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1. Introduction

In this paper we discuss the implementation of methods to solve linear systems, with high ac-
curacy, used in real life applications. It is important because many different numerical algorithms
of these applications contain the solution of linear system (1) as a subproblem. Because of these
aspects, this work aims the development of solvers to linear systems (for dense and sparse matrices)
with high accuracy on cluster computers using C–XSC library. The methods implemented are used
in real life applications like hydrodynamic, agriculture and power electric systems.

Ax = b (1)

In our research some programs were developed in C–XSC with the high accuracy characteristic,
where the results are obtained with a good quality. The C-XSC library is a (free) C++ class library
for scientific computing for the development of numerical algorithms delivering highly accurate
and automatically verified results by use of the interval arithmetic (see details about this library in
[1] and [2]). It provides a large number of predefined numerical data types and operators. These
types are implemented as C++ classes. Thus, C-XSC allows high-level programming of numerical
applications in C++. Actually, our software run on clusters at UFRGS (Brazil), UPF (Brazil) and
Wuppertal (Germany).

During the development of this work was necessary to available a high performance (cluster com-
puters) and high accuracy (by use of C–XSC library) environment. Because of this, our work was
divided in 4 (four) steps:

• Integration between the libraries C–XSC and MPI on clusters (section 2);

• Development of solvers for linear systems (section 3);

• Implementation of basic tests in the environment (section 4);

• Solve real life applications with high accuracy (section 5).

Because of these aspects, this work aims the development of solvers with high accuracy for linear
systems of equations and the adaptation of the algorithms implemented to cluster computers using C–
XSC library. This library is available for download in www.math.uni-wuppertal.de/wrswt/index en.html.
Our solvers work with dense and sparse (in special banded matrices) linear equation systems. Nowa-
days, the solver for dense matrices works with all four basic numerical C–XSC data types: real, in-
terval, complex, and complex interval and the solver for sparse matrices works with real and interval
data types. All our programs are freeware [3].
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2. Integration between C–XSC and MPI Libraries

As part of our research, we done the integration between C–XSC and MPI libraries on cluster com-
puters. This step was necessary and essential for the adaptation of our solvers to high performance
environments. This integration was developed using, initially, algorithms for matrix multiplication
in parallel environments of cluster computers. We done some comparations about the time related
to the computational gain using parallelization, the parallel program performance depending on the
matrix order and the parallel program performance using a larger number of nodes. We also studied
some other information like the memory requirement in each method to verify the performance re-
lation with the execution time and memory. The initial tests of integration has developed on labtec
cluster at II-UFRGS (cluster with 20 Dual Pentium III 1.1 GHz (40 nodes), 1 GB memory RAM, HD
SCSI 18 GB and Gigabit Ethernet; cluster server (front-end) with Dual Pentium IV Xeon 1.8 GHz,
1 GB memory RAM, HD SCSI 36 GB and Gigabit Ethernet). We want to join the high accuracy
given by C-XSC with the computational gain provided by parallelization [4].

This parallelization was developed with the tasks division among various nodes on cluster. These
nodes execute the same kind of tasks and the communication between the nodes and between the
nodes and the server uses message passing protocol. About the C–XSC programs executed on clus-
ter, some changes were made in the programs for their correct use in this environment, mainly about
how to manipulate dotprecisions variables (high accuracy variables of C–XSC) [5].

3. Solvers for Linear Systems

The algorithms implemented in our solvers were described in [6] and can be applied to any system
of linear equations which can be stored in the floating point system on the computer. They will, in
general, succeed in finding and enclosing a solution or, if they do not succeed, will tell the user so.
In the latter case, the user will know that the problem is very ill conditioned or that the matrix A
is singular. In the implementation in C–XSC, there is a chance that if the input data contains large
numbers or if the inverse of A or the solution itself contain large numbers, an overflow may occur,
in which case the algorithms may crash. In practical applications, this has never been observed,
however. This could also be avoided by including the floating point exception handling which C–
XSC offers for IEEE floating point arithmetic [7].

For this work we implemented interval algorithms for solution of linear systems of equations with
dense and sparse matrices [5,8,9]. There are numerous methods and algorithms computing approx-
imations to the solution x in floating-point arithmetic. However, usually it is not clear how good
these approximations are, or if there exists a unique solution at all. In general, it is not possible
to answer these questions with mathematical rigour if only floating-point approximations are used.
These problems become especially difficult if the matrix A is ill conditioned. We present some algo-
rithms which answer the questions about existence and accuracy automatically once their execution
is completed successfully. Even very ill conditioned problems can be solved with these algorithms.
Most of the algorithms presented here can be found in [10].

3.1. Solver for Dense Linear Systems
The C-XSC programs implemented in our solver for dense linear systems were written for the

case of real input data (i.e. A is of type rmatrix and b is of type rvector) and for the case of the data
types interval, complex, and complex interval. The changes made for the use of these other types
are mainly changes of the data type of certain variables and functions in the program. Our C–XSC
program verifies the existence of a solution and computes an enclosure for each of the following
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types of problems:

(s) compute an enclosure for the solution of system (1) for a square n× n matrix A.

(o) compute an enclosure for the solution of system (1) in the over-determined case, i.e. for an
m× n matrix A where m > n.

(u) compute an enclosure for the solution of system (1) in the under-determined case, i.e. for an
m× n matrix A where m < n.

(S) compute an enclosure of the inverse A−1 of A.

(O) compute an enclosure of the pseudo inverse A+ of A in the over-determined case, i.e. for an
m× n matrix A where m > n.

(U) compute an enclosure of the pseudo inverse A+ of A in the under-determined case, i.e. for an
m× n matrix A where m < n.

This solver has two modules: the module lss_aprx contains the function MINVwhich computes
an approximate inverse of the input matrix A of type rmatrix using the Gauss-Jordan algorithm (see
i.e. [11]), when A is a square matrix. In the over- or under-determined case we use the Moore-
Penrose pseudo inverse A+ of A (if A has full rank). The second module lss contains the functions
which solve the dense linear system. This system may be square and non square (m × n). In the
over-determined case (m > n) a vector x ∈ IRn is sought whose residuum b − Ax has minimal
Euclidian norm whereas in the under-determined case (n < m) a solution x ∈ IRn is sought which
has minimal norm.

3.2. Solver for Sparse Linear Systems
For the solution of a sparse linear system we present an implementation of an algorithm to compute

efficiently componentwise good enclosures. Our implementation works with point as well as interval
data (data afflicted with tolerances). We assume linear systems whose coefficient matrix has a banded
structure. In this case the well known general algorithm (using the Krawczyk operator) to solve
systems with dense matrices is not efficient. Since the approximate inverse R of a banded matrix A
is in general a full matrix, a lot of additional storage would be required, especially if the bandwidth
of A is small compared with its dimension. So a special algorithm is used to reduce the amount of
storage and runtime. This method is based on the fact that matrices with banded structure are closely
related to difference equations. For the banded system, we apply a LU -decomposition without
pivoting (to avoid fill in) to the coefficient matrix A and derive an interval iteration similar to the
well known interval iteration used in case of dense matrices. Here, however, we do not use a full
approximate inverse R, but rather the interval iteration will be performed by solving two systems
with banded triangular matrices L and U . The banded triangular systems are solved with the special
method for difference equations described in [6]. In case of point matrices the method is designed to
give almost sharp enclosures for all components (large or small in modulus) of the solution vector.
A different approach to compute an enclosure for the solution vector of a large linear systems with
banded or arbitrary sparse coefficient matrix (which gives enclosures with respect to the infinity
norm || ||∞ only) is described in [10].

In addition to the implementation of the solution method in C–XSC, the program includes a small
demonstration part (a driver) which can be used to solve some simple systems. First the program
reads the number of lower and upper bands and then one value for each of the bands, i.e. initially a
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Toeplitz matrix is generated. In the next step, however, any number of elements of the matrix can
be changed, such that arbitrary banded matrices can be entered. To change the element ai,j , only i, j
and the new value for this element must be entered. Changing of elements is finished by entering
zeros for i and j. Next the right hand side must be entered. There are several choices of predefined
solutions, such that the right hand side b will be determined from this given solution. Alternatively
b can be set to a constant value in all components or all components can be entered successively. In
any case, the values of the components of b may be changed again similarly as for the matrix. When
no changes are done anymore, the solution algorithm starts. The banded solver is called and the
solution and error statistics are printed. In this way it is quite easy to explore the our C–XSC solver.

4. Basic Tests and Results

Measures and tests were made to compare the routines execution time in C/C++ language, C/C++
using MPI library, C/C++ using C–XSC library and C/C++ using C–XSC and MPI libraries. Our
first tests were made to compare the routines execution time, the accuracy of results and to validate
the environment developed.

4.1. Scalar product
We done tests comparing the accuracy and execution time between programs in C/C++ language

(scalar product) and C/C++ using C–XSC library (optimal scalar product - with high accuracy).
In the tables 1, 2 and 3 we showed the results of test with scalar product between two vectors
a and b. The values of this vectors are: a = [1050, 1.25, 1050, 1.1, . . . , 1050, 1.25, 1050, 1.1] and
b = [1, 1,−1,−1, . . . , 1, 1,−1,−1] with size of this vectors (n) equal to 30000, 90000 and 180000.
Table 1
Parallel Scalar Product a× b (using 4 nodes of cluster labtec – time in seconds)

Order (n) Program in C/C++ Program in C–XSC
30000 0.031205 0.041015
90000 0.096727 0.113847
180000 0.188670 0.225083

Table 2
Results of Scalar Product a× b in C/C++

Order (n) Results in C/C++ Exact Results
30000 −3.3000000000000002664535259100375697016716 1125
90000 −3.3000000000000002664535259100375697016716 3375
180000 −3.3000000000000002664535259100375697016716 6750

Table 3
Results of Scalar Product a× b in C–XSC

Order (n) Results in C–XSC Exact Results
30000 1124.999999999999317878973670303821563720703 1125
90000 3374.999999999998181010596454143524169921875 3375
180000 6749.999999999996362021192908287048339843750 6750
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4.2. Matrix multiplications
We done tests with sequential and parallel programs in C/C++ language, C/C++ using MPI library,

C/C++ using C–XSC library and C/C++ using C–XSC and MPI libraries. The results about the
performance are showed in the table 4.

Table 4
Parallel Matrix Multiplication (using 8 nodes of cluster labtec – time in seconds)

Program/Order 512× 512 1024× 1024 2048× 2048
C/C++ with MPI 4.603 34.131 265.284
C–XSC with MPI 115.523 916.233 7329.415

4.3. Solvers to linear systems with dense and banded matrices
To validate our solvers on clusters we will describe some tests about the quality of the results

of ours solvers. How a first example, a very well known set of ill conditioned test matrices for
linear system solvers are the n× n Hilbert matrices Hn with entries (Hn)i,j := 1

i + j − 1 . As a test
problem, we report the results of our program for the linear systems Hnx = e1, where e1 is the first
canonical unit vector. Thus the solution x is the first column of the inverse H−1

n of the Hilbert matrix
Hn. Since the elements of these matrices are rational numbers which can not be stored exactly in
floating point, we do not solve the given problems directly but rather we multiply the system by
the least common multiple lcmn of all denominators in Hn. Then the matrices will have integer
entries which makes the problem exactly storable in IEEE floating point arithmetic. For the system
(lcm10H10)x = (lcm10e1), the program computes the enclosures (here an obvious short notation for
intervals is used) showed in (2), which is an extremely accurate enclosure for the exact solution (the
exact solution components are the integers within the computed intervals).




x1

x2

x3

x4

x5

x6

x7

x8

x9

x10




=




1.000000000000000E + 002, 1.000000000000000E + 002
− 4.950000000000000E + 003, − 4.950000000000000E + 003

7.920000000000000E + 004, 7.920000000000000E + 004
− 6.006000000000000E + 005, − 6.006000000000000E + 005

2.522520000000000E + 006, 2.522520000000000E + 006
− 6.306300000000000E + 006, − 6.306300000000000E + 006

9.609600000000000E + 006, 9.609600000000000E + 006
− 8.751600000000000E + 006, − 8.751600000000000E + 006

4.375800000000000E + 006, 4.375800000000000E + 006
− 9.237800000000000E + 005, − 9.237800000000000E + 005




(2)

As an other example, we compute an enclosure for a very large system. We take a symmetric
Toeplitz matrix with five bands having the values 1, 2, 4, 2, 1 and on the right hand side we set all
components of b equal to 1. Then the program produces the following output for a system of size
n = 200000 (only the first ten and last ten solution components are printed):

Dimension n = 200000
Bandwidths l,k : 2 2
A = 1 2 4 2 1
change elements ? (y/n) n
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b = =1
change elements ? (y/n) n

x =
1: [ 1.860146067479180E-001, 1.860146067479181E-001 ]
2: [ 9.037859550210300E-002, 9.037859550210302E-002 ]
3: [ 7.518438200412189E-002, 7.518438200412191E-002 ]
4: [ 1.160876404875081E-001, 1.160876404875082E-001 ]
5: [ 1.003153932563721E-001, 1.003153932563722E-001 ]
6: [ 9.427129202687645E-002, 9.427129202687647E-002 ]
7: [ 1.028361799416204E-001, 1.028361799416205E-001 ]
8: [ 1.005240450090008E-001, 1.005240450090009E-001 ]
9: [ 9.874921290539136E-002, 9.874921290539138E-002 ]

10: [ 1.004617422430963E-001, 1.004617422430964E-001 ]

199990: [ 1.001953939326196E-001, 1.001953939326197E-001 ]
199991: [ 1.004617422430963E-001, 1.004617422430964E-001 ]
199992: [ 9.874921290539136E-002, 9.874921290539138E-002 ]
199993: [ 1.005240450090008E-001, 1.005240450090009E-001 ]
199994: [ 1.028361799416204E-001, 1.028361799416205E-001 ]
199995: [ 9.427129202687645E-002, 9.427129202687647E-002 ]
199996: [ 1.003153932563721E-001, 1.003153932563722E-001 ]
199997: [ 1.160876404875081E-001, 1.160876404875082E-001 ]
199998: [ 7.518438200412189E-002, 7.518438200412191E-002 ]
199999: [ 9.037859550210300E-002, 9.037859550210302E-002 ]
200000: [ 1.860146067479180E-001, 1.860146067479181E-001 ]

max. rel. error = 1.845833860422451E-016 at i = 3
max. abs. error = 2.775557561562891E-017 at i = 1
min. abs. x[3] = [7.518438200412189E-002, 7.518438200412191E-002]
max. abs. x[1] = [1.860146067479180E-001, 1.860146067479181E-001]

Our last example is about the matrix inversion (test about accuracy).

In this example A =




1 1 0
0 ε 0
0 0 ε2


 and A−1 =




1 −1
ε

0
0 1

ε
0

0 0 1
ε2


 .

With ε = 1.084202172485504E − 019, our program in C–XSC obtained:

A =




1.0E + 000, 1.000000000000000E + 000, 0.000000000000000E + 000
0.0E + 000, 1.084202172485504E − 019, 0.000000000000000E + 000
0.0E + 000, 0.000000000000000E + 000, 1.175494350822288E − 038




A−1 =




1.0E + 000, 1.000000000000000E + 000, 0.000000000000000E + 000
0.0E + 000, 7.136238463529799E + 044, 0.000000000000000E + 000
0.0E + 000, 0.000000000000000E + 000, 8.507059173023462E + 037


 .
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5. Solving Real Life Applications With High Accuracy

In the original solvers we included three new methods to solve linear systems: Conjugate Gradi-
ent, Householder and Givens methods. All these methods have versions with and without the high
accuracy characteristic. We use this methods in real life applications like hydrodynamic (parallel
computational model with local refinement and dynamic load balancing for the simulation of sub-
stances transportation and hydrodynamic – [12]), agriculture (optimization of the air distribution in
grain storehouse with aeration of the mass of grains – [13]) and power electric systems [14]. This
methods and applications are research topics of ours research groups in Brazil [9].

In our research we are implementing other methods to solve linear systems. We are implementing,
initially, the sequential versions of Gauss-Seidel, Gauss-Jacobi, Gauss Elimination and LU Decom-
position methods [15–17]. Nowadays, we are implementing the parallel versions of these methods
with and without high accuracy (these programs are been implemented only with the high accuracy
characteristic, we are not using interval arithmetic).

6. Conclusions

In our research some programs were developed in C–XSC with the validated numeric paradigm,
where the results are obtained with a good quality. The main contributions of our work are:

• integration between the libraries C–XSC and MPI;

• effective use of library C-XSC on cluster computers;

• resolution of linear systems with high accuracy.

In our work we provide the development of selfverifying solvers for linear systems of equations
with dense and sparse matrices and the integration between C–XSC and MPI libraries on cluster
computers. This integration was not trivial because was necessary to send correctly the special
high accuracy variables (dotprecision) of C–XSC to the cluster processors using the library MPI
without lost of the high accuracy characteristic. Our software run on clusters at UFRGS, UPF and
Wuppertal and the integration between C-XSC and MPI was done correctly. Our tests with matrix
multiplication, scalar product and methods to solve linear system of equations show that the C-XSC
library needs to be optimized to be efficient in a High Performance Environment. This optimization
is other research topic of Brazilian groups.

Nowadays we are working in the implementation of parallel versions of methods to solve linear
systems (without and with high accuracy). These methods are used in real life applications like
hydrodynamic (parallel computational model with local refinement and dynamic load balancing for
the simulation of substances transportation and hydrodynamic), agriculture (optimization of the air
distribution in grain storehouse with aeration of the mass of grains) and power electric systems.
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