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Black Holes in Galactic Nuclei

Christoph Eichhorn1,2, Patrick Glaschke1, and Rainer Spurzem1

1 Astronomisches Rechen-Institut, Zentrum Astronomie Univ. Heidelberg
Mönchhofstr. 12-14, 69120 Heidelberg, Germany

2 Institut für Raumfahrtsysteme, Univ. Stuttgart
Pfaffenwaldring 31, 70550 Stuttgart, Germany

This project studies the formation, growth, and co-evolution of single and multiple massive
black holes (MBHs) and compact objects like neutron stars, white dwarfs, and stellar mass
black holes in galactic nuclei and star clusters, focusing on the role of stellar dynamics. In this
paper we focus on one exemplary topic out of a wider range of work done, the study of orbital
parameters of binary black holes in galactic nuclei (mass, spin, eccentricity, orbit orientation) as
a function of initial parameters. In some cases the classical evolution of black hole binaries in
dense stellar systems drives them to surprisingly high eccentricities, which is very exciting for
the emission of gravitational waves and relativistic orbitshrinkage. Such results are interesting
to the emerging field of gravitational wave astronomy, in relation to a number of ground and
space based instruments designed to measure gravitationalwaves from astrophysical sources
(VIRGO, Geo600, LIGO, LISA).

1 Introduction

MBH formation and their interactions with their host galactic nuclei is an important ingre-
dient for our understanding of galaxy formation and evolution in a cosmological context,
e.g. for predictions of cosmic star formation histories or of MBH demographics (to predict
events which emit gravitational waves). If galaxies merge in the course of their evolution,
there should be either many binary or even multiple black holes, or we have to find out what
happens to black hole multiples in galactic nuclei, e.g. whether they come close enough
together to merge under emission of gravitational waves, orwhether they eject each other
in gravitational slingshot. For numerical simulations of the problem all models depend on
an unknown scaling behaviour, because the simulated particle number is not yet realistic
due to limited computing power (Milosavljevic & Merritt 2001, 2003, Makino & Funato
2004, Berczik, Merritt & Spurzem 2005). Dynamical modelling of non-spherical dense
stellar systems (with and without central BH) is even less developed than in the spherical
case. Here we present a set of numerical models of the formation and evolution of binary
black holes in rotating galactic nuclei. Since we are interested in the dynamical evolution
of MBH binaries in their final phases of evolution (the last parsec problem) we somehow
abstract from the foregoing complex dynamics of galactic mergers. We assume that after
some violent dynamic relaxation a typical initial situation consists of a spherical or ax-
isymmetric coherent stellar system (galactic nucleus), where fluctuations in density and
potential due to the galaxy merger have decayed, which is reasonable on an (astrophysi-
cally) short time scale of a few ten million years. The MBHs, which were situated in the
centre of each of the previously merged galaxies, are located at the boundary of the dense
stellar core, some few hundred parsec apart. This situationis well observable
(e.g. Komossa et al. 2003).
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According to the standard theory, the subsequent evolutionof the black holes is divided
in three intergradient stages (Begelman, Blandford & Rees 1980): 1. Dynamical friction
causes an transfer of the black holes’ kinetic energy to the surrounding field stars, the
black holes spiral to the center where they form a binary. 2. While hardening, the effect
of dynamical friction reduces and the evolution is dominated by superelastic scattering
processes, that is the interaction with field stars closely encountering or intersecting the
binaries’ orbit, thereby increasing the binding energy. 3.Finally the black holes coalesce
through the emission of gravitational radiation.

In this paper, the behavior of the orbital elements of a blackhole binary in a dense
stellar system is investigated. The evolution of the eccentricity has been discussed for
some time (Makino et al. 1993, Hemsendorf, Sigurdsson & Spurzem 2002, Milosavljevic
& Merritt 2001, Berczik, Merritt & Spurzem 2005, Makino & Funato 2005). According
to Peters & Mathews (1963) and Peters (1964) the timescale ofcoalescence due to the
emission of gravitational radiation is given by

tgr =
5

64

c5a4
gr

G3M1M2(M1 +M2)F (e)
(1)

whereinM1,M2 denote the black hole masses,agr the characteristic separation for gravi-
tational wave emission,G the gravitational constant,c the speed of light and
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(
1 +

73

24
e2 +

37

96
e4

)
(2)

a function with strong dependence on the eccentricitye. Thus the coalescence time can
shrink by several orders of magnitude if the eccentricity ishigh enough, resulting in a
strengthened burst of gravitational radiation. Highly eccentric black hole binaries would
represent appropriate candidates for forthcoming verification of gravitational radiation
through the planned mission of the Laser Interferometer Space Antenna mission LISA.

The evolution of the semi-major axis can be consulted to characterize the hardening
process of the binary. The behavior of the inclination is potentially interesting to predict
processes related to angular momentum exchange between theblack holes and the field
stars, and in particular to strengthen the hypothesis of of the connection between the ap-
pearance of so-called X-shaped galaxies and supermassive black hole mergers in galactic
nuclei (Merritt 2002, Zier & Biermann 2002).

2 Numerical Method, Initial Models

The simulations have been performed using NBODY6++, a parallelized version of
Aarseth’s NBODY6 (Aarseth 1999, Spurzem 1999, Aarseth 2003). The code includes
a Hermite integration scheme, KS-regularization (Kustaanheimo & Stiefel 1965) and the
Ahmad-Cohen neighbour scheme (Ahmad & Cohen 1973). No softening of the interaction
potential of any two bodies is introduced; this allows an accurate treatment of the effects
due to superelastic scattering events, which play a crucialpart in black hole binary evo-
lution and require a precise calculation of the trajectories throughout the interaction. The
code and its parallel performance has been described in detail in this series and elsewhere
(Spurzem 1999, Khalisi et al. 2003). The survey has been carried out for a total particle
numberN = 64 000 including two massive black holes withM1 = M2 = 0.01 embedded
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in a dense stellar system of 63998 equal-mass particlesm∗ = 1.5625 · 10−5. The total
mass of the system is normalized to unity.

The initial stellar distribution was taken from generalized King models with rotation
(Lagoute & Longaretti 1996, Longaretti & Lagoute 1996, Einsel & Spurzem 1999). Main
parameters are the dimensionless central potentialW0, describing the degree of central
concentration, and the dimensionless rotation parameterω0. We have performed a series
of models forW0 = 0, 3, 6, ω0 = 0.0, 0.3, 0.6 (the last value means that there is a 20%
fraction of rotational kinetic energy in the system, which is still a mild flattening); further-
more we have varied the initial velocity of the MBHs to bevc,

√
2vc, and0.136vc, where

vc is the tangential velocity of a circular orbit at the initialMBH position. Other param-
eters of the problem, which we have not yet varied extensively, are the mass ratio of the
black holes to the stars and the mass ratio of the black holes to each other.

3 Simulations

3.1 Evolution of the Binding Energy

We measure the relative two-body energy, angular momentum and other orbital elements
of the MBH binary from the beginning of our simulations. In the first evolutionary stage,
each black hole individually suffers from dynamical friction with the surrounding low mass
stars, which is the main process of losing energy. Note that for simplicity we also use the
above defined energy (and also the eccentricity definitione of a bound two-body orbit)
even if the MBH binary is not yet bound. In such a caseE ande are just numerical values
which give informations about the relative state of motion of the two MBHs, but do not
imply that they are already bound.

The role of dynamical friction decreases when a permanentlybound state occurs, as the
dynamical friction force acts preferentially on the motionof the now formed binary rather
than on the individual black holes. Superelastic scattering events of field stars at the binary
shall be more and more important for the reduction of its energy. These events cause a
stochastic variation ofE ande in our models. Nevertheless energy and angular momentum
(which determinede) undergo a diffusive process with a net change of orbital parameters
on top of the stochastic variations. In the stage when superelastic scattering dominates the
picture, the energy loss rate is commonly written in terms ofthe dimensionless hardening
constantH

d

dt

(
1

a

)
= HG

ρ

σ
(3)

wherea is the separation of the black holes,ρ the mass density andσ the velocity disper-
sion in the environment of the binary (see e.g. Merritt 2001). In other words, the process
leads to a continous hardening of the MBH binary, provided there are always enough inter-
action partners available (the ”loss cone is full”, see discussions in Milosavljevic & Merritt
2003, Berczik, Merritt & Spurzem 2005).

Our measured hardening constants are in majority slightly below theH = 8.4 pub-
lished elsewhere (Hemsendorf, Sigurdsson & Spurzem 2002),where a Plummer model
was used, however. The lower values can be possibly explained by the fact that dynamical
friction might still have a noticeable influence. Regardingour calculatedah as criteria for
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Figure 1. Time evolution of the MBH eccentricity. King parameterW0 = 6; ω0 = 0.0 left, no rotation,
ω0 = 0.6 right, rotation. Different initial velocities are indicated with different colours,v0 = 0.136vc blue,
v0 = vc green, andv0 =

√
2vc red.

the domination of superelastic scattering events, the hardening separation could be signif-
icantly smaller ifσ increases during the simulation asah ∝ σ−2. An enhancedσ can be
expected forρ/σ =const. if it is assumed that the black hole would capture stars during
the simulation and raise the central density.

3.2 Eccentricity

The eccentricity is given by

e =

√

1 +
2El2

µ(GM1M2)2
(4)

whereMi (i = 1, 2) are the masses of the two black holes,µ = M1M2/(M1 + M2) is
the reduced mass,G the gravitational constant,E the energy, andl the specific angular
momentum of the two black holes relative to each other. Fig.1shows some results for
the calculated eccentricity evolution. Each plot assorts simulations of a fixed pair of King
parameters under variation of the initial velocity.

Obviously, simulations with an initial velocity comparable to the circular velocity tend
to end up in low-eccentricity motions of the black hole components, whilev0 = 0.136vc

runs reach generally higher final eccentricities. This behavior was already indicated by
Makino et al. (1993), who simulated two black holes of the massesM = 0.01 im a Plum-
mer sphere of 16348 particles. They found very high final eccentricitiese ∼ 0.99 applying
very low initial velocities, while their largest value,v0 = 0.5vc, reached a noticeably
smaller finale ∼ 0.665.

The dependency of the final eccentricity on initial velocities can be understood by
considering the black hole trajectories. In Fig. 2, forv0 = vc, the black holes spiral at
first independently of each other to the center. The influenceof dynamical friction causes
a steady loss of kinetic energy. Within the time intervalt = [10.11; 20.14], the total energy
becomes negative and the binary reaches a bound state; in thefollowing the binary hardens,
the separation decreases due to superelastic scattering events and the circular motion center
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Figure 2. Trajectories for the modelW0 = 3, ω0 = 0.3, v0 = vc in the projection on the xy-plane. Red
and green mark the orbit of a black hole respectively. Solid lines indicate the trajectories passed through in the
time interval mentioned above each figure, the dotted lines hint the orbit before. Note the scaling of the axes in
different figures.
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Figure 3. the same as in Fig.2, but withv0 = 0.136vc

of mass of the binary itself becomes visible. At the time the attractive force between the
black holes becomes comparable to the gravitational force of the stellar distribution, the
individual trajectories of the black holes are still circular around the systems center of mass.
This means that the circular orbits generated by the initialvelocity is ”conserved” until the
binary reaches a bound state and beyond as dynamical friction is not strong enough to
change the trajectories dramatically.

A different situation arises forv0 = 0.136. As a consequence of the low velocity,
the black holes must plunge near to the center, but dynamicalfriction is at the time of the
closest encounter (the pericenter of the relative motion) not sufficiently effective to prevent
the re-swing to the outer regions and to circularize the orbits in this way. Therefore, the
initial form of the orbits is kept until the end of the simulation. We have studied a much
wider parameter range than described here and also looked atother orbital elements of the
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Figure 4. Three-dimensional diagram of the centre-of-masstrajectories of our MBH,W0 = 6 and v0 =
0.136vc. The rotation parameters areω0 = 0.0 left andω0 = 0.6 right. The different colours indicate the
orbits in the denoted time intervals respectively.

MBH (e.g. its inclination relative to the galactic plane, which could be an observable due
to the large scale radio jets emitted from the central MBH engines in galactic nuclei), and
we have also studied the effect of co- and counterrotation (different angular momentum
axis of the stellar system and the initial MBH motion). The interested reader will find a
complete review of our results in Eichhorn & Spurzem (2006, MNRAS, in preparation).

3.3 Brownian Motion

The center of mass (CM) of a hardened binary is expected to to perform an irregular motion
in the central region of the stellar system. This motion is often described by the concept
of Brownian motion, as it is characterized by a friction force (dynamical friction) and a
fluctuating force (as the result of scattering events and encounters of field stars). We have
measured and analysed the Brownian motion of an MBH due to superelastic scatterings in
detail, but show here only one exemplary picture as a typicalresult.

We conclude from this section: (1) The final eccentricity is strongly dependent on the
initial black hole velocities. (2) The eccentricity is dependent on the rotation parameter of
the model. (3) Determined hardening rates agree within the expected systematic and sta-
tistical error with previously published work. (4) Only weak changes in the inclination and
in the orientation of the angular momentum vector directionhave been observed, consis-
tent with simulations by Milosavljevic & Merritt (2001). (5) Counter rotation simulations
yield noticeably different results in eccentricity, in onecase actually an extreme large value
ē = 0.997. (6) Brownian motion of the center of mass of the binary is influenced by the ro-
tation of the stellar system (points (4) to (6) are just givenhere but not discussed in further
detail).
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4 Computational and Algorithmic Issues

We use a timing model for our parallel code which is flexible and usable for many different
kinds of hardware. It is

T = α
(N2

np
+
NNn

np
+A ln2 np +BN

)
(5)

whereT is the total wall clock time, the four summands (from left to right) are the reg-
ular and irregular (neighbour) force computation time, latency and bandwidth dominated
communication time (note that a new communication scheme isassumed here, which re-
duces the latency, which is not yet included in all our simulations. In the old case the
latency scaled linearly withnp). N , Nn, np are the total particle number, the neighbour
number in the Ahmad-Cohen neighbour scheme, andnp the processor number used.α,A,
B are a time and two dimensionless constants depending on the hardware. Measurements
on the IBM Jump deliver values ofα ≈ 0.3µ sec,A ≈ 500, B ≈ 2, with fluctuations
of a factor of 2 to 3 depending on details of the simulation. With these new data we can
derive a new value for the optimal neighbour number, which isNn,opt ∝ N3/5 for small
N (up to about104) andNn,opt ∝ N1/5 for largerN . This is significantly smaller than
the previously proposed value of Makino & Hut (1988),Nn,opt ∝ N3/4. With a smaller
neighbour number less communication is required and thus larger processor numbers can
be used. Our algorithm always works best if we have a balance between communication
and computation (this work and more details will be found in Glaschke, 2006, Ph.D. thesis
in preparation, and be published elsewhere, too).

Note also, that despite a very good efficiency of our code the use of special purpose
hardware such as GRAPE is more efficient for the largest particle numbers (such as105

or 106). Recent supercomputers which combine standard CPUs with application acceler-
ation processors (e.g. CRAY XD1 with FPGA chips) offer a promising path to join both
advantages (A. Ernst, ongoing work in progress).

5 Outlook, Other Subprojects

In ongoing studies we are right now transcending the limits of Newtonian dynamics. At the
termination of the simulations shown above, in particular the very highe-cases, relativistic
corrections cause measurable (in the sense of the accuracy of the numerical model) changes
in the orbital elements. We have included these terms as perturbative forces in the KS
regularisation up to the so-called Post-Newtonian order 2.5, which includes two orders of
perihel shifts and the lowest dissipative term, sufficient to describe gravitational radiation
(Kupi, Amaro-Seoane & Spurzem 2005, in preparation). In future work more relativistic
effects could be included, such as spin-spin and spin-orbitcouplings, and linear momentum
recoil at MBH binary coalescence. A collaboration with G. Schäfer and G. Achamveedu
(Jena) is being developed to properly formulate these terms. Scaling requires that one
cannot simulate such systems without realistic particle number. Such models are proposed
in the DEISA scheme.
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