-subdomain strategy pro-
posed in [4]. Here, the adopted mathematical model and/or numerical method may differ from
subdomain to subdomain, so are the type and resolution of the subdomain meshes. During each

Schwarz iteration, the process of solvingη`,ks andφ
`+ 1

2
,k

s on subdomains is decided by the subdo-
main solver independently. For example, some subdomains may adopt the linear wave equations,

i.e., ε = α = 0 in (1)-(2), and thus findη`,ks andφ
`+ 1

2
,k

s by an explicit updating scheme, whereas
other subdomains may consider dispersion and/or nonlinearity in the Boussinesq equations and thus
need an implicit solution scheme. The above parallel multi-subdomain strategy also differs from the
classical additive Schwarz method [5,15] in that there does not always exist a global linear system

coupling allη`,ks or φ
`+ 1

2
,k

s .
Although the subdomain solvers are mostly independent of each other, exchange of subdomain

solutions within the overlapping zones is necessary for obtaining global convergence. Thus a global
administrator is needed to synchronize the pace of the subdomain solvers during the task of “sewing
together” subdomain solutions at the end of each Schwarz iteration. Since different subdomains
normally reside on different processors, the global administrator initiates the inter-processor com-
munication in form of message passing. No subdomain is allowed to proceed to the next Schwarz
iteration before all its neighbors have received needed information.

Checking the convergence of the Schwarz iterations is another major task of the global admin-
istrator. More specifically, after the message passing phase is finished at the end of each Schwarz
iteration, each subdomain checks the difference betweenη`,k|Ωs andη`,k−1|Ωs (recall thatη`,k is the
result of “sewing together”η`,ks from all the subdomains). If

∥∥∥η`,k|Ωs − η`,k−1|Ωs
∥∥∥ is small enough,

subdomains sends a flag indicating local convergence to the global administrator. Otherwise a flag
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of no local convergence is sent. It is only whenall the subdomains have reported local conver-
gence that the global administrator deems that global convergence is reached and stops the Schwarz
iterations.

3. A Parallel Hybrid Tsunami Simulator

3.1. Making Use of a Generic DD Framework
As has been explained in Section 2.2, the multi-subdomain parallelization strategy uses additive

Schwarz iterations as the numerical foundation. It should be noted that such a parallelization strategy
is not only applicable to tsunami simulation, but is generic for building many other parallel partial
differential equation solvers. Therefore, object-oriented programming has been adopted to imple-
ment a parallel DD framework, reusable for many occasions. For details we refer the readers to [3],
and it suffices for the present paper to say that the global administrator (see Section 2.2) can be imple-
mented as classAdministrator and a generic subdomain solver as classSubdomainSolver .
The essence is that common tasks, such as domain partitioning, inter-subdomain communication and
control of Schwarz iterations, are implemented as member functions inAdministrator , whereas
SubdomainSolver defines a set of virtual member functions constituting a generic interface of
any particular subdomain solver. MPI is used insideAdministrator for inter-subdomain com-
munication, such that the generic DD framework is portable on all parallel computers.

3.2. Coupling FDM and FEM in a Hybrid Simulator
We have, as the starting point for our parallel hybrid tsunami simulator, two different pieces of

serial software: a flexible Boussinesq solver written in C++ and a legacy Fortran 77 code. The
C++ Boussinesq solver is implemented as classBoussinesq in the Diffpack programming envi-
ronment [6,12]. This C++ solver uses finite elements and handles both unstructured and uniform
meshes. When dispersion and/or nonlinearity are considered in (1)-(2), the two resulting linear sys-
tems at each time step can be solved by a variety of linear solvers provided by Diffpack. The legacy
Fortran 77 code is a set of subroutines which are much less flexible in that only uniform meshes
are allowed, the equations are discretized by FDM, and the linear solver is fixed as the alternat-
ing line-version of the SSOR method. However, the main advantage of the Fortran 77 code is its
computational efficiency. The code is also reliable and well tested over two decades.

To incorporate both serial Boussinesq solvers as subdomain solvers into a parallel hybrid tsunami
simulator, we have created two light-weight new classes:

SubdomainBQFEMSolver andSubdomainBQFDMSolver

Here, classSubdomainBQFEMSolver is implemented as subclass of bothSubdomainSolver
andBoussinesq , so that it inherits the computational functionality fromBoussinesq while
becoming recognizable by the genericAdministrator as a subdomain solver in the generic DD
framework. Similarly, classSubdomainBQFDMSolver is derived fromSubdomainSolver
and acts as a wrapper of the Fortran 77 subroutines. Finally, another new classHybridBQSolver
is derived as subclass ofAdministrator , so that some tsunami specific functionality can be
added on top of generic DD functionality.

4. Preliminary Results of Indian Ocean Tsunami

In this section we present some preliminary simulation results of the Indian Ocean Tsunami on
December 26, 2004. It should be emphasized that the following results are only meant to demonstrate
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the applicability of the hybrid software approach to tsunami simulation. Only relatively low mesh
resolution has been used so far. Ongoing research is currently testing the suitable mathematical
model and mesh resolution in different regions of the Indian Ocean, in preparation of doing really
large-scale parallel hybrid tsunami simulations.

4.1. The Ocean Domain
Our computational domainΩ covers the entire Indian Ocean from the coastlines of Sumatra in the

west to the African coastlines in the east. The size ofΩ is 8096.08km×4777.65km. Figure 1 shows
a plot of the ocean bottom topographyH(x, y), built from publicly available bathymetry data.
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Figure 1. Contour curves representing the water depth (in kilometers) of the entire solution domain.
The position(0, 0) represents the epicenter of the submarine earthquake that generated the tsunami.

4.2. Simulation on a Global Uniform Mesh
As a simple test case we use a coarse uniform1093× 645 mesh, where each cell is approximately

7.4km×7.4km. The entire solution domain is divided into4× 4 = 16 subdomains, which all use the
Fortran 77 FDM code as the subdomain solver. Only dispersion is considered, i.e.,ε = 1 andα = 0
in (1)-(2). Figure 2 shows a particular initial condition (see [8]) and two snapshots of the simulated
η solution in a zoomed-in region around the epicenter.

4.3. Adaptive Mesh Refinement in the Malacca Strait
Close to the epicenter of the earthquake, such as in the Malacca Strait, the water is extremely

shallow, so higher mesh resolution is obviously needed. To test this possibility, we carry out local
adaptive mesh refinement in a focused rectangular region around the epicenter. The left plot in
Figure 3 shows a zoomed-in plot of the resulting unstructured finite element mesh. The focused
region after the adaptive mesh refinement is further partitioned into 17 smaller subdomains that use
SubdomainBQFEMSolver . The remaining 15 subdomains useSubdomainBQFDMSolver , as
in Section 4.2. Inside the overlapping zones, the mesh points of the FEM subdomains may not match
those of the neighboring FDM subdomains, thus interpolation is required whenHybridBQSolver
“sews together” the subdomain solutions at the end of each Schwarz iteration, see Section 2.2. A
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Figure 2. Contour curves of theη solution that are zoomed into a region around the epicenter.
Top plot: initial condition. Middle plot: simulatedη after approximately 1.4 hours. Bottom plot:
simulatedη after approximately 2.8 hours.

new simulation is thus run using this setup of hybrid subdomain solvers. Figure 4 shows a snapshot
of η approximately 2.8 hours after the earthquake. In comparison with the bottom plot in Figure 2,
we can see that adaptively refined finite element meshes produce more local details ofη around the
epicenter.

5. Concluding Remarks

The simulations reported in Section 4 are rather a proof of concept for the hybrid tsunami simula-
tor. They demonstrate that the resulting parallel simulator is capable of adopting different numerical
methods and subdomain meshes in different areas of the ocean domain. We emphasize once again
that overlapping domain decomposition and object-oriented programming are the two main ingredi-
ents in the hybrid simulator. Meaningful simulations will be carried out in the future using a much
finer mesh resolution than that used in Section 4. Nevertheless, for most areas where uniform subdo-
main meshes are appropriate, FDM should be used for the computational efficiency. For other areas,
such as in shallow regions and near the coastlines, locally unstructured finite element fine meshes
must be used, thus requiring FEM in the subdomain solvers.

Since a FEM solver is typically an order of magnitude slower than a FDM solver, more (and
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Figure 3. Adaptively refined finite element mesh in a zoomed-in area in the Malacca Strait, and an
unstructured repartitioning of the region where adaptive mesh refinement has been carried out.
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Figure 4. Contour curves of the simulatedη solution, zoomed into an area around the epicenter;
approximately 2.8 hours after the earthquake.

smaller) subdomains should be used in areas with locally refined meshes, see the right plot in Fig-
ure 3. This will help to maintain a reasonable level of load balance between the subdomains. More
precisely, a few test time steps can be run on a relatively small number of processors and the CPU
time is measured on each subdomain. The CPU time ratio between a FEM subdomain and a standard
FDM subdomain gives the number of smaller subdomains into which the FEM subdomain should
be further decomposed. When all the FEM subdomains are further decomposed, production simula-
tions can be run on the newly extended set of subdomains, which may differ greatly in terms of area
size and number of mesh points but are relatively balanced with respect to the computational speed.
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