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Free Energy and Rare Events in Molecular Dynamics

Nikos L. Doltsinis

Chair of Theoretical Chemistry
Ruhr-Universitat Bochum
44780 Bochum, Germany
E-mail: nikos.doltsinis@theochem.rub.de

Molecular dynamics (MD) preferentially samples regionsaffiguration space close to poten-
tial minima while transition state regions at the top of highction barriers are rarely visited.
In this lecture, we will discuss a variety of improved samgliechniques that make possible
the study of rare events on the finite MD time scale and theutzlon of free reaction energies.

1 Introduction

Any kind of molecular dynamics (MD) simulation, be it clasdi (i.e. using force fields)
or abinitio, suffers from the same fundamental limitations due to thefiess of compu-
tational resources. Although the arguments and computttechniques presented in this
article apply to both types of MD, our perspective is that fifst principles dynamicist.

Despite continuous advances in both numerical efficiendyamputer technology,
Car-Parrinello molecular dynamics (CP-MD) simulatibAsire still limited to processes
involving a few hundred atoms and occurring within a few tefysicoseconds at most. The
number of chemical reactions which take place spontangomnstuch a short time scale,
however, is fairly limited; typically energy barriers of makcal/mol need to be overcome.
A wide variety of computational approaches have been dpeelover the years to force
or speed up chemical reactions in ab initio molecular dyearand calculate free energies.

The fundamental problem in moving from reactants to proglisdhat the true reaction
coordinate is often unknown. Choosing a realistic reactioordinate is essential for a
simulation of rare events to be useful. This task becomeseshingly difficult for systems
with large numbers of nuclear degrees of freedom. A way dfesyatically determining
an ensemble of reaction coordinates has been suggestedangli€hand co-worke?s!
based on pioneering work by PfattAlthough powerful and appealing, their transition
path sampling method is computationally rather demandmgarticular when used in
combination with CP-MD. In the latter context, a variety of alternative methodsteen
proposed over the years. One class of approaches is basedmetic constraints, such
as simple atomic distance¥ collective “target” distance'? or coordination numbé#16
constraints. The strategy of another class of methods isitatdy modify the potential
energy surface to enhance sampling of rare events. Cheftioding'’, adiabatic free
energy samplin 1°and non-Markovian metadynamt€s®#all fall into this category.

The present article will cover aspects of both classes ohaus, the focus being on
the frequently used constraint techniques. After a genetalduction to the constraint
formalism in MD, we will describe in some detail two specifanstraint approaches, the
coordination constraint and the targeted MD (TMD) methddghe last part of this text,
the method of non-Markovian metadynamics shall be predente



In a limited number of cases, the reaction coordinate carppeoaimated reasonably
well by simple geometric variables, such as bond lengthaigles. Rare events of this
type may be studied using standard constraint techmei#gprovided that one is able to
guess the reaction mechanism prior to the simulation.

For cases where the reaction coordinate cannot be well gippaited by such simple
constraints, i.e. for complex reactions involving a largener of atoms, there exist a
number of more advanced constraint methods. The coordimatimber constraint, for
instance, was designed by Sprik®to describe chemical reactions in solution. Despite
being a simple scalar order parameter, the coordinatioatraint is capable of acting on
all atoms in the system. Thus it ensures a large degree ofsitflexibility while retaining
the numerical simplicity of a simple bond constraint.

Similarly, the TMD approach proposed by Schlitter and cakeeS ! can be treated
using the well-established numerical techniques develdpe standard distance con-
straints without the need to know in advance a good low-dBiweral approximation to
the reaction coordinate. In the TMD method, the reactiorrdioate is defined by a single
mass-weighted root-mean-square “target distance” betwdaown initial structure and
a fixed final (target) structure. By gradually reducing thestoained target distance to
zero, the system is driven from the reactant to product stiteout explicitly defining the
reaction pathway.

The method of non-Markovian metadynantft$®is based on the idea that the system
can be forced to sample higher-energy regions of configuratpace by gradually fill-
ing up the wells of the potential energy surface. This is et by adding an artificial
Gaussian-shaped contribution to every region that isedsituring the simulation thereby
driving the system out of one local minimum to a neighborimgal minimum.

2 Constraint Techniques

2.1 Basic Theory
2.1.1 Constrained Molecular Dynamics

The Lagrangian of an unconstrained system consistingvoitoms with positions
R =(R4,Ro,...,Rk,...,Ry) and massed/x is

N
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[,=T—V=§§K MgR3 —V(R) (1)

where7 andV are the kinetic and potential energies, respectively. Tjuagons of motion
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Let us now introduce a numbet, of holonomic (only coordinate dependent) con-
straints

MgR$ = K=1,... N;a=zy,2 . (3)

Uz(R):gz(R)_ga i=1,...,n (4)



where thet;(R) are geometric variables, e.g. bond lengths, bond angletihedral an-
gles, and th&; are their respective prescribed values. The Lagrangiameofonstrained
system is

L'=L-> \o; (5)

with a set ofn undetermined Lagrange multiplieds. The corresponding equations of
motion are

g oL’ oL (6)
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A commonly used iterative scheme to solve the constrainadtemns of motion (Eq. (7))
in combination with the Verlet propagation algorithm hagmb@amed SHAKE 2%, Al-
ternatively, constrained dynamics may be formulated withe Hamiltonian framewofR
in which case one can derive the RATTLE algorittrto be used in conjunction with the
velocity Verlet propagator.

2.1.2 Free Energy by Thermodynamic Integration

The free energy difference between two stagésind£?, can be expressed in terms of the
reversible work required to move frogh to £2 along the reaction coordinagé® 27:32.33.28

£2 cond.
aw =wie)-wie) = [T () ®

where mean force

(). (o) ©
0 /[e — (0(E=€)
is the conditional ensemble average evaluategd-até’ of the generalized force, i.e. the
derivative of the Hamiltioniaf{ with respect to the reaction coordingte

Using the so-called blue moon ensemble methdds possible to calculate conditional
averages from time averages over constrained MD trajestatifixed valueg§ = ¢,
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corrects for the configurational bias introduced by the trangt. The Jacobian matrix,

J, for the coordinate transformation from Cartesian coat#in R, to generalized coordi-

natesy, including the reaction coordinaeR < u = {¢, q}, is defined by
OR%,
Jx = K
Kk 611%

In practice, the rhs of Eq. (10) is difficult to evaluate beszaaf the derivatives with respect

to £. The problem can be simplified considerably by exploiting fdct that the Lagrange
multiplier associated with the constraint (cf. Eq. (5)) igiel to the generalized for¢ke

(12)

oH
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5e = (13)
This immediately follows from the Hamiltonian equation obtion
oH
= — 14
3¢ A (14)

realizing that the momentum conjugaté, to the constrained variabfevanishes. Apply-
ing the blue moon unbiasing procedure, the mean force (Bpc#® be expressed in terms
of the constrained average of the Lagrange multipliét: 323328
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2.2 Specific Reaction Coordinates
2.2.1 Coordination Constrained Molecular Dynamics

For the study of chemical reactions in solutions, the cawtion number of a specific atom
K=2¢C,

E=ncR) = [explrlrx —re)] +1]7" (17)
K#C

has proven particularly usefdl Here,rg is the distance of atonk” from atomC; the
coordination radius. and the width of the Fermi functiomare parameters to be set prior
to the simulation.

This coordination constraint has been applied in a numb&rMD studies of pro-
ton transfet*16:12:35mgstly in aqueous solution. In the following, we shall dissudhe
example of P(OH)in liquid water>: 16,

The study of pentacoordinated phosphorus compounds hgsdoakey role in the
attempt to unravel the mechanism of the hydrolysis reacfoRNA3-3%.12 Experimen-
tal evidence on the first step of RNA hydrolysis — so-calleshehge transesterification
— has suggested two possible reaction pathways involvingaoamnionic phosphorane
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Figure 1. a) Mean force of constraint as a function of the dimation numbem for the axial (J) and the
equatorial ¢) site b) corresponding free energy curves obtained by atieg of the mean forces.

transition state and a dianionic phosphorane intermedizgpectively”- 38 Determination
of the phosphorane’s lifetime and protonation state isiefioee, of prime importance in
establishing a detailed picture of the hydrolysis reactimchanism. Knowledge of the
relevant g, values would thus provide vital clues.

The essential quantity required in order to calculate thg palue of a given molecule
is the Helmholtz free energy differenc& A, for hydrogen abstraction. This quantity can
be extracted from constrained molecular dynamics by thdymamic integration provided
the control parameter is a reasonable approximation toethetion coordinate. In high di-
mensional systems, a simple distance constraint ofteds/gétather poor approximation to
the true reaction coordinate, and when used to locate tiamsiates can lead to erroneous
result$® 4 Simple geometric order parameters, however, can stilllialsle as integration
variables for the determination of free energy differeneseen well defined reactant and
product states distance. An additional problem is encoadti protic solutions; when
the dissociating proton has reached a critical distanaa fte donor atom, the latter is
vulnerable to reprotonation by a different solvent protdhis difficulty is circumvented if
we enforce deprotonation by gradually decreasing the @oatidn number of the oxygen
atom of a specific hydroxyl group.

In two separate series of coordination constrained CP-Mikitions, we have deter-
mined the free energy for deprotonation of an axial and amtqial hydroxyl group of
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Figure 2. Sequence of snapshots illustrating a dehydratient: a) application of coordination constraints leads
to the formation of Hoj. b) a HsO ion breaks loose and subsequently donates a proton to thishgxiroxyl
group of the phosphorane through a chain reaction of pratmmsters. c) the axial hydroxyl group has been
protonated and is about to break its PO bond. d) the remaptiogphoric acid loses a proton to the solvent.

the trigonally bipyramidal P(OH) respectively. The value of (cf. Eq. (17)) was grad-
ually decreased towards zero starting near its equilibrratae of approximately unity,
thus transferring a proton from the hydroxyl group @ to the acceptor solvent water
molecule HO4. For each, fixed, value of the coordination number a trajgatbroughly

2 to 3 ps length was computed. In Figure 1a the blue-moon cedeaverage constraint
force (Eq. (15)), i.e. the mean force, is plotted as a fumctibthe coordination num-
ber for both the axial and the equatorial site. The equilibrivalue ofn. was determined

to be 0.98 in both cases from the trajectory of unconstrai(@H). In the region just
below the equilibrium value of we observe a steep rise of the mean force reaching a
maximum atn = 0.925. As expected, the restoring force resisting proton abistrads



significantly higher for an axial proton than for an equathproton, the mean forces being
286.6 kd/mol and 214.6 kJ/mol, respectively. With furthecretasing coordination number
the mean force is seen to fall off towards zero and we obséeéormation of a O}

ion (Zundel ion) (Figure 2a). The smallest valuerofor which a meaningful trajectory
could be obtained was 0.2 in the case of the equatorial sd@&hfor the axial position.
For smallem the HOF ion breaks up into a hydronium ion and a water molecuy©H
which has accepted the proton from the phosphorane andatbaabther proton to its
nearest neighbor. The newly creategd ion is now free to attack the negatively charged
phosphorane. Figure 2b-c illustrates how an axial hydrgxgup of the phosphorane is
protonated turning it into a $OT group initially. The corresponding PO bond is subse-
quently broken and a neutral water molecule leaves the plovape molecule. Since we
are now dealing with phosphoric acid; POy, in water, it is not surprising that we observe
spontaneous deprotonation within femtoseconds (Figuye s dehydration process is
in competition with the deprotonation reaction we intenémdorce by using coordination
constraints and makes it impossible to calculate any t@jes at very small values of
without dissociation of the phosphorane.

The free energy differenc& A between two values of the coordination number can be
obtained by integration of the mean force. In Figure 1b tiseiltang free energy curves
for axial and equatorial hydroxyl groups are plotted také&wmilibrium as the reference
point. The equatorial curve ends at a free energy differefei.7 kJ/mol forn = 0.2
well below the axial curve ending @& A = 60.2 kJ/mol forn = 0.3. Following the
procedure outlined in Refs. 15,16 we have then determinedhkh, values to be 9.8
and 14.2 for equatorial and axial hydroxyl groups, respebti Very recent experimental
estimates based on a bond length & pcorrelatiort® give 8.62 + 1.87 and13.5 £ 1.5
for the equatorial and axial OH groups of tetracyclohexyloydroxyphosphorafé The
value of 7.9 calculated by Lopez et¥l.from an empirical reaction field model for the
equatorial OH group of ethylene phosphorane is substnt@ker than our estimate.
As we have pointed out above, however, explicit treatmerthefsolvent may make a
crucial difference in the current context. Moreover, wewdtdear in mind that all three
pK, estimates compared here have been obtainedifferent (although in many respects
certainly similar) phosphoranes.

2.2.2 Targeted Molecular Dynamics

A detailed description of Targeted MD (TMD) including a dission of the mechanical
and statistical properties of the constraint is availabléae literatur&'% Here, we simply
provide a brief outline including the most important eqoas.

In TMD, the reaction coordinate is defined as the target digta

N

D(R) = | 3 ME (R — T2 (18)
K=1

between the instantaneous reactant strucRire= R(¢) and the fixed product (target)
structureT = {Tk}, whereM is the total mass of the system. In order to eliminate any
translational or rotational contributions, the targetatise D(R) is minimized by super-
imposing the centres-of-mass of the two configurati®andT, followed by rotation of



H6 H7

<—

Transition State

H4 e o H5 s

Initial Structure Target Structure

H3

Transition State
Initial Structure Target Structure

Figure 3. (A) Initial and target ethane structures usingsthggered conformation (rotation by P2@s the target
structure (see text for more details). (B) Initial and tafg&D structures.

the target structure. The remaining distance, called tlyetalistance, is a measure of the
structural root mean square distance between the two matemnformations. During the
course of the molecular dynamics simulation, this distaagradually reduced towards
zero and the initial reactant structure is driven towar@sténget structure.

A particularly attractive feature of this approach is thet that the time averaged con-
straint force (Eqg. (15)) can be obtained from a TMD run at adfix@ue ofD as the average

Lagrange multiplier, i.e.
oM cond.
without the need to correct for metric tensor effects.

TMD using classical force fields has recently been employitdeonsiderable success
to study conformational transitions and folding in pro&fn*’. In the following, however,
we will present results from the first TMD study based on CariRello MD (T-CP-MD).

In this study, two test cases were considered, rotationtefret about the C—C bond and
double proton transfer (DPT) in formic acid dimer (FAD). &ig 3 provides a pictorial
representation of the initial and target structures forttbesystems investigated by T-CP-
MD.

The average constraint force for the staggered-to-edipsestaggered conformational
transition (rotation by 129 in ethane is shown in Figure 4 as a function of the target
distance including the associated free energy profile. Mhialitarget distance between
the two staggered conformationsiis = 0.88 a.u. corresponding to a rotational angle
about the C—C axis of 120At this initial D, the average constraint force is approximately
zero. AsD decreases, the constraint force increases as the cohgwaimes the system
towards the energetically unfavourable eclipsed conftiongrotation by 60). Having
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Figure 5. Variation in the average constraint force as atfonoof D for FAD. Filled squares represent the
average constraint force for the 'full’ TMD, while the opequares show the result for the partial target structure
involving only the four oxygen atoms and the two protons imed in DPT. After the DPT evently = 0.2 a.u.)

the constraint loses control of the system.



reached a maximum, the average constraint force then sgtim@ero at the transition state
(D = 0.43 a.u.). At this point, the system is sitting exactly on the &dphe potential
energy barrier. Further reduction Bf results in negative values of the average constraint
force. This arises from the fact that, having overcome tlegggnbarrier, the system would
preferentially move directly to the eclipsed (target) stawe. The constraint however does
not allow this, and acts in such a way as to “hold” the systeweawnom the target structure,
resulting in a negative average constraint force.IAgets very close to zero (in this case
for D < 0.1 a.u.), the average force adopts exceedingly large positiiges. This is
because the phase space volume available to the systemaslexeithD resulting in
an increasing centrifugal component of the constraintefSrcin other words, when the
available phase space becomes so small that it confineshitegiohs of the system, the
average constraint force increases dramatically as at i@fdthlis “entropy loss”. The free
energy profile resembles a Gaussian form, with a maximumabapnately the midpoint
of the reaction coordinate. Indeed the resulting free gnprdfile is very similar to that
obtained from the MEP.

For the study of DPT in FAD, we performed two series of T-CP-EiBwulations. In
the first series of simulations we used a 'full’ target coaistr including all atoms of the
molecule, whilst in the second simulation we employed atipHrtarget constraint, only
using for the evaluation oD those atoms that are predominantly involved in the DPT
reaction, i.e. the four oxygen atoms and two protons caristd the two H-bonds. The
resulting average constraint force curves are depictedjur€& 5. In both cases, we see a
very different force curve compared to that obtained in thaee simulation. The average
constraint force increases slowly to a maximum as the DPThtegereached. Just after
DPT, the average constraint force rapidly decreases to 2¢neery smallD, the average
constraint force begins to increase again, due to the affdbe target constraint entropy.
It is immediately apparent that in FAD, the constraint “les@ntrol” of the system after
the DPT reaction has occurred. We consider that this isgligrtiue to the fact that FAD
is much more flexible than ethane and partially due to thetfeadtthe TMD constraint is
not “focussed” directly on the protons involved in DPT, timthe mass-weighted target
distance is dominated by the heavy atom frame.

3 Metadynamics

Another common strategy to accelerate barrier crossingsists in modifying the poten-
tial energy landscape in such a way as to “fill up” potentiahimig*¢-50:17.51.52 |y this
section, we will describe a particular method of this typdchithas been named metady-
namicg®-24.53

Prior to the simulation one has to define a numbemf reaction coordinate$ (R)
characterizing the transitions between several local nmanof the potential energy sur-
face. For each reaction coordingtiean associated dynamical varialag is introduced,
component of the vect&. The Lagrangian of the extended system is

_— 1¢ =2 1N =12 =
L=L+ B Zﬂz‘~i ) Zkz [GR) - E]" - V(t,E) (20)
where L is the standard Lagrangian underlying the MD, in the sintptase (Eq. (1)),

;i andk; are the fictitious mass and the coupling constant assocvatedthe reaction

10



Figure 6. Schematic illustration of the metadynamics Injsttependent potentidl (¢, E) as a function of time
(curves labelled 1-5 in the order of increasing simulatiore} added to the potential energy surface (solid line).

The simulation started in the central minimum before théesyss driven to the left minimum and finally to the
minimum on the right.

coordinate;. The history-dependent biasing potential is defined as

_E- E’“)Z] exp l_ (B -=hE-=9P] 4y

V(t,E) = Z Wy exp

=1)2
=, 2(AEY)

with B = E(t) andE* = E(t); AZ! = |EF! - 2% and AZ* determine the width
of the Gaussian in the direction perpendicular and partléhe motion of=E. In earlier
publications on metadynamfés®?, the prefactoi¥, was updated according to

Wi = )\Z(EfH — Ef) (ki [&G(R) — Bi]) (22)

counterbalancing the restoring force contribution fromftiee energy surface. The average
() is taken over the time intervdlt = t;1 — t (typically 10-100 times larger than the
MD time step) between two updates of the poteritiéd, =) and X is chosen smaller than
unity?. In some recent works, a constant prefadiy = W was found to be more
advantageo(t$ %4

As the simulation time approaches infinity, the history-elegent potentidl’ (¢, £) has
filled all the potential wells of the free energy surface aepresents the negative of the
latter, i.e., using the same notation as above (cf. Eq. (8)),

tlim V(t,E) = —W(E) + const. (23)
—00
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A schematic one-dimensional illustration of the time etiolu of the biasing potential
V(t,E) for a typical potential energy surface can be seen in Figur@ife Gaussian-
shaped potential hills (Eq. (21)) drive the system away fpyaviously visited regions of
configuration space. This occurs in an indirect way by prafiag the fictitious dynamical
variablesZ; to which the actual reaction coordinatgéR) are coupled through the third
(harmonic) term on the rhs of Eq. (20). The paramejgrs:;, W, andAZ! have to be
chosen carefully to ensure efficient and, at the same tinoeirate exploration of the free
energy surface. The widtAZ! of the Gaussian hills can be estimated from fluctuations
of the E; in the unbiased potential, i.8/(¢,Z) = 0. The height of the individual hills,
W, should be lower thakT'. The fictitious masseg;, and the spring constants;, have
to chosen in such a way as to keep Hyeclose to the reaction coordinatégR) while
maintaining adiabatic separation of fictitious and nuctesgrees of freedom.
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