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We introduce the underlying principles of phylogenetic reconstruction, avoiding all technicali-
ties. Since phylogenetic reconstruction based on DNA-sequence data is a computational expen-
sive undertaking, efficient algorithms are required to suggest reasonable solutions with respect
to an objective function. However, even efficient programs like IQPNNI cannot cope in reason-
able time with extremely large data sets. Thus, we summarizeour results on implementing a
hybird parallelization scheme for IQPNNI.

1 Introduction

1.1 Motivation

Charles Darwin (1859) said in his famousevolutionary theory4 that all species have
evolved from a common ancestor under the pressure ofnatural selection. The phylogenetic
relationship of contemporary organisms is therefore best represented in aphylogenetic tree.
It is one of the main objectives in biology to reconstruct this tree.

With the advent of molecular biology and the incredible paceat which new sequences
from all sorts of life forms are generated, phylogenetic trees are nowadays inferred from
DNA-sequence data. DNA-sequences are easy to read. A DNA is simply a long word over
a finite alphabet of four letters:A,C,G, andT . This word is subject to subtle changes
(mutations) in the course of time. Among mutations, the simple replacement of a letter by
another letter is called substitution. These substitutionaccumulate during time. Thus, a
DNA sequence transmitted from a grand-grand-(grand)k-mother to its contemporary will
accumulate mutations. Thus, when comparing the two sequences they will be different.
These differences reflect the amount of time (in an apropriate scaling) that went by. As
DNA is ubiquitously occurring in all organisms and because DNA cannot be generated
de-novo, the history of species can be inferred by simply comparing their DNA sequence.
As simple as this sounds, as difficult is the actual implementation of such approaches. We
cannot possibly spell out all the details here, and thus refer to the pertinent literature6.

One of the reasons, why phylogenetic reconstruction is difficult, is the sheer amount
of trees as the number of species increases. If we consider only trivalent, unrooted trees,
i.e. those trees -from a graph theoretic point of view - with node degree 3 (interior nodes)
and 1 (exterior nodes), where the exterior nodes are labelled with a species name, then the
numbert(n) of trees withn ≥ 3 exterior nodes is given by

t(n) = 1 · 3 · . . . · (2n− 5). (1)
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Unfortunately, most currently used tree reconstruction algorithms that aim to optimize an
objective function belong to the class of NP-hard problems7, 5, 2, therefore it seems hopeless
to actually find the truely optimal tree if the data at hand comprise more than 10 species or
so. To overcome the problem of finding the best tree(s), several heuristics have been sug-
gested such as Neighbor Joining12, 8, Quartet Puzzling18, 20, Nearest Neighbor Interchange
(NNI)9.

In a series of studies based on computer generated data, it has been shown that these
heuristics perform reasonably in terms of speed (computational efficiency) and in terms of
accuracy, i.e. the potential to rediscover the tree from thedata at the exterior nodes (the
sequences). However, for data sets of thousands of species the heuristics turn out to be too
slow, to really evaluate the data based on different models of evolution and on different
tree reconstruction methods.

Thus, in recent years, people have invoked parallel computing19 to reduce the
computational burden such as fastDNAml11, TREE-PUZZLE13, RAxML16, MrBayes1,
pIQPNNI10. These programms make use of several parallel architectures.

The most popular parallel architecture nowadays is a cluster of Symmetric Multi Pro-
cessors (SMPs). An SMP is ashared memorycomputer in which several processors have
access to the same physical memory space. Such SMPs are clustered by a high bandwidth
network to create a hybrid system. Processes on different SMP nodes can communicate
with each other using theMessage Passing Interface(MPI)15, an industry standard for pro-
gramming ondistributed memorysystems. Inside an SMP, a process can be furthermore
divided into several concurrent threads applying OpenMP, astandard for shared memory
programming3. The SMP cluster motivates the application of hybrid programming models
with both MPI and OpenMP in order to take full advantage of thehybrid parallel architec-
ture. Care should be taken as such an approach does not alwaysguarantee an improvement
over the pure MPI parallelization14. In the following we will summarize our experience to
parallelize the IQPNNI program20.

1.2 The Data

To understand the rest of the paper it is necessary to have a closer look at the data. Consider
a dataset of molecular sequences fromn species. To account for the different mutation pro-
cesses acting on the sequences in the course of time, one has to compute first a multiple
sequence alignment21. We will not explain how a multiple sequence alignment (MSA)is
computed. It suffices to say, that a MSA is a two-dimensional table, where each row repre-
sents the sequence from an organism and each column represent a position in the sequence

1 2 3 4 5 6 7 8 9 10 . . .
Human A T G C G C A T C A . . .
Chimpanzee A T G C G G G T G T . . .
Gorilla G C G A G A C T T A . . .
Rhesus T C C A A G G T C T . . .
...

...
...

...
...

...
...

...
...

...
...

. . .

Figure 1. An example multiple sequence alignment.
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that traces back to a common ancestral position (see Fig. 1).In other words sequences are
aligned in a matrix ofn rows (i.e. presenting species) andm columns, wherem denotes
the alignment length. In MSA, columns are also calledsites. All phylogenetic reconstruc-
tion approaches start with this type of data and try to reconstruct a tree that explains the
variability observed in the MSA. We are interested in a probabilistic framework, that mod-
els the evolutionary process. To this end, we introduce a model of sequence evolution that
acts on the tree.

Based on such a model it is straightforward to compute the likelihood of a tree relating
these sequences6 . We obtain the likelihood of the tree as the conditional probability of the
data given the tree:

L(tree) = P (data|tree). (2)

Thus, the likelihood acts as an objective function and we want to find the tree(s) that
maximize(s)L given the data, i.e. the MSA. The functionP (·) represents the evolutionary
model, that is the way we think how sequences change.

The computation of the likelihood can be very expensive. Hence, to keep computation
tractable, several assumptions are made. One of them is to assume that every site evolves
independently of each other. We also assume that the modelP is the same for all parts of
the tree and for each position in the sequence. According to this, the likelihood can now
be rewritten as the product of the likelihood at each site:

P (data|tree) =

m∏

i=1

P (sitei|tree). (3)

Normally,P (sitei|tree) is very close to zero, and to eliminate numerical inaccuracies, one
typically takes the logarithm of the likelihood function:

logL(tree) =

m∑

i=1

logP (sitei|tree). (4)

This so-called likelihood function needs to be maximized byfinding the best tree. This is
a combinatorial optimization problem.

1.3 IQPNNI Algorithm

The IQPNNI algorithm20 was recently proposed to reconstruct phylogenetic trees. Com-
pared to other approaches IQPNNI performs well with respectto accuracy. Unfortunately,
the extra accuracy is paid for by an increased computing time.

The IQPNNI algorithm comprises two major steps (Fig. 2a). Inthe initial step, an
initial tree is obtained based on BIONJ tree8 combined with fast NNI9.

In the subsequentoptimization step, the tree topology is reorganized by Important
Quartet Puzzling (IQP)20 and NNI to improve its likelihood. If the likelihood of the re-
sulting tree exceeds that of the current best tree, then the current best tree is replaced by
the new tree. The optimization step is repeated many times tothoroughly search the tree
space. Typically the iteration stops after a user-defined number of repetitions.

Because we early noticed that the sequential IQPNNI implementation (sIQPNNI) runs
relatively slowly, a pure MPI parallelization (pIQPNNI) was developed10. pIQPNNI sub-
stantially reduced the running time. We could show that its speedup is nearly optimal for
up to 30 processors.
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Figure 2. (a) Sequential and (b) MPI parallel scheme of IQPNNI algorithm.

2 Parallelization

2.1 MPI Parallelization

pIQPNNI was described in details in Minh et al.10 and here we outline the main idea. A
preliminary analysis revealed that the optimization step consumes 90% to 99% of the total
running time. Hence, the initial step is mainly carried out sequentially and the paralleliza-
tion of the optimization step was done using a master/workerscheme (Fig. 2b). Starting
from the current best tree, every worker runs its own optimization step as explained before.
After finishing one iteration, the worker always sends back its resulting tree to the master.
The master receives and updates the current best tree if the received tree shows a higher
likelihood. In such case, the master will broadcast the better tree to all other workers by
non-blocking communication.

The worker now synchronizes with the master and starts the next iteration with its
current best tree. In addition, the master checks whether the stop condition applies and, if
so, sends a stop message to all workers.

2.2 Hybrid MPI/OpenMP Parallelization

In a hybrid scheme, the program runs withp MPI processes, each process containst
OpenMP threads. That means, a total number ofp · t processors are consumed. Forp
processes, we preserve the master/worker scheme as described in the previous section. For
each process, the OpenMP parallelization is done in the following way.

A flow-chart analysis shows, that IQPNNI spends most of its running time (at least
90%) to calculate the likelihood of specific trees. As can be seen from the Equation 4,
this involves for-loops, whose iterations are independentof each other. Therefore, we
parallelized these loops. Loop-level OpenMP parallelization can be easily employed by
adding a pragma directive immediately before any “for” loopinvolving the computation of
the likelihood. A similar approach was also discussed in Stamatakis17.
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By this way, the MPI and the OpenMP codes are independent of each other and one
can have a pure MPI or a pure OpenMP version simply by settingt = 1 or p = 1, re-
spectively. In the subsequent analysis, we tested the program on the JUMP (Juelich Multi
Processor) system, a cluster of 41 IBM Regatta p690+ SMP nodes. Each node has 32
Power4+ processors of 1.7 GHz. We used up to 128 CPUs on this supercomputer for the
experiments.

3 Performance Analysis

3.1 Datasets

The experiments were conducted on two biological datasets (Table 1). The first data, abbre-
viated 218dna, comprise a selection of 218 smal subunit ribosomal RNA sequences (ssu
rRNA) from the Ribosomal Database Project IIhttp://rdp.cme.msu.edu/. The
second dataset, 74aa, was kindly compiled by colleagues H.A. Schmidt and D. Liebers.
This data set consist of amino acid sequences .

Type Name #Seqs #Sites #Iterations Initial step Opt. step Total
DNA 218dnaa 218 4182 150 70s 47m:55s 49m:05s

AA 74aab 74 4013 50 77s 32m:41s 33m:58s
a prokaryotic sequences from the small ribosomal subunit.
b vertebrate amino acid sequences.

Table 1. The datasets used for analysis and sequential runtime of sIQPNNI.

Table 1 also displays the sequential running time of sIQPNNI. The initial step took only
about 3% of the whole time on both datasets (about 70 seconds out of 50 and 34 minutes,
respectively). Compared to sIQPNNI, the parallel version pIQPNNI needed a batch of
about 3 minutes for both datasets using 30 CPUs.

3.2 OpenMP-IQPNNI

Firstly, we measured the performance of the pure OpenMP parallelization on a JUMP node
using up to 32 processors as depicted in Fig. 3 using the 218dna and 7aa data. Interestingly,
the speedup on both datasets is nearly optimal up tot = 8 threads and suddenly drops
sharply with more than 8 threads. The runtimes with 16 threads on dataset 218dna and
with 32 threads on both datasets are even greater than the sequential time, and thus not
shown.

This break-down in overall performance seems to be connected to compiler issues on
the JUMP system. Due to the limited time and an expected imbalance with too many
threads in the hybrid version, this phenomenon was not further investigated. For that rea-
son, we restricted further analysis to a maximum of 8 threadsper process.
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Figure 3. Pure OpenMP speedup for the whole program.
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Figure 4. Speedup of optimization step for dataset (a) 218dna and (b) 74aa.

3.3 pIQPNNI vs. Hybrid IQPNNI

We tested the performance of the pIQPNNI against our newly implemented hybrid version
with 2, 4 and 8 OpenMP threads per process.

Fig. 4 shows the speedup for the optimization step for 218dna(Fig. 4a) and 74aa
(Fig. 4b). For both datasets, the scaling of the pIQPNNI (redline) and the hybrid ver-
sions are comparable with a near linear speedup, except thatthe 8-threads parallelization
(pink line) shows a slightly poorer speedup for less than 4 processes, i.e. 32 CPUs. How-
ever, this effect disappears with 8 processes or more. This can be explained by the fact that
the master process consumes actually only one processor andthe othert−1 processors are
unused. So a fraction oft−1

pt CPUs are idle during the optimization step. The effect will
be large ifp is small and otherwise becomes more apparent ifp increases.

In addition, we observe that the speedup of the pIQPNNI version on the dataset 74aa
is quite poor when running on 128 CPUs. This is, however, due to the fact that we only
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Figure 5. Total speedup for dataset (a) 218dna and (b) 74aa.

#Processes #Threads Initial step Opt. step Total Speedup
128 pure MPI 34s 36s 70s 42.1
64 2 20s 32s 52s 56.6
32 4 13s 30s 43s 68.5
16 8 08s 32s 40s 73.6

Table 2. Runtime on dataset 218dna with 128 CPUs.

set the number of iterations to 50 on this dataset. Since eachiteration on each worker
process consumed roughly the same amount of time, then we would need only 50 workers
to finish the whole optimization step. This effect will not occur if we increase the number
of iterations to at least the number of MPI processes. Unfortunately, this could not be
experimentally tested, due to limitations in computing time.

The total speedup of the pIQPNNI and hybrid-IQPNNI is depicted in Fig. 5. The
hybrids with 4- and 8-threads (blue and pink line) scaled best. Whereas the 2-threads
hybrid performed a bit worse. The pIQPNNI shows a saturationeffect. This shows a
tendency that raising the number of threads per process willimprove the performance with
the growing number of CPUs.

Moreover, the speedup curves are not similar to those for theoptimization step since
the main part of the initial step is carried out sequentiallyin the MPI parallelism. As a
result, its runtime proportion will be more significant withthe increasing number of CPUs.
Table 2 displays the running time with 128 CPUs on the dataset218dna. The initial step
of the pIQPNNI consumed 50% of the total time and the time reduction for the hybrid
parallelization is mainly due to the shorter time used in theinitial step.

4 Conclusions

In this study we gave an overview of different methods to improve the performance of
phylogenetic applications. The first is to incorporate efficent heuristics and the second is
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to parallelize the curent algorithms. To this end, we illustrate an efficent way to parallelize
the IQPNNI algorithm.

Furthermore, we studied how to port a pure MPI parallelization of the IQPNNI algo-
rithm into a hybrid MPI/OpenMP parallelism. The loop-levelparallelism is applied to the
time-consuming for-loops calculating the likelihood of the phylogenies. These loops ap-
peared at a low level and all MPI functions are called outsidethe parallel OpenMP regions.
Hence, this ensures portability even when the MPI librariesare not thread safe.

Analyses on two real datasets showed improved performance of the hybrid paralleliza-
tion over the pure MPI on a cluster of SMPs. We tested up to 128 CPUs and 8 threads
per process. With large numbers of processors, the pure MPI implementation indicated a
saturation effect. In contrast, the hybrid version scaled better, especially when increasing
the number of threads. This is due to the fact that we make fulluse of the capabilities of
the hybrid architecture.
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