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Towards Robustness in Parallel SAT Solving

Wolfgang Blochingera

aWilhelm-Schickard-Institut f̈ur Informatik, Universiẗat Tübingen, Sand 14, D-72076 Tübingen,
Germany

This paper deals with a novel method for parallel Boolean satisfiability (SAT) solving. Our ap-
proach focuses on improving robustness, which plays a key role in enabling practical usability of
parallel SAT. Specifically, we adaptively induce competition parallelism into parallel computations
based on exploratory decomposition in order to control work-anomalies. We present initial perfor-
mance measurements indicating the usefulness of our approach.

1. Introduction

The Boolean satisfiability (SAT) problem consists of finding a variable assignment for a Boolean
formulaF such thatF evaluates toTRUE, resp. of proving that forF no satisfying variable assign-
ment exists. Within the class of constraint satisfaction problems, SAT is increasingly gaining impor-
tance, since considerable research has been carried out on efficiently encoding real-world problems
as SAT instances. Prominent application domains of SAT are electronic design automation (EDA)
[19], software-verification [8], scheduling [10], ai planning [16], cryptography [20], and configura-
tion of complex systems [17,21]. Today, SAT solving is recognized as a universal tool for tackling
hard problems. Despite significant performance improvements of SAT solving algorithms realized
in the last decade, there still exist unsolved SAT instances in all major application fields. For exam-
ple, the constantly increasing complexity of chip designs is delivering extremely hard SAT instances
which are far out of range of state-of-the-art sequential solvers.

Basically, parallel SAT solving is capable of substantially speeding-up the solving process. But
a severe limitation of current parallel SAT solvers is that they often exhibit poor robustness. This
means that for solving SAT instances with similar complexity, parallel SAT solvers achieve consid-
erably different parallel efficiencies. Even for iterated parallel runs of the same problem instance,
often totally different speedups can be observed. This behavior results from work-anomalies, where
the total amount of work (in terms of the search space of variable assignments to be tested) differs
significantly between sequential and parallel runs of a SAT problem instance.

Improving robustness is crucial for the practical applicability of parallel SAT solving. In this
paper, we identify conditions which lead to work-anomalies and study a novel approach to parallel
SAT solving which aims at improving robustness of parallel SAT solvers by adaptively combining
different forms of parallelism.

The rest of the paper is organized as follows. In Section 2 we give a brief overview of state-of-the-
art SAT solving algorithms. Section 3 presents our approach for improving robustness of parallel
SAT. In Section 4 we report on initial performance measurements. Section 5 discusses related work.

2. SAT Solving

2.1. Basic Definitions
We consider Boolean formulae in conjunctive normal Form (CNF). In CNF, a formula is composed

of conjunctions (∧) of clauses. A clause is the injunction (∨) of one or moreliterals, and a literal is
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boolean DPLL() {
while(true) {

if (decide()) { // decision
while(deduce()==CONFLICT) { // deducing

if (current_level==0) { // top-level conflict
return false; // unsatisfiable

} else {
new_level=analyze_conflicts(); // learning
back_track(new_level); // backtracking

}
}

} else { // all variables assigned
return true; // satisfiable

}
}

}

Figure 1. DPLL Algorithm with Dynamic Learning and Conflict Driven Backtracking

a variable or the complement of a variable. Consider the following Boolean formula:

F = (x1 ∨ x3) ∧ (x2 ∨
literal︷︸︸︷
x3 ) ∧ (x1 ∨ x2 ∨ x3︸ ︷︷ ︸

clause

) ∧ x3

The variable assignmentx1 →FALSE, x2 →TRUE, x3 →TRUE represents a satisfying assignment of
F . A fundamental property of a formula in CNF is that it is satisfiable iff. in each clause at least one
literal evaluates toTRUE. If for a clause all but one literals have already been assigned toFALSE,
the remaining literal must be assigned toTRUE in order to satisfy the clause. Such clauses are called
unit clauses. A situation when all literals of a clause are assigned toFALSE is called aconflict, and
the clause is called aconflicting clause.

2.2. DPLL SAT Solving Algorithm
The original Davis-Putnam-Logemann-Loveland (DPLL) SAT solving algorithm [12,11] still rep-

resents the algorithmic framework of modern complete SAT solvers, but has been significantly en-
hanced by sophisticated heuristics for pruning the search space of variable assignments to be tested.
Most beneficial advances could be achieved by employingdynamic learningand conflict driven
backtrackingtechniques [18]. Figure 1 shows the basic structure of the DPLL algorithm incorporat-
ing these heuristics. We will restrict the following discussion of the DPLL algorithm to a top-level
treatment. A more detailed explanation can be found in [23].

Basically, the DPLL algorithm performs a backtrack search process. Partial variable assignments
are speculatively extended to find a satisfying assignment. The proceduredecide() determines
according to adecision heuristics[14] which unassigned variable should be chosen next to extend
the current partial variable assignment. Each decision is recorded on anassignment stackalong with
an associateddecision level. The decision level of the first decision is 1. The procedurededuce()
infers additional assignments that are logical consequences of the current partial variable assignment
using a technique calledunit propagation: After making a new decision, some clauses may have
become unit clauses implying new assignments. Deduced assignments are calledimplicationsand
are also recorded on the assignment stack at the current decision level. Unit propagation terminates
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when either no unit clauses exist or a conflict occurs. In the first case, a new decision is made
inducing the next decision level. In the second case, the procedureanalyze conflicts() is
invoked which constitutes the core of modern SAT solvers. It performs two tasks:

• Dynamic Learning: A new clause calledlemmais constructed by analyzing the reasons for
the current conflict. A lemma reflects a minimal subset of the current assignments that implies
the conflict. When added to the input formula, a lemma prevents the further search process
from reproducing the same conflict in other regions of the search space. Since the underlying
mechanism for constructing lemmas is resolution, adding a lemma to the input formula does
not affect the correctness of the DPLL algorithm. Original clauses and lemmas constitute the
clause database.

• Conflict Driven Backtracking : By construction, a lemma is initially a conflicting clause. The
backtracking level is determined as the lowest level at which the lemma becomes a unit clause.
Note that at this level the current conflict is also resolved.

The procedureback track() releases all assignments recorded on the assignment stack up to
the computed backtracking level. The newly added lemma, which is now a unit clause, takes the
search to a new direction. When backtracking reaches decision level 0, the current lemma forces an
assignment at level 0, called atop-level assignment. The corresponding conflict cannot be resolved
by releasing any non top-level assignments. Thus, top-level assignments are a necessary condition
for the formula to be satisfiable and are fixed for the further search process. If all variables have been
assigned without a conflict, the input formula is satisfiable. Unsatisfiability of the input formula is
proven when atop-level conflictoccurs (i.e. a conflict at decision level 0), since it cannot be resolved
by releasing assignments.

In order to prevent the search process from getting stuck in a futile part of the search space, often
a technique calledsearch restarts[1] is applied. Here, the search process is periodically cancelled
by backtracking to level 1 and restarted keeping some results (typically lemmas) of the previous run.

3. Improving Robustness of Parallel SAT Solving

3.1. Decomposition vs. Competition
Basically, there are two approaches to the parallelization of heuristic search problems of the kind

of SAT: decompositionandcompetition.
The decomposition approach splits the whole search space of variable assignments into disjoint

subspaces to be treated in parallel (exploratory decomposition). Due to the highly irregular structure
of the search space, particularly of real-world SAT instances, dynamic problem decomposition and
consequently dynamic load balancing become inevitable.

The competition approach is based on the property that the effect of search heuristics can vary
considerably for different problem instances and cannot be predicted. Here, parallelism is exploited
by concurrently executing sequential SAT solvers on the same problem instance, each pursuing a
different search strategy until the problem is solved by one of the solvers.

3.2. Robustness of Exploratory Decomposition
For reasons detailed subsequently, applying exploratory decomposition for parallel SAT solving

can cause considerable work-anomalies and thus limited robustness. The dynamic learning process
of modern SAT solvers relies on accumulated knowledge (in the form of lemmas) which is contin-
uously deduced during the solving process. Employing exploratory decomposition techniques on a
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distributed-memory architecture results in a (partially overlapping) partition of the clause database
consisting of several distributed clause databases, one on each node. All clause databases comprise
the problem clauses and also locally deduced lemmas. Since dynamic learning can considerably
prune the search space, it is crucial to exchange lemmas among the different clause databases, estab-
lishing a distributed learning process. Due to the high irregularity of SAT, a synchronous approach
for exchanging lemmas among the nodes (for example employing an SPMD style all-to-all broad-
cast) would cause significant processor idling. Moreover, the total amount of deduced knowledge
increases with the number of nodes, making a total exchange approach highly unscalable. Conse-
quently, an asynchronous and selective method of communicating lemmas is more appropriate for
realizing a distributed learning process. In [4], we proposed a corresponding scheme that uses mo-
bile agents for gathering and exchanging pertinent lemmas among the distributed clause databases.
But with asynchronous communication it is virtually impossible to make the deduced knowledge
available on every node in a way such that the resulting (parallel) search space remains exactly iden-
tical to the sequential search space. In some cases, even minimal initial differences may rapidly lead
to totally different search spaces causing a considerable potential of work-anomalies.

3.3. Adaptive Competition
In order to overcome the identified limitations of exploratory decomposition for parallel SAT

solving, we propose to combine decomposition and competition parallelism in an adaptive fashion.
Competition parallelism is employed when a particularly hard region of the search space is encoun-
tered (which may not be present in sequential program runs). The rationale behind this combined
approach is that decomposition is able realize speedup while competition can increase robustness.
However, pure decomposition can lead to poor robustness, while pure competition is not able to
deliver speedup (over the optimal search strategy). Specifically, our approach to parallel SAT solv-
ing starts with exploratory decomposition and adaptively induces competition parallelism when the
solving process of a particular subproblem doesn’t make sufficient progress.

A subproblem is represented by a corresponding assignment stack. For carrying out dynamic
problem decomposition, we apply the guiding path technique [22]. It splits the search space of a
subproblem by generating two assignment stacks which define disjoint subspaces (see Figure 2).
For dynamic load balancing we employ a distributed task-pool model. Splitting is initiated if the
size of the local task-pool falls below a given threshold. A randomized work stealing scheme is used
to transfer tasks between the task-pools.

In order to steer the transition from decomposition to competition parallelism atransition heuris-
tics is employed which assesses the progress of the solving process of an individual subproblem and
decides when to switch the treatment of the subproblems to competition parallelism. Parameters of
the solving process that can be considered by a transition heuristics are e.g. the number of unassigned
variables, the number of conflicts, or the number of splitting operations the subproblem has already
been involved in. An example of a concrete transition heuristics is given in the next section.

When a transition is initiated, the respective subproblem is additionally treated using (one or more)
different search heuristics. Also further decomposition of the subproblem is disabled. For current
SAT-solving algorithms, examples of possible competition disciplines are decision heuristics, lemma
construction methods, or clause database management strategies.

4. Experimental Evaluation

In order to test the usefulness of our approach, we carried out performance measurements on a 15
node cluster which was equipped with 2.6 GHz Intel Xeon processors and 2 GB of main memory per
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Figure 2. Search Space Splitting

node. All nodes were connected by a GigaBit Ethernet network. Our prototypical implementation
is based on the sequential SAT Solver MiniSAT [13]. For the subsequently presented run-time mea-
surements, we chose the grid-10-20 and the longmult15 benchmark from the SAT solver competition
benchmark suite.

In our experiments, competition has been established by employing different decision heuristics.
Modern SAT solvers typically use a small amount of randomization within the decision procedure,
e.g. in MiniSAT 2% of the decisions are made randomly. In order to preserve reproducibility, a fixed
random seed is used. We take advantage of this feature to generate different decision procedures
by using different (fixed) random seeds, one for each node. For the grid-10-20 benchmark, the
sequential run-times for the resulting 15 different decision heuristics ranged from 160.0 to 5142.9
seconds, for the longmult15 benchmark from 159.6 to 300.0 seconds. We choose randomization for
establishing competition, because it ensures an unbiased evaluation of the proposed approach. For a
later production use, more specific competition disciplines might deliver even more distinct results.

Our transition heuristics is based on a limit of the number of conflicts encountered until the treat-
ment of a subproblem is switched from decomposition to competition. Every node maintains a cor-
responding limit value which is initialized by the number of variables of the considered SAT instance
as an estimate of the problem size. Every time a transition operation takes place, the corresponding
limit is increased by a factor of 2 in order to adapt to the total computation time. Additionally, a
transition is only carried out, if the considered subproblem has been part of at least one splitting
operation. This ensures, that the computation will never degenerate to pure competition.

Figure 3 shows the results of 100 program runs each for employing adaptive competition and pure
decomposition. The given sequential run-times represent the measured times of the best performing
decision procedure. The run-times for pure decomposition result from parallel runs using the best
performing decision procedure.

The results for the longmult15 benchmark show for both approaches nearly identical run-times
and also only minimal dispersion. Thus, for this problem instance, decomposition does not induce
work-anomalies. However, adaptive competition does not increase the run-time in this situation.

For the grid-10-20 benchmark, the run-times of the decomposition approach exhibit a significant
spread indicating a high degree of work-anomalies. Even run-times greater than the sequential time
(slow-downs) can be observed. For the program runs which employ adaptive competition in almost
all cases considerable speedups could be realized.
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Figure 3. Results of Performance Measurements

5. Related Work

In this section, we discuss other approaches to parallel SAT solving. We restrict our treatment to
parallel SAT solvers that are designed for general-purpose parallel hardware. Böhm and Specken-
meyer proposed a parallel SAT solver specifically designed for Transputer systems [7]. This work
focuses on studying efficient load balancing techniques for d-dimensional mesh network-topologies
in the context parallel SAT solving. Zhang’s PSATO [22] is a distributed parallel SAT solver tar-
geted for networks of workstations. PSATO introduced theguiding pathtechnique for exploratory
problem decomposition, taking advantage of the decision heuristics of sequential solvers for split-
ting the search space. PSATO is based on external parallelization of the sequential solver SATO.
The parallel solver PSatz [15] by Jurkowiaket al. is a parallel variant of the sequential solver Satz.
Concerning the parallelization approach, PSatz is very similar to PSATO, but uses work-stealing
techniques for load-balancing. The parallel SAT solver PaSAT by Blochingeret al. [4] focuses
on establishing an efficient distributed parallel learning process between the nodes of a cluster or
a network of workstations. Also cross-fertilization of different kinds of heuristics is addressed [5].
PaSAT has been successfully employed in an industrial application [3] from the field of automotive
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product configuration. It is based on the parallel platform DOTS [2]. GridSAT [9] developed by
Chrabakh and Wolski is a parallel SAT solver targeted for parallel resources that are managed by
the Globus grid platform. It employs grid technology to make reservations of appropriate dedicated
resources (like compute clusters) for executing a parallel SAT solver based on the sequential solver
zChaff. ZetaSAT [6] by Blochingeret al. is a framework for parallel SAT solving on Desktop Grids,
that allows to use idle cycles of desktop computers for solving SAT instances. It is based on the
ZetaGrid Desktop Grid platform and uses parallel versions of the SAT solvers zChaff and MiniSAT
as solving engines.

All discussed parallel SAT Solvers exclusively apply exploratory decomposition techniques for
realizing parallelism. PaSAT and GridSAT additionally establish a distributed learning process.
PaSAT employs mobile agents to continuously exchange lemmas among the nodes executing the
search process. GridSAT transfers a part of the clause database to newly created tasks when a search
space split is performed.

6. Conclusion and Future Work

In this paper, we presented a novel approach to parallel SAT solving that adaptively employs
competition parallelism in order to increase the robustness of the parallel solving process. To some
extend, the presented approach can be regarded as a refinement of the search restart technique of
sequential SAT solvers by using parallelism. But in contrast to search restarts, with adaptive compe-
tition work already carried out is not discarded at some point but enters into competition with other
strategies.

Our future work will include investigations on sophisticated transition heuristics, other cross-
fertilization issues of decomposition and competition parallelism, and on specific load balancing
methods.
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