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1 Introduction

Experimental and computational investigations of rearrangement and decomposition path-
ways of molecular phosphine transition-metal complexes are of fundamental interest in
coordination and organometallic chemistry and in catalysis. One of the central topics of
our research group is the chemistry of 2H-azaphosphirene complexes1 and the genera-
tion, reaction and/or rearrangement of reactive intermediates2 (i) (so called phosphinidene
complexes) and3 (nitrilium phosphanylide complexes) (ii) from precursor11–3. Recently,
we had discovered that electrophilic terminal phosphinidene tungsten complexes2 with
bulky substituents at phosphorus (R = C5Me5 or CH(SiMe3)2) do not dimerize in the
absence of trapping reagents4. Therefore we became interested in their fate. The compu-
tational studies comprise a density functional method-based study of the hypersurfaces of
phosphinidene complexes2 and nitrilium phosphanylide complexes1 as well as a char-
acterization of bonding situations by the method of the compliance matrix; probing and
establishing this rarely used method - especially in the field of transition metal complexes
- makes it a goal in itself and will be discussed below.
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Scheme 1. Rearrangement and decomposition of 2H-azaphosphirene complexes1.

2 Computational Methods

All optimizations and frequency calculations were performed using GAUSSIAN 03
RevB.035 on the IBM Regatta p690 cluster (JUMP) of the John von NeumannInstitute
for Computing (NIC) at the Forschungszentrum Jülich. The standard method throughout
this work is B3LYP/6-311G(d,p) combined with an effective core potential description of
tungsten using the Los Alamos LanL2DZ (for short: B3LYP/6-311**/LanL2DZ)6. Sta-
tionary points have been characterized by analytical second derivatives (the Hessian) with
respect to redundant cartesian coordinates. Transition states (one imaginary frequency)
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were identified by a reaction path following (IRC). The Hessian provided by the GAUS-
SIAN 03 calculation was transformed to non-redundant internal coordinates using Pulays
INTC/FCTINT set of algorithms7. The inversion of the transformed Hessian to the com-
pliance matrix was accomplished by standard methods.8. A typical production job, e.g.
C19H24NO5PSi2W 1 (Scheme 1) with 242 electrons, uses more than 1000 Gaussian-basis
functions and thus needs parallelized computations on fastprocessors,which can only be
provided by a computing centre like the John von Neumann Institute for Computing (NIC).

3 Usage and Interpretation of the Compliance Matrix

The physical model behind force constants and thus compliance constants is a spring
model: if the molecule at equilibrium geometry is distortedby a vibrational movement
the various internal coordinates (modeled by springs) interact according to the molecular
force field. In the harmonic approximation to vibrational theory the molecular hypersur-
face describing a vibrational movement is locally approximated by a quadratic form (Hik)
in the displacements of the internal coordinates (bonds, angles, dihedrals and linear com-
binations thereoff) from their equilibrium values

2V = ∆xt(Hik)∆x, (1)

where (Hik) is the matrix of second derivatives (Hessian) at a stationary point, the
diagonal elements Hkk are the force constants9. Equivalently the change in potential energy
during a vibration is described by a quadratic form in the forces (force displacements∆f
to be precise) instilled in the coordinates upon distortionfrom equilibrium geometry

2V = ∆f t(Cik)∆f, (2)

where (Cik) = (Hik)−1 is the compliance matrix (inverse Hessian) at a stationary point,
the diagonal elements Ckk of which are the compliance constants (in [Å/mdyn] for bond
stretchings and in [rad/mdyn] for angle bendings); the off-diagonal elements are associ-
ated with the couplings of the coordinates. While in the spring model force constants
Hkk describe the stiffness (resistance against distortion) the compliance constants Ckk are
associated with the compliance of coordinate k10.

4 Experimental and Theoretical Results

4.1 Formation of a Nitrilium Phosphanylide Complex

From experimental investigations of the thermolysis of 2H-azaphosphirene complex1a11

the existence of nitrilium phosphanylide complex3a(Scheme 1, path ii), R = CH(SiMe3)2,
Ar = Ph) as a reactive intermediate has been concluded, although, due to its assumed short
lifetime, there was no spectroscopic evidence for the intermediacy of3a, so far. The DFT-
calculations on the hypersurface of1aunambiguously showed that nitrilium phosphanylide
complex3a is an isomer; the formation of which via a still unknown transition state pro-
ceeds endergonically by 19 kJ/mol. A comparison of selectedexperimental (X-ray crystal
structure) and calculated bond lengths of1a as well as calculated bond lengths of3a can
be taken from table 1. There is satisfying agreement betweenexperiment and theory con-
cerning the geometry of1a. It is noteworthy, that in3a the almost linear benzonitrile unit
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(angle NCC in1a: 135 degree) is attached to a strongly pyramidal phosphorus(sum of
bond angles at P: 326 degree); the compliance constant of theP-N contact (0.552̊A/mdyn)
provides a likely description of3aas a N-P donor adduct of benzonitrile to phosphinidene
complex2b (see Scheme 2, Figure 2 below).

Figure 1. (hydrogens except PCH are omitted) Table 1

4.2 Formation of aP-SiMe3-Substitutedη1-E-Phosphaalkene Complex12

As experimentally shown heating diluted ortho-xylene solutions of 2H-azaphosphirene
complex1a afforded almost quantitatively and stereoselectively theP-SiMe3-substituted
η1-E-phosphaalkene complex4a (Scheme 2). The rearrangement of the thermally gener-
ated short-lived phosphinidene complex [(OC)5W{PCH(SiMe3)2}] 2 to complex4 was
completely unexpected; we assume that a 1,2-(C-P)-trimethylsilyl shift takes place in this
case. Although the chemistry of short-lived electrophilicterminal phosphinidene tungsten
complexes13 has received increased attention during the last years, partially because of the
versatility of 2H-azaphosphirene complexes,14 only a single example of a rearrangement
yielding aP-Cl-substitutedη1-phosphaalkene complex - via a 1,2-chlorine shift - has been
reported, so far15.
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Scheme 2. Rearrangement of transient phosphinidene complexes2a,b into 4a,b.

DFT calculations in order to study the rearrangement of pentacarbonyl-tungsten phos-
phinidene complexes2a (anti-periplanar) and2b (syn-periplanar) to the corresponding
phosphaalkene complexes4a and4b revealed that the formation of the C-P double bonds
proceeds via transition state complexesTSa andTSb (Figure 2; hydrogens except P=CH
are omitted).
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Figure 2. Phosphinidene complexes2a,b, transition statesTSa,band phosphaalkene complexes4a,b.

In consequence, this rearrangement represents an interesting and unique example of
an intramolecular 1,2-silyl shift in phosphinidene complex chemistry. Relative energies
of the 1,2-silyl migration of2a,b to corresponding4a,b can be taken from figure 3.
Anti-periplanar phosphinidene complex2a rearranges via transition stateTSa to theE-
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Figure 3. Energy profile of the 1,2-(C to P)-silyl migrationsin 2a and2b.

phosphaalkene complex4a. C1 symmetric phosphinidenes2a,bexhibit a long and a short
C-Si bond; the former is the one involved in forming the three-membered ring of the transi-
tion state which contains a five-coordinated silicon center. From an estimated singlet-triplet
gap of about 40 kJ/mol under thermal reaction conditions phosphinidene complex2a can
choose from two concurrent pathways: either undergo a fast reaction from the triplet ex-
cited state or - in the absence of suitable reaction partners- rearrange toE-phosphaalkene
complex4a; the reverse 1,2-silyl shift is hindered by a substantial barrier of about 144
kJ/mol. These findings agree well with experimental resultswhere reaction conditions
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could be optimized to synthesize pentacarbonyltungsten phosphaalkene complex4a from
the 2H-azaphosphirene complex1a. Apart from a smaller barrier (54 kJ/mol2a to 4a vs.
74 kJ/mol for2b to 4b) the major difference betweenTSaandTSb can be seen by compar-
ison of the P-Si and C-Si bond lengths involved in the transition state. WhileTSa is early
(according to the C-Si bond lengths) inTSb the position of the silicon center is almost in
between the originating carbon and the phosphorus.

4.3 Further Local Minima on the Hypersurface of [(OC)5W{PCH (SiMe3)2}]

So far at least six further local minima and a transition state have been located; four of
them are shown in scheme 3 and figure 4.
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Scheme 3.

Due to the CH(SiMe3)2 substituent at phosphorus phosphinidene complexes2a,bcan also
undergo a 1,2-H-shift to yield phosphaalkene complexes5a,b and, by a still unknown
transition state, highly unusual complex6a. The nature of the related transition-state com-
plex 6b (figure 4) remains to be clarified since reaction path following calculations were
not conclusive yet. There is no automated way to find isomers of a given sum formular.
From the literature16 the ability of phosphinidene complexes to undergo intramolecular
C-H insertions is known. Thus we could locate correspondingisomers7a,b (Scheme 4,
Figure 4; only selected hydrogens are shown for clarity), which are thermodynamically
more stable than phosphinidene complexes2a,b by 100 kJ/mol and even more stable
than the phosphaalkene complexes4 by 30 kJ/mol (7b) and by 20 kJ/mol (7a) respectively.
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Scheme 4. Intramolecular C-H insertion reaction of phosphinidene complexes2a,b to yield 7a,b.

5 Use of Compliance Constants for the Description of Bonding
Situations

A compliance constant is the displacement of a bond due to theapplication of a unit force
on that bond including reorganization. That means, a highernumerical value is connected
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6a 6b (transition-state) 7a 7b

Figure 4.

with a weaker bond. Introduced to vibrational theory by Decius17 and others18 experimen-
tal compliance fields obtained by Jones and Swanson from vibrational data clarified the
bonding forces in metal cyanides and carbonyls19, while Williams used compliance matri-
ces for the description of chemical reactivity20. Calculations of full compliance fields have
been used to investigate Ga-Ga21 and Si-C22 multiple bonds, the metal-metal bond char-
acter in homoleptic transition metal carbonyls23, hydrogen bonds in Watson-Crick base
pairs24 and polyphosphorus compounds25. Recently, Andreoni and coworkers used com-
pliance constants plus Car-Parinello molecular dynamic simulations in order to analyze a
proposed Si-Si triple bond26. We could show recently the usefulness of compliance con-
stants in the description of agostic interactions27. In order to use compliance constants
(diagonal elements of the compliance matrix) to assess the strength of a particular bond
type (e.g. a tungsten-phosphorus bond) a set of reference compounds has to be calculated
(Figure 5). From the statistic three different strengths ofbonding interactions can be in-
ferred: tungsten-phosphorus triple bonds range from 0.2-0.3 Å/mdyn while phosphinidene
complexes of the type [(OC)5WR] seem to have a W(CO)5 unit doubly bonded to phos-
phorus; ordinary W-P single bonds have compliance constants greater than 0.7̊A/mdyn.

W

P

Me
3
Si

N

N

N
SiMe

3

N

SiMe
3 [(OC)

5
W=PR]

[(OC)
5
W-P C H]

(CO)
5
W

P CH
2

H

[(OC)
5
W-PH

3
]

R = H          Me          Ph     CH(SiMe3)2

(8) (14)

(15)

(16)

W-P

0.220 0.274
0.408

0.511 0.541
0.611 0.622

0.771
0.858 0.901

1.210

0.000

0.300

0.600

0.900

1.200

8 9 10 11 12 13 2a 14 15 16 17

Figure 5. Compliance constants of P-C bonded compounds28.

By a similar procedure phosphorus-carbon triple (0.1Å/mdyn), double (0.15-0.2̊A/mdyn)
and single bonds (0.3-0.4̊A/mdyn) can be identified (Figure 6). For example the P-C com-
pliance constant of phosphaalkene complex [(OC)5W{HP=C(SiMe3)2}] (Scheme 3) falls
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well within the range of a double bond (0.192Å/mdyn).

Figure 6. Compliance constants of P-C bonded compounds29.

Acknowledgments

We are grateful to theDeutsche Forschungsgemeinschaftand theFonds der Chemischen
Industriefor financial support; we thank the John von Neumann Institute for Computing
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