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Lipid bilayers are models of biological membranes. The bilayers undergo thermally driven
phase transitions between solid and liquid phases of different liquid-crystalline character.
Cholesterol is known as a molecule that strongly modulate the phase behavior of lipid bi-
layers. It is surmised that the molecular evolution of sterol molecules into cholesterol was
subject to a selection pressure that led to optimization of certain membrane physical properties.
In this set of lecture notes we demonstrate how a combination of experiments and computer-
simulation calculations can shed some light on this question by assessing the differential effects
on lipid-bilayer behavior of cholesterol and one of its evolutionary predecessors, lanosterol.
The simulations are based on a microscopic model for the lipid-sterol binary mixtures that
consists of three basic ingredients: a representation of the translational degrees of freedom, a
description of molecular conformational degrees of freedom and an expression for the potential
which provides a minimal model of the interactions between the molecules. The simulations
are performed using a random-lattice representation and algorithm. The methods of analysis
involve umbrella sampling, histogram techniques, and finite-size scaling analysis. Results are
presented for phase diagrams, order parameters, structure factors, as well as lateral diffusion.
It is concluded that cholesterol in lipid membranes, in contract to lanosterol, lead to the stabi-
lization of a particular membrane phase, the so-called liquid-ordered phase, which may present
some biological advantages over more disordered liquid phases. In particular the liquid-ordered
phase sustains the formation of locally ordered domains (or ‘rafts’) which biologists currently
believes are the platform for a number of important biological functions.

1 Introduction1

The traditional view of biological membrane organization is that the lipid molecules form
a featureless two-dimensional fluid in which proteins are kept in place by hydrophobic
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Figure 1. Schematic model of the plasma membrane of a eukaryotic cell which highlights the membrane as a
composite of a central lipid bilayer sandwiched between the carbohydrate glycocalyx (which consist of poly-
saccharides) on the outside and the rubber-like cytoskeleton (which is a polymeric protein network) on the inside.
Intercalated in the lipid bilayer are shown various integral proteins and poly-peptides. The membrane displays
undulations and the lipid bilayer displays lateral heterogeneity, lipid domain formation, and thickness variations
close to the integral proteins. Whereas the lipid molecules in this representation are given with some structural
details, the membrane-associated proteins remain fairly featureless. In order to capture many different features in
the same illustration, the different membrane components are not drawn to scale.

interactions with the lipid acyl (fatty acid) chains, hydrophilic interactions with the lipid
polar heads, and perhaps anchoring interactions with the cytoskeleton2. In the absence of
anchoring, the proteins can diffuse laterally in the plane of the membrane. A schematic
illustration of of a eucaryotic cell plasma membrane is given in Fig. 1.

A large number of experimental studies of membranes and lipid bilayers have in the last
decade made it increasing clear, that membranes are highly structured fluids with a substan-
tial degree of lateral structure3. The advent of the so-called raft hypothesis for vertebrate
and fungal plasma membranes has shaped this view4, 5. Research into the properties of de-
tergent resistant membrane fractions has led to the result that sorting of membrane proteins
and signal transduction require co-localization of the related proteins in domains of length
scale 70-200 nm, which are called rafts. The lipid compositions of these domains are
far from featureless, rich in sphingolipids, cholesterol (vertebrates), or ergosterol (fungi).
Moreover, the sterol is vital as its absence impedes raft formation. Finally, it has been con-
jectured that, in most cases, rafts form a more compact phase than that of the surrounding
lipid environment, while still remaining fluid. Thus, the research on rafts suggests strongly
the active roles of lipids, especially sterols, in biological functions of cells.

Since cholesterol (or ergosterol) is a key component of all plasma membranes and fur-
thermore is central for the raft hypothesis, it is of interest to investigate, in a simple and
transparent setting, the way cholesterol modulates the physical properties of lipid mem-
branes. In particular, it is relevant to study the effect on the membrane phase equilibria
and how cholesterol may induce various ordering phenomena in membranes, especially
on small length scales. This calls for specific experiments on well-defined model sys-
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tems together with theoretical calculations on simple molecular models. In the present
set of lecture notes we shall describe a two-pronged approach to the problem by combin-
ing experiments with simulations. The experimental data is obtained mostly from nuclear
magnetic resonance (NMR) spectroscopy. On the theoretical side it would be ideal to carry
out Molecular Dynamics (MD) simulations on realistic atomic-scale models. Despite the
advances in computer technology it it at the moment only possible to perform MD simula-
tions on fairly small systems6–12 (up to about 105 atoms, corresponding to some hundred
lipid molecules and tens of thousands of water molecules) of lipid bilayers in water, possi-
ble with a single large protein or a few smaller proteins imbedded in the membrane. The
MD simulations are usually limited in time up to about 10-100 ns. In the case of lipid
membranes containing sterols10, 13, 14 this implies that MD simulations are currently unable
to investigate lipid membrane phase transitions and phase equilibria, whereas these tech-
niques are capable of obtaining detailed information on the effect of local ordering due to
different kinds of sterols. Therefore simpler coarse-gained models are called for that allow
larger systems to be simulated. This is the strategy which forms the basis of the present set
of lecture notes.

1.1 Lipid Bilayers are Model Membranes
It is generally difficult to investigate the properties of biological membranes at a molecular
level because of the enormous chemical diversity of lipids and proteins involved. Many
experimental and theoretical studies are therefore, performed on model membranes, which
are composed of a few lipid and/or protein species. Most of such model membranes can
be easily produced in-vitro as a result of the self-assembly process of their molecular com-
ponents dispersed in aqueous media15.

Despite of their relative chemical simplicity the model membranes exhibit sufficient
complexity to mimic some of the physical characteristics of biological membranes. For
example, ternary mixtures of two lipid species with cholesterol have been used by many
researches as model systems for studying raft formation4. In these model membranes, do-
mains where one of the lipid species forms a compact physical phase – known as the liquid
ordered (lo) phase16 – together with a large concentration of cholesterol molecules appear
within a less compact background fluid formed by the other lipid component with very
little cholesterol. The nature of the background phase is typical of single-component lipid
bilayers in the liquid crystalline phase, also known as the liquid disordered (ld) phase16.
We will give a description of the phases below.

We shall be particularly interested in investigating the thermodynamic phase behaviour
of such model membranes with the view to understand the essential microscopic inter-
actions underlying the phase behaviour. Our approach has been to carry out theoretical
studies based on computer simulations of microscopic interaction models in parallel with
experimental investigations. The microscopic interaction models that our group has used
or developed during the past two decades have varied focuses, depending on the specific
physical questions under investigation17, 18. Our earlier work involved the use of lattice
models16, 18, 19. Our more recent investigations, however, focused on the development and
study of off-lattice models that are able to provide a genuine description of the fluid char-
acteristics of both the ld and the lo phases20. In the present lecture notes, we present
our work on the application of off-lattice models to the physical properties of lipid-sterol
bilayers21, 22.
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The methodological backbone of our computer simulations is the Metropolis Monte
Carlo (MC) method. This method guarantees that a simulated system will reach its state of
thermodynamic equilibrium. A tutorial on the use MC methods for the simulation of lattice
and off-lattice models for lipid bilayers and lateral organization has appeared recently23 as
well as a general review on lattice models used for simulation of membranes interacting
with proteins, peptides, sterols, drugs, and other solutes19. The present lecture notes will
furnish a description of the use of the method together with many other simulational tech-
niques within the specific context of our modeling.

It is important to note at the outset that, given the available computational capacity, our
simulations are limited in terms of the size of the sample, which is restricted to systems of
the order of 104 lipid chains for our lattice models and 103 lipid chains for the off-lattice
models. This enables us to study the nature of distinct phases and phase transitions using
dedicated techniques, but not systems with a distribution of domains of the sizes predicted
for rafts.

1.2 Pure Lipid Bilayers

Our approach has been to study model systems with the least number of molecular compo-
nents first and then proceed to systems of several components17, 18, 20. The initial systems
are pure, single-component lipid bilayers which themselves exhibit several phase transi-
tions. We will concentrate on one particular phase transition known as the main phase
transition, which gives much insight into the interactions between lipid molecules. The
transition takes the bilayer from the gel phase to the liquid crystalline phase as the tem-
perature is increased and is abrupt, highly entropic. The gel phase is a two-dimensional
(2d) crystalline phase in which conformationally ordered lipid chains form a structural lat-
tice. Here conformationally ordered lipid chains are almost fully extended with very few
gauche bonds towards their free ends. To describe the nature of the gel phase in more
detail, we have renamed it the solid-ordered (so) phase. In contrast the liquid crystalline
phase is a fluid phase in which conformationally disordered lipid chains can diffuse later-
ally in the bilayer plane. Here the conformationally disordered lipid chains contain many
gauche bonds, leading to a reduced apparent length, but an increased cross-sectional area.
The quantitative properties of the main phase transition depend both on the intrinsic chain
length and unsaturation and on the type of polar head of the lipid molecule involved as well
as on the ionic character of the aqueous medium hydrating the polar heads.

1.3 The Liquid-Ordered Phase and Sterol Evolution

The concept of liquid-ordered (lo) phase emerged already 15 years ago from both experi-
mental and theoretical studies of the phase behaviour of dipalmitoyl phosphotidylcholine
(DPPC)-cholesterol bilayers16. DPPC is a glycerophospholipid with a zwitterionic po-
lar head and two saturated (16:0) acyl chains and appears as a molecular component of
many biological membranes. The experimental phase diagram of DPPC-cholesterol multi-
bilayer liposomes was first deduced by Vist and Davis24 from both deuterium nuclear mag-
netic resonance (2H-NMR) and differential scanning calorimetry (DSC) data. The same
topology was found for the phase diagram of PPetPC-cholesterol bilayers22 as shown in
Fig. 2a, even though PPetPC differs in structure from DPPC in that one trans–double bond
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Figure 2. Experimental phase diagrams as determined by differential-scanning calorimetry (open triangles) and
by NMR spectroscopy (solid squares and solid circles). (a) PPetPC-cholesterol systems; (b) PPetPC-lanosterol
systems. The lines connecting the points are guides to the eyes. The phase boundaries indicated by the dashed
lines in (a) are not derived from any experimental data and are shown only to illustrate the qualitative structure of
the phase diagram, which is consistent with the thermodynamic phase rules.

replaces a single C–C bond in DPPC at carbon seven. Qualitatively similar phase diagrams
were also found by Thewalt et. al.25 for several other systems of binary mixtures con-
taining cholesterol and lipids with PC polar heads. The most important feature of these
phase diagrams is that an abrupt main phase transition is absent for cholesterol concen-
trations greater than 20-30 mol%, and a new phase appears in this region of the phase
diagrams. This new phase is a fluid phase where the lipid chains are reasonably ordered
conformationally as demonstrated by the 2H-NMR data. Vist and Davis24, who first iden-
tified this new phase named it the β phase. In the first theory for the experimental phase
diagram, Ipsen et al.16 renamed this phase the liquid-ordered or lo phase since this phase is
a compact liquid phase with conformationally ordered chains16. This concept has gained
a prominent position in raft research, because several experimental studies on rafts sug-
gest that rafts have the physical characteristics of the lo phase4, 5. It is worth pointing out
that the only lo/ld phase separation observed for single lipid-cholesterol bilayers occurs
close to the melting temperature of the pure lipid system. Thus it is reasonable to assume
that mixtures of lipids and cholesterol would require at least some high-Tm components in
order to display the lo phase at body temperature.

Given the existing understanding of the equilibrium phase behaviour of the single lipid-
cholesterol bilayers and the underlying microscopics and inspired by the work of Bloch on
sterol evolution26 we have recently carried out a comparative study of lipid-cholesterol and
lipid-lanosterol bilayers, both experimentally and theoretically by computer simulations.
Lanosterol is the first cyclic precursor of cholesterol in the biosynthetic pathway and is re-
garded as a molecular fossil by Konrad Bloch who proposed that the evolutionary sequence
for cholesterol is preserved in its biosynthetic pathway26.

The differences in the phase behaviour of the two types of lipid-sterol systems are
illustrated in the two phase diagrams in Fig. 222. The phase diagram in Fig. 2a shows that
the lo phase is a well defined thermodynamic phase distinctly separate from the ld phase,
but that it can coexist with the ld phase under appropriate temperatures and concentrations.
In contrast the phase diagram in Fig. 2b shows that for PPetPC-lanosterol multi-bilayer
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systems the lo and the ld phases are no longer thermodynamically distinct, i.e. that the
coexistence of the two phases is absent.

Moreover, our experimental data for PPetPC-lanosterol and PPetPC-cholesterol
show that cholesterol induces greater conformational order in PPetPC-lipid chains than
lanosterol22. It may be reasonable to expect such a relative effect also to apply to DPPC-
cholesterol and DPPC-lanosterol bilayers. Hence a possible hypothesis is that one reason
for the evolutionary optimization of cholesterol is that it is able to induce the formation of
rafts better than lanosterol. There is in fact some evidence that lanosterol cannot induce
raft formation27.

2 Off-Lattice Models20–22, 29

The first step in a statistical mechanical study of a model membrane system is to construct
a model describing the microscopic physics of the membrane. The model should contain
two basic ingredients: 1) a specific description of the microscopic states of the membrane,
i.e., the relevant microscopic degrees of freedom; 2) a specific expression of the total in-
teraction potential energy of the system as a function of the relevant degrees of freedom.
In both parts, approximations or simplifications are necessary, mainly due to the limited
computational capacity available and the need to underline among the almost formidably
complicated microscopic details the general mechanisms that are essential to the macro-
scopic phenomena under investigation. The models to be described below may in fact be
called ‘minimal’ in terms of the approximations and simplifications involved.

The basic molecular degrees of freedom of a lipid-bilayer membrane consists of both
the positional (molecular center of mass) and internal (conformational) degrees of freedom,
and both types are relevant to the phase behaviour of the membrane. The description of
the positional degrees of freedom is straightforward, given by specifying the spatial coordi-
nates of the molecules. Our description of the conformational isomerism of the lipid chains
is a minimal one. Only two internal states are used to approximate the very large spectrum
of conformations possible for a phospholipid chain: One state, the ‘ordered’ state, has zero
internal energy and is non-degenerate, characteristic of the conformational state of a lipid
chain in the gel or so phase. The other state, the ‘disordered’ state, is characteristic of the
average conformational state of a lipid chain in the liquid-crystalline or ld phase. This state
has a high internal energy, reflecting that energy is required for conformational excitations,
and a high degeneracy, effectively representing the large number of conformational excita-
tions of that a phospholipid chain can assume in the ld phase due to the presence of many
gauche bonds. This idea was first proposed and used by Doniach17. Both cholesterol and
lanosterol are rigid molecules in comparison with the phospholipid chains and we assume
that they have no conformational degrees of freedom.

In constructing the function describing the interaction potential energy, several approx-
imations have also been made. First, the interactions between the amphiphilic molecules
(phospholipid, sterol) and the water molecules, which are predominantly responsible for
stabilizing a bilayer membrane, are approximated by a surface-pressure parameter Π, as
first suggested by Marčelja30. Secondly, the non-covalent interactions between the am-
phiphilic molecules may, to a first approximation, be considered as being pair-wise, of the
Van der Waals type, and effective only over a short range of molecular length scale. Finally,
only one monolayer is modeled based on the assumption that the two monolayers constitut-
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ing a lipid bilayer are independent of each other. In essence, our model system consists of
microscopic ‘particles’ – distinct lipid chains and sterol molecules – which move within a
two-dimensional plane and which interact in a pairwise manner, as described below. In the
rest of this text, the term ‘particle’ may refer either to a lipid chain or to a sterol molecule.

The total potential energy function that models molecular interactions in the lipid-sterol
bilayer systems in our simulations is then given by

H = H0 +Ho−s +Hd−s +Hs−s . (1)

H0 is the potential energy function describing the interactions between the phospholipid
molecules, whose specific form is as follows

H0 =
∑

i

EdLid+
∑

〈i<j〉
Vo−o(Rij)LioLjo+

∑

〈i<j〉
Vo−d(Rij){LioLjd+LjoLid}+Π·A .

(2)
Here i is an index labeling the ‘particles’ (lipid chains and sterol molecules) in the system.
Correspondingly, Lio and Lid are occupation variables which are unity when the ith par-
ticle is a lipid chain in the ordered state and the disordered state, respectively, and which
are zero otherwise. Ed is the excitation energy of the conformationally disordered state,
and Vo−o(R) and Vo−d(R) are distance-dependent and chain-conformation-dependent in-
teractions between two lipid chains. 〈i < j〉 denotes a summation over nearest neighbors,
corresponding to the approximation of short-range interactions. The energy of interaction
between two chains which are both in the disordered state is approximated to be zero,
which sets the reference point for energy. This potential energy function, H0, together
with the configurational degeneracy of the disordered state, provides a minimal model for
the main phase transition of single component bilayers.

Ho−s, Hd−s and Hs−s, as indicated by the various subscripts, represent the pairwise
interactions between an ordered chain and a sterol molecule, a disordered chain and a sterol
molecule, and two sterol molecules, respectively. They are written explicitly as follows:

Ho−s =
∑

〈i<j〉
Vo−s(Rij){LioLjs + LjoLis}

Hd−s =
∑

〈i<j〉
Vd−s(Rij){LidLjs + LjdLis} (3)

Hs−s =
∑

〈i<j〉
Vs−s(Rij){LisLjs} .

Again Lis is an occupation variable which is unity when the ith particle is a sterol molecule
and is zero otherwise. Clearly, Lis+Lio+Lid = 1. Vo−s(R) and Vd−s(R) are the distance-
dependent, chain-conformation-dependent interaction potentials between a sterol molecule
and a lipid chain. Similarly Vs−s(R) is the interaction between two sterol molecules.

All of the pair-wise interaction potentials are approximated by a sum of a hard-core
repulsive potential of range d, a short-range square-well potential of rangeR0, V s(R), and
a longer-range attractive square-well potential of range lmax, V l(R). V s(R) and V l(R)
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Figure 3. Schematic illustration of the model interaction potentials. (a) Vo−o(R), where subscript ‘o’ refers to
a lipid chain in the conformationally ordered state; (b) Vo−s(R), where the depth of the potential corresponding
to s= chol is represented by a solid line and a parameter Jchol and that corresponding to s= lan is represented
by a dotted line and a parameter Jlan; (c) Vd−s(R), where subscript ‘d’ refers to a lipid chain in the disordered
state; (d). Vs−s(R). d is the hard-core radius, R0 is the range of the short-range potentials and lmax is the
effective range of the long-range potentials. The ratio of R0/d is chosen so that the average surface area of a
sterol molecule is approximately 30% larger than that of a lipid chain in the ordered state. The dashed lines
illustrate the more realistic interaction potentials that the model potentials approximate.

are given by

V s(R) =

{
−V s , d < R ≤ R0

0 , otherwise ,
(4)

V l(R) =

{
−V l , d < R ≤ lmax

0 , otherwise ,
(5)

where the specific values of V l and V s depend on both the molecular type and the con-
formational state of the interacting species. Here lmax is a cutoff distance which will be
defined when the simulation algorithm is discussed in the next subsection.

The pair-wise interaction potentials are illustrated in Fig. 3, and their construction is
based on the hypothesis that cholesterol interacts with lipid molecules as follows. Choles-
terol, with its streamlined, rigid hydrophobic backbone, prefers the lipid chains in its im-
mediate neighborhood to be in the conformationally ordered (rigid) state by suppressing
the formation of gauche bonds in those chains. At the same time cholesterol tends to dis-
rupt laterally ordered packing of conformationally ordered chains if it is in their midst. A
comparison between Fig. 3a and Fig. 3b illustrates the latter, ‘crystal-breaker’ mechanism,
as the interactions involved imply that a cholesterol molecule dissolved in an ordered-chain
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environment tends to have a larger surface area than that of a lipid chain, thereby breaking
the lateral order of ordered chains. Similarly, a comparison between Fig. 3b and Fig. 3c
shows that the former, ‘chain-rigidifier’ mechanism is modeled by a strong interaction be-
tween cholesterol and a neighboring, conformationally ordered lipid chain and a weaker
interaction with a conformationally disordered lipid chain.

The values of all the relevant parameters in the model are chosen as follows. The
unit of length scales in the model is for convenience set at the hard-core diameter, d, of
the interaction potentials and the unit of energy is defined to be a quantity J0. In order
to convert the energy and length scales into units relevant for lipid bilayer systems, J0

should be of the order 10−20J and d of the order 5 Å. The lateral pressure, Π, is fixed
at Πd2/J0 = 3.0. The radius of the short-range potential, Eq. (4), is set at R0/d = 1.3.
The values of Π and R0 are chosen such that the change in surface area across the main
transition is comparable to that of a pure PC (DPPC) bilayer system. The excitation energy
of the disordered state of lipid chains is chosen to beEd = 2.78J0, and the degeneracy,Dd,
of the disordered state, is taken to be lnDd = 12.78. These values are the same as for the
10th state of the Pink Model for the main phase transition of single component PC bilayers
with saturated chains31 . Other parameters appearing in the definition of the interaction
potentials are summarized in Table 1(a). They are chosen such that the theoretical phase
diagram of the lipid-cholesterol model system is similar to that of the DPPC-cholesterol
system.

(a)
Vo−o Vo−d Vd−d Vs−s Vs−d

long range 0.40 -0.15 0.20 0.20 0.00
short range 0.45 0.40 -0.20 -0.15 -0.065

(b)
Cholesterol Lanosterol

V l
o−s (J) 0.85 0.75
V s

o−s -0.625 -0.525

Table 1. Interaction parameters for the model potentials for the two types of lipid-sterol membranes. (a) The
parameter values for the interaction potential, Vo−o, between two lipid chains in the ordered state, the interaction
potential, Vo−d, between a lipid chain in the ordered state and a lipid chain in the disordered state, the interac-
tion potential, Vd−d, between two lipid chains in the disordered state, the interaction potential, Vs−s, between
two sterol molecules, and the interaction potential, Vs−d, between a lipid in the disordered state and a sterol
molecule. Note that these values are identical for both the lipid-cholesterol and the lipid-lanosterol systems. (b)
The parameter values for the interaction potential, Vo−s, between a lipid chain in the ordered state and a sterol
molecule, where the subscript s corresponds to either chol or lan, respectively. All the parameters are given in
units of J0 (see text).

The parameters given in Table 1(b) reflect our – again, minimal – modeling of differ-
ences in lipid-cholesterol and lipid-lanosterol interactions. The model arises from a com-
parative analysis of the molecular structures of the two sterols which are shown in terms of
space-filling models in Fig. 4. Figure 4 indicates that the major structural difference is on
their respective α-faces. In detail, cholesterol has a smooth α-face, whereas the α-face of
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Figure 4. Molecular structures of cholesterol (top) and lanosterol (bottom). (a) Chemical structures; (b) Space-
filling models. The three additional methyl groups on lanosterol are indicated in (b) as 14-CH3, 4-α-CH3, and
4-β-CH3.

lanosterol has an extra methyl group, which forms a rather significant protrusion. Together
with two other additional methyl groups this α-face protrusion would decrease the abil-
ity of lanosterol to order neighboring lipid chains. It is interesting to note that the α-face
methyl group is the first one to be removed in the biosynthetic pathway at considerable
cost in metabolic energy.

Hence, in our theoretical model, the microscopic lipid-cholesterol and lipid-lanosterol
interactions differ only in the part that describes the interaction between a sterol molecule
and an ordered lipid chain, Vo−s. The values listed in Table 1(b) correspond to a decreased
strength of the cohesive lipid-lanosterol interaction relative to that of the cohesive lipid-
cholesterol interaction. They were determined by fitting the theoretically calculated value
of the lipid-chain order parameter, φ (see later), to the acyl-chain order parameter experi-
mentally derived from the 2H-NMR data, over a significant range of sterol concentrations
for both types of the lipid-sterol systems. The fitting was carried out at a single tempera-
ture, which was relatively high so that no complications associated with phase transitions
arose. The fit is shown in Fig. 5.

3 Simulation Methods

3.1 Monte Carlo Techniques

In our computer simulations of the thermodynamic phase behaviour of the models de-
scribed in the previous section, the MC method provides the backbone method. Generally
speaking, the MC procedure in each simulation samples stochastically and ergodically the
complete configuration space spanned by all possible microscopic states of the system and
generates a Markovian sequence of microscopic states whose distribution over the configu-
ration space approximates the equilibrium distribution. Explicitly, each simulation consists
of many repeated cycles of procedures, and each cycle, labeled by an integer n, is imple-
mented as follows:

1. An arbitrary microscopic state, Ωn, is chosen.
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Figure 5. Fitting of the theoretical (φ) order parameter to the equilibrium averages of the experimental order
parameter (SCD, as given in Eq. (14)) which leads to the specific value of J used for lipid-lanosterol interactions
in the model. The experimental data are obtained at T = 40◦C. The theoretical data are calculated for a system
containingN = 1600 particles at a temperature of T = 1.0359Tm. Corresponding to cholesterol and lanosterol,
the experimental data are shown by filled and open circles, respectively, and the theoretical data are given by filled
and open diamonds, respectively. The lines connecting the points are guides to the eye.

2. Next a trial microscopic state, Ωt, is established by a random, ergodic sampling of the
complete configuration space.

3. A quantity, ∆H̃ ≡ H̃(Ωt) − H̃(Ωn), is calculated, where H̃ depends both on the
potential-energy function of the system and on the choice of thermodynamic ensem-
ble.

4. A random number, r, is generated.

5. If r < exp(−∆H̃/kBT ), the trial microscopic state, Ωt, is accepted as the new con-
figuration of the system, i.e., Ωn+1 = Ωt. Otherwise the system remains in the same
state, i.e., Ωn+1 = Ωn.

6. Quantities of interest for ensemble averaging are calculated and recorded.

7. A new trial microstate, Ωt, is chosen again randomly and ergodically, and the n + 1
cycle is started by going back to step 3.

It is implied in the MC procedure that a specific choice of thermodynamic ensemble
has been made, which affects both the definition of the complete configuration space and
the definition of ∆H̃ . In addition to choosing temperature T and surface pressure Π as
thermodynamic control variables, we are still left with two different choices regarding the
number of ‘lipid-chain’ particles, Nl and the number of ‘sterol’ particles, Ns: (a) fixing
both Nl and Ns; and (b) fixing the total number of particles, Nl + Ns, and letting the
chemical composition of the system fluctuate under the control of an effective chemical
potential, µ∆. We take µ∆ to represent the difference between the chemical potentials
of the lipid and the sterol particles. We have used either (a) or (b) in our simulations,
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depending on the specific questions that we have asked about the system. In the following,
we will call (a) the ‘canonical ensemble,’ and (b) the ‘semi-grand canonical ensemble.’

In simulations formulated in the canonical ensemble, ∆H̃ in each MC cycle is simply
given by

∆H̃ = H(Ωt)−H(Ωn)− kBTN ln[A(Ωt)/A(Ωn)] , (6)

where H is just the potential-energy function defined in Eq. (1). The logarithmic term
arises from any possible changes in the area of the system (see later). In simulations
formulated in the semi-grand canonical ensemble, however,

∆H̃ = H(Ωt)−H(Ωn)− kBTN ln[A(Ωt)/A(Ωn)] + µ∆[Nl(Ωt)−Nl(Ωn)] . (7)

Of course, in the two ensembles, the procedures of sampling their corresponding complete
configuration spaces differ also. The differences will be pointed out wherever appropriate
in the following specific discussions of the sampling step 2 in the general procedure.

The sampling step 2 is a combination of different types of ‘moves’ which generate
changes in the microscopic state of the system, that are associated with the different types
of degrees of freedom. We will discuss these moves in detail below.

3.1.1 Dealing with the Translational Degrees of Freedom: An Random-Lattice
Algorithm

The positions of the particles in a system form a part of the definition of a microscopic state
and are essential to calculations of the potential energy arising from position-dependent
interactions between the molecular constituents. In dealing with interactions that are pair-
wise and short-ranged, the most important information required is the local environment of
each individual particle, such as the distribution of other particles in its neighborhood and
their distances to it. In conventional off-lattice simulations, it is usually one of the most
time-consuming steps to obtain this information from each given configuration of molec-
ular positions. We now describe a simulational algorithm, a so-called dynamic random-
lattice algorithm, which handles structural information in a manner that is distinctly differ-
ent from conventional algorithms, and which at the same time achieves high computational
efficiency. The algorithm assures that the system can be simulated in a fluid phase.

Our algorithm is an adapted version of the dynamic-triangulation algorithm used for
modeling random surfaces. It performs two essential tasks: 1) The generation of the
(sub)configuration space associated with the translational degrees of freedom; 2) The gen-
eration and the retention of a compact data structure that allows efficient access to struc-
tural information contained in each configuration of particle positions. The data structure
is based on triangulation of each spatial configuration of the particles. The triangulation
itself is performed as follows: an initial configuration in which the particles are positioned
with their centers on a regular triangular lattice is used and each particle is linked to its six
nearest neighbors by ‘tethers.’ The lattice configuration is then represented by a network of
tethers forming triangles; the term ‘triangulation’ refers to this representation. The tether
network can then be altered randomly, through the moves described below, to provide the
subspace of microscopic states that are associated with particle positions. The interacting
particle pairs are those that are connected by the tethers.
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Figure 6. (a) Particle Displacement. The particle at position P is moved to position P′. (b) Link Flip. A tether
(shown as a thick line) is replaced by another tether along the unoccupied diagonal (once the first tether is
removed) provided that the new tether length does not exceed lmax.

3.1.2 Particle Displacement

This move is illustrated in Fig. 6a. A particle is chosen at random and its center is subject
to a random displacement (δx, δy) where

δx = (2ζx − 1)δrMAX

δy = (2ζy − 1)δrMAX . (8)

ζx and ζy are random numbers, 0 ≤ ζx(y) ≤ 1. The value of δrMAX is adjusted during the
simulations so that approximately 25 % of trials are accepted. Consistent with the hard-
core repulsion between two interacting particles, moves which would result in an overlap
of the hard cores of the particle are always rejected. Another constraint is that the length
of every tether is not allowed to exceed a maximum value lmax.

3.1.3 Link Flip

The second move is referred to as ‘link flip,’ which alters the local connectivity in the tether
network. It is shown schematically in Fig. 6b. In each configuration of the tether network,
each tether forms one diagonal of a quadrilateral formed by the two adjacent triangles. In
the ‘link flip,’ a tether is chosen at random and then removed; a new tether is placed along
the other diagonal of the quadrilateral, provided that its length does not exceed lmax.
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3.1.4 Change of System Size

Consistent with our choice of thermodynamic ensemble, where the surface pressure is a
control parameter, fluctuations in the total area of the system must be sampled. In our
simulations this is achieved via a third move: a random uniform expansion or contraction
of the whole system. In this step, a random change in the size of the system is generated as

δL = (2ζ − 1)δLMAX (9)

where ζ is a random number, 0 ≤ ζ ≤ 1; and the coordinates of all particles in the system
are rescaled accordingly. If the distance between any two particles after the rescaling is
smaller than the hard-core diameter the change is always rejected. The maximum possible
size change, δLMAX, is adjusted during the simulation to give an acceptance ratio of about
50 %. The logarithmic term in Eq.(6) or Eq.(7) will necessarily be nonzero following this
types of moves. A detailed discussion of this types of sampling moves are given in the
book by Frenkel and Smith28, pp. 116-122.

3.1.5 Dealing with the Conformational and Compositional Degrees of Freedom

In simulations in the canonical ensemble, sampling the part of the configuration space that
is associated with the conformational degrees of freedom of the lipid chains is straightfor-
ward. A lipid chain is chosen at random and its conformational state is always changed in
the trial state. For example, if the chain is in the ordered state, it will be in the disordered
state in the trial state and vice versa.

In the case of the semi-grand canonical ensemble, a different updating procedure is
used, where the conformational degrees of freedom and the compositional degrees of free-
dom are handled on the same footing. Explicitly, each particle in the system is assigned
one of three possible ‘internal’ states: the conformationally ordered and disordered states
of a lipid chain, or a third, ‘sterol’ state. Then a random number is used to choose among
the three internal states now available.

In order to ensure detailed balance in the simulations, or the symmetry of the Markov
chain generated by the algorithm, all of the different moves discussed above are combined
in a random manner. In other words, the simulation algorithm does not impose any pre-
ferred sequential order in the sampling procedures that update different types of degrees
of freedom28. Monte Carlo step (MCS), a time unit for the simulations, is defined to be
the time needed to perform on average one complete pass through all the different types of
moves.

3.2 Umbrella Sampling28

Up to this point, we have given a detailed recipe for performing an MC simulation for a
system described by the potential-energy function of Eq. (1). We now discuss a method
for determining phase boundaries specific to our study of the phase behavior of lipid-sterol
bilayer membranes. This method is a version of umbrella sampling and it is particularly
useful for determining phase transitions whose kinetics are strongly hysteretic. The transi-
tions between the so and the ld phases in our systems are precisely such transitions. The
high free-energy barriers separating the two coexisting phases make it very difficult to
achieve an adequate sampling of both phases.
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This difficulty was overcome by the use of a simulation technique, which exploits the
idea of developing an ‘artificial’ potential-energy function that yields a considerably di-
minished free-energy barrier. The simulation carried out for the artificial potential-energy
function is able to yield an adequate sampling of the two coexisting phases. The equi-
librium distribution functions (defined below) for the original potential-energy function
can then be established from simulations based on the modified potential-energy function
through a simple re-weighting relation32.

The upshot of our simulations performed within the semi-grand canonical ensemble
was to provide accurate numerical data, from which an equilibrium distribution function,
P(T, µ∆; ε, xs), could be derived for each given set of values of T and µ∆. With ε = E/N
representing the internal interaction energy per particle and xs the sterol concentration,
P(T, µ∆; ε, xs) is proportional to the probability of finding the system in states character-
ized commonly by ε and xs, and has the property, that if T and µ∆ correspond to a point
on a phase-coexistence boundary, then it will exhibit two degenerate local minima, rep-
resenting the two coexisting phases. Thus, by analyzing the change in the ‘landscape’ of
P(T, µ∆; ε, xs) as values of T and µ∆ are tuned, the phase boundary can be determined.

The umbrella sampling method was employed to this end and its implementation
is described as follows. At values of T and µ∆ estimated to be close to true coexis-
tence conditions, a single but very long simulation is performed for a system of rela-
tively small size L to yield an approximation of the equilibrium distribution function,
PL(T, µ∆; ε, xs). When summed over xs, PL(T, µ∆; ε, xs) yields the equilibrium distri-
bution function PL(T, µ∆; ε). A spectral free-energy function, defined by FL(T, µ∆; ε) =
−kBT lnPL(T, µ∆; ε), displays a free-energy barrier between the two local minima. An
iterative cycle is then set up:

1. Based on FL(ε) an extrapolation based on the size dependence of the free energy
barrier is used to approximate the barrier of a system of a larger size, L′, and in turn,
the following function:

f(T, µ∆; ε) = −FL′(T, µ∆; ε) = −L
′

L
FL(T, µ∆; ε) , (10)

when ε lies in the barrier region. f(T, µ∆; ε), known as the shape function, defines
the modified potential energy function as H̄ = H + f(T, µ∆; ε).

2. H̄ is used in a second simulation of a system of size L′. From this simulation, a mod-
ified probability distribution function, P̄L′(T, µ∆; ε, xs), is obtained. The spectral
free-energy function corresponding to the modified potential energy function should
not show a significant barrier.

3. The required distribution function, PL′(T, µ∆; ε, xs), is easily reconstructed from
P̄L′(T, µ∆; ε, xs)

32.

4. Based on PL′(T, µ∆; ε, xs), a method known as the Ferrenberg-Swendsen re-
weighting technique33. is applied in order to obtain a better estimate of the coex-
istence condition, T ∗ and µ∗∆ and an improved approximation of F(T ∗, µ∗∆; ε) at
coexistence from FL′(T ∗, µ∗∆; ε).
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5. If desired, another iteration is started from step (1) with FL′(T ∗, µ∗∆; ε), either to
obtain an improved statistical sampling of PL′(T ∗, µ∗∆; ε, xs) for the same system
size or to simulate a larger system.

This method enables us to simulate systems of relatively large sizes. Repeated applications
of the above procedures for systems with systematically varying sizes can yield a series of
size-dependent PL(T ∗, µ∗∆; ε, xs). A finite-size analysis of the series of data based on
the method of Lee and Kosterlitz34 can provide information on the specific nature of the
corresponding transition.

Nevertheless, the method is still quite time consuming. In the iterations, the system size
can only be increased in very small steps; the statistics required to obtain the initial estimate
of the spectral free-energy functionF as described in step (1) is already considerable, being
typically of the order of 50 · 106 MCS per particle for a system of size L = 10.

3.3 Calculation of Physical Quantities

Given that a simulation based on the MC procedure described above does in fact generate
an ensemble of microscopic states that are distributed in the configuration space according
to the equilibrium distribution, the macroscopic thermal average of a microscopic physical
quantity, O, can be approximated by its average over the ensemble of states, {Ωn, n =
1, ..., Nstate}:

〈O〉 =
1

Nstate

Nstate∑

n=1

O(Ωn) , (11)

where Nstate is the total number of microscopic states in the ensemble. It is important to
note that the precise value of Nstate required for Eq. (11) to be a good approximation for
the true thermodynamic averages depends on the nature and size of the system as well as
the specific physical observable under investigation.

In general, the macroscopic thermodynamic quantities that are of interest for the sys-
tems that we have studied are response functions such as specific heat and isothermal area
compressibility as well as a macroscopic conformational order parameter characterizing
the conformational ordering of the lipid chains. The response functions can be calculated
directly from the simulation data by using the fluctuation-dissipation theorems:

CΠ(T ) =
1

NkBT 2
[〈H2〉 − (〈H〉)2] , (12)

K(T ) =
1

kBT 〈A〉
[〈A2〉 − (〈A〉)2] , (13)

where H is the potential-energy function defined in Eq. (1), CΠ(T ) is the molecular spe-
cific heat at constant Π, and K(T ) is the isothermal area compressibility. The average
conformational order parameter of the lipid chains is calculated as

φ =
1

2

(〈∑N
i=1(Lio − Lid)∑N
i=1(Lio + Lid)

〉
+ 1

)
. (14)

In addition to the physical quantities mentioned above, the so-called structure factors,
which provide information on the lateral organization of the constituent molecules in the
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system, have also been calculated, based on the simulations performed within the canonical
ensemble. Two of them are listed here, for which numerical data will be provided later:

ST(q) =
1

N
{〈ρT(q)ρT(−q)〉 − 〈ρT(q)〉2δq,0} ,

Ss(q) =
1

N
{〈ρs(q)ρs(−q)〉 − 〈ρs(q)〉2δq,0} .

(15)

Here ρT(q) is the Fourier transform of the total density, ρT (r) ≡∑i δ(r − ri) and ρs(q)
the Fourier transforms of the partial density of the sterol molecules, ρs(r) ≡ ∑i δ(r −
ri)LSi.

Finally, some simulations performed in the canonical ensemble were also used to derive
the tracer diffusion coefficientD. According to the Einstein relation, the diffusion constant
can be expressed as

D = lim
t→∞

1

2dt
〈|r(t)− r(0)|2〉 , (16)

where d = 2 is the number of spatial dimensions of membranes, t is time, and the factor
in the angular brackets is the mean-square displacement of the diffusing particle over time
interval t. In practice, the simulation data 〈|r(t) − r(0)|2〉 was plotted as a function of t
and the plot displayed linearity for sufficiently large t. D was then determined from the
slope of the linear part of the plot. Since the simulations were carried out using Monte
Carlo methods, the time scales are meaningful only in a relative sense, as opposed to the
absolute physical time scales in the system.

A practical remark on the simulations may be useful. In each simulation run, the system
was equilibrated over a period of 200,000 MCS, and the various physical quantities were
averaged over a period of 5-20·106 MCS.

4 Results

In this section we present a selection of the results of the Monte Carlo simulations, in terms
of the equilibrium phase diagrams, collective conformational ordering of the lipid chains
and structural characterizations of the lipid-sterol bilayer membranes. All the results in
this section were obtained using the potential energy functions and the simulation methods
presented in the previous section.

4.1 Phase Diagrams

4.1.1 Pure Lipid Bilayers

The phase diagram obtained from our simulation study for model lipid bilayers in the
absence of cholesterol20 is shown in Fig. 7. The phase diagram was calculated using the
potential of Fig. 3a and is represented in terms of temperature and the parameter, V0/J0,
which is a measure of the relative strength of the two square-well attractions. The point of
key importance in this phase diagram is the appearance of two distinct regimes, separated
by a triple point, of different types of macroscopic interplay between the translational
and conformational degrees of freedom. All the phase lines represent first-order phase
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Figure 7. Phase diagram for the model of the pure lipid bilayer system. All three phase boundaries are first-order
phase boundaries. The insets show snapshots of typical micro-configurations for the three different phases labeled
so (solid-ordered), ld (liquid-disordered), and lo (liquid-ordered). Chains in the disordered state are plotted as
(◦) and chains in the ordered chain state as (•). The three snapshots are not given to scale. t1 is the triple point
described in the text.

transitions and a triple point is a phase point where two first-order phase lines join to form
a single first-order phase line. The two degrees of freedom are uncoupled for values of
V0/J0 smaller than the triple-point value, where two distinct ordering transitions from the
so to the lo phases and from the lo to the ld phase take place successively. The first of these
transitions is a solid-fluid transition where the conformational degrees of freedom do not
change whereas the second transition is between two fluids where the conformation degrees
of freedom change. However, the two degrees of freedom are macroscopically coupled for
values of V0/J0 greater than the triple-point value and the intermediate lo phase vanishes.
This is exactly the case of the main phase transition in single component lipid bilayers
where one passes from directly from an so phase to an lo phase. We conclude, therefore,
that although there is no fundamental reason why the intermediate lo phase cannot appear
as a physical phase of a single-component lipid bilayer, the physical reality is such that
the main phase transitions of single component lipid bilayers take place always above but
close to the triple point. For our simulations for lipid-sterol systems, the values of the
parameters in the model were then set such that the intermediate phase did not appear as a
distinct thermodynamic phase of the corresponding system of pure lipid bilayers.
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Figure 8. Theoretical phase diagrams determined from the Monte Carlo simulations of the microscopic model of
interactions for the lipid-sterol membranes. (a) Lipid-cholesterol membranes; (b) lipid-lanosterol membranes.

4.1.2 Lipid-Sterol Bilayers

The simulated equilibrium phase diagrams for the lipid-cholesterol and the lipid-lanosterol
membranes21, 22 are shown in Fig. 8. They were obtained from simulations in the semi-
grand canonical ensemble and are presented in terms of the sterol concentration xs (where
xs= xchol or xlan) and a reduced temperature, T/Tm, where Tm is the main-transition tem-
perature for the system of the pure lipid membrane. In terms of microscopic interaction
parameters, the lipid-cholesterol systems are distinguished from the lipid-lanosterol sys-
tems by a rather modest (about 10 per cent) increase in the strength of the microscopic
interactions between a sterol molecule and a lipid chain in its conformationally ordered
state (see Table 1). This was illustrated in Fig. 3b.

It is clear from Fig. 8 that this small modification in the lipid-sterol interaction strength
leads to considerable differences in the overall topologies of the two phase diagrams. In the
case of lipid-cholesterol systems (Fig. 8a), the most significant characteristic of the phase
diagram is a stable region of coexistence between the ld and lo phases. Associated with
this coexistence are necessarily a stable critical point and the existence of a three-phase
line. The critical point is found to be located close to T ≈ 1.0075Tm, xchol ≈ 0.298
for the interaction parameters used in the simulations. The temperature of the three-phase
coexistence is estimated to be T = 0.9977Tm, and the concentrations of cholesterol in
the three coexisting phases are xchol,so = 0.030, xchol,ld = 0.068, and xchol,lo = 0.298,
respectively. By contrast, Fig. 8b shows that no ld-lo coexistence can be identified in
the phase diagrams for the lipid-lanosterol systems. Correspondingly, only a metastable
critical point exists and there is no three-phase line.

The systematic development of the stable ld-lo coexistence as lanosterol ‘evolves’ to
cholesterol is a macroscopic signature of an increase in the capacity of the sterols to sta-
bilize the lo phase. Another consistent signature is that with the sterol ‘evolution,’ the
lo phase boundary of the low-temperature so-lo coexistence moves towards lower sterol
concentrations, indicating a broadening of the region of stability of the lo phase in lipid-
cholesterol bilayer membranes. A comparison between Fig. 2 and Fig. 8 shows a close
correspondence between experimental and simulation results for both phase diagrams.
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Figure 9. The different spectral free energies calculated using the modified potential-energy function. (a) The
initial estimate of the shape function, f(ε); (b) The spectral free-energy function for the modified potential-
energy function; (c) The spectral free-energy function for the original system and (d) (open triangles) the spectral
free-energy function at phase coexistence. β = 1/kBT .

4.2 Umbrella Sampling and Finite-Size Analysis

It may be instructive at this point to demonstrate, with specific reference to the phase
diagrams, how the umbrella sampling technique and finite-size analysis were used to de-
termine the phase diagrams21, 29.

First, Fig. 9 shows the results from the different steps in the iteration procedure of the
umbrella sampling described previously, which was applied in the simulations of the theo-
retical model for single-component lipid bilayers. In this particular example, the transition
between the so and the ld phases was investigated. At T = 0.969Tm, a temperature just
slightly below the transition temperature, an initial estimate for the spectral shape function
was made for a small system L = 14. This estimate is shown in curve (a) of the figure
and has a distinct barrier between the two minima representing different phases. The shape
function for a larger system, L = 16, was then obtained by the rescaling given in Eq. (10)
and the spectral free energy for the modified potential-energy function was derived from the
new simulation based on the modified energy function, as shown in curve (b). The spec-
tral free energy corresponding to the original potential-energy function (shown in curve
(c)) was reconstructed. Finally, use of the re-weighting technique yielded the spectral free
energy at coexistence T = Tm, now shown in curve (d).

Next, finite-size analysis was used to deal with the simulation data obtained for the
two types of lipid-sterol systems in order to determine if phase coexistence occurred or not
in the thermodynamic limit or if a critical point existed as a terminal point for the ld–lo
coexistence. Figure 10 gives examples of such a finite-size analysis for the lipid-cholesterol
system (refer to the phase diagram in Fig. 8a). This figure shows the spectral free energies,
FL(xs), calculated as a function of the system size L using umbrella sampling, for the
so–lo coexistence at T = 0.9860Tm (Fig. 10a), the ld–lo coexistence at T = 1.0035Tm
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Figure 10. Finite-size scaling plots of both FL(xs) and the barrier height ∆FL(xs) (the insets) at (a) T =
0.9968Tm (so–lo phase coexistence); (b) T = 1.0035Tm (ld–lo phase coexistence); (c) T = 1.0075Tm (close
to the critical point). The system sizes are L= 8, 10, 12, 14, 16 and 20. β = 1/kBT .
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Figure 11. Theoretically calculated average of lipid-chain order parameter, φ, for the lipid-sterol membranes
containing N = 1600 particles. The solid circles correspond to lipid-cholesterol membranes, and the open
diamonds correspond to lipid-lanosterol membranes. (a) φ as a function of sterol concentration at a fixed temper-
ature, T = 1.0129Tm; (b) φ as a function of temperature for a fixed sterol concentration xs = 0.367.

(Fig. 10b), and the ld–lo coexistence at T = 1.0075Tm. Shown in the insets are the
corresponding barrier heights as a function of L for the three cases. In the first two cases,
the barrier height increases linearly with L when L is sufficiently large. This finite-size
behaviour is a characteristic of a first-order transition34. In the third case, however, the
barrier height approaches a constant value as L is increased, indicating that T = 1.0075Tm

is very close to the critical point terminating the the ld–lo coexistence.

4.3 Conformational Ordering of the Lipid Molecules

In order to characterize quantitatively the differential effects of the two sterols on the phys-
ical properties of lipid-sterol bilayer membranes22, the calculated conformational order
parameter, φ, as defined in Eq. (14), is presented in Fig. 11.

This thermal average represents the collective conformational ordering of the lipid
molecules. Figure 11a shows φ as a function of sterol concentration for both types of the
lipid-sterol systems at a fixed temperature T = 1.0129Tm. This temperature is above that
corresponding to the critical point of the ld-lo coexistence region of the lipid-cholesterol
system. At this temperature, neither of the two types of the lipid-sterol systems undergo
any phase transitions as the sterol concentration is changed. Figure 11b gives φ as a func-
tion of temperature for a fixed sterol concentration xs = 0.367. Clearly both cholesterol
and lanosterol order the lipid chains, but the ordering effect of cholesterol is much stronger,
qualitatively similar to what has been shown by the experimental data in Fig. 5. For exam-
ple, Fig. 11a shows that cholesterol at xchol = 0.40 is able to rigidify close to 55 % of the
lipid chains, whereas lanosterol at the same concentration can only rigidify roughly 30 %.
This differential effect is also clearly illustrated in Fig. 12. Figure 12a and Fig. 12b are, re-
spectively, snapshots of microscopic states of the lipid-cholesterol and the lipid-lanosterol
systems in the lo phase.
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Figure 12. Snapshots of the micro-configurations for lipid-sterol systems in the lo phase very close to Tm when
the sterol is cholesterol (the left-hand panel) and when the sterol is lanosterol (the right-hand panel). In the
snapshots, a lipid chain in the ordered state is shown as (•), a lipid chain in the disordered state as (◦) and a
cholesterol molecule as (×).
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Figure 13. The partial structure factor describing the distribution of the sterol molecules in the membranes,
Ssterol(|q|), calculated at T = 0.9806Tm and xs = 0.367. Schol(|q|) is shown by the filled circles and
Slan(|q|) by the open diamonds. For clarity, the curve for Slan(|q|) has been shifted along the y-axis. The
values of |q| are given in units of 2π/d, where d is the hard-core diameter assigned to the particles. The arrows
indicate an unusual structural signal in addition to the usual peaks characteristic of liquid structure. The inset
shows the total structure factor, ST(|q|), for the two lipid-sterol systems.
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4.4 Molecular Organization

The MC simulations of the microscopic model allows us to analyze quantitatively the lat-
eral distribution of the molecules in the lipid-sterol systems21, 22 in terms of the structure
factors defined in Eq. (15). Figure 13 exhibits examples of the calculated structure factors
calculated at T = 0.9806Tm and xs = 0.367, where the bilayers are in an lo state. The fig-
ure shows circular averages over the directions of the Fourier wave vectors, q, of the sterol
structure factor Ssterol(|q|), characterizing the distributions of the sterol molecules. Shown
in the inset are the circular averages of the total structure factor ST(|q|). The total structure
factor has the typical features common to all liquid systems. The partial sterol structure
factor, however, reveals more interesting structural information. Specifically, there appears
a distinct, low-|q| peak at |q| ' 0.35 · 2π/d, where d is the hard-core radius as discussed
in the section describing the theoretical model. This particular q-value corresponds to a
real-space length scale that covers several molecules, if a representative value of 5 Å for d
may be used. The signal almost disappears in Slan(|q|) for the lipid-lanosterol systems.

4.5 Thread-Like Structures

Analysis of microscopic configurations such as those shown in Fig. 14 suggests that the
special peak in the cholesterol structure factor is related to a micro-structure consisting
of aligned ‘threads’22 of the cholesterol molecules, interspersed with ‘threads’ of lipid
molecules with conformationally ordered chains as highlighted in Fig. 15. An qualita-
tive analysis of the microscopic interactions in the model predicts that the stronger the
interaction between a sterol molecule and an ordered lipid chain is, the more likely such
micro-domains are to appear. This explains our observation through simulations that such
micro-structures disappear almost entirely in the lipid-lanosterol systems, where the lipid-
sterol interaction becomes weaker.

4.6 Lateral Diffusion

The simulation techniques used to monitor lateral diffusion in membranes were recently
reviewed35 and the differences between tracer diffusion and collective diffusion in rela-
tion to different types of experimental approaches were thoroughly discussed36. The lipid
tracer diffusion coefficient in a model lipid-cholesterol binary mixture was calculated as
a function of cholesterol concentration and temperature37, 36. The model system that was
studied was identical to that used in the calculation of the phase diagram of Fig. 8(a).
The results are summarized in Fig. 16. The diffusion coefficient D increases monoton-
ically with increasing temperature and this qualitative trend is independent of cholesterol
concentration. The cholesterol concentration dependence of D, however, shows more in-
teresting behaviour. At higher temperatures, D decreases with increasing xchol, while at
temperatures below Tm, D increases monotonically with xchol. At temperatures slightly
greater than Tm, D first decreases, then increases slightly with increasing xchol, as can be
seen more clearly in the insert to the figure. A qualitative interpretation of the physical
origin of this behavior is provided by the free volume theory of diffusion. An increase
in D with xchol is due to an increase in the free area per molecule with increasing xchol.
Decreases in D arise from the fact that cholesterol also promotes conformational order-
ing of the lipid chains, which in turn causes the chains to interact more effectively, and
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Figure 14. Snapshots of micro-configurations for lipid membrane systems containing cholesterol (left) and lanos-
terol (right), calculated at T = 0.9806Tm and xs = 0.367. The upper panel shows all particles, with lipid chains
in the ordered state shown by filled circles, lipid chains in the disordered state shown by open circles, and sterol
molecules shown by crosses. The lower panel shows only the corresponding sterol molecules as filled circles.
The part highlighted by the box in the lower left snapshot is shown in detail in Fig. 15.

thus increase the effective activation energy for particle movement. These two effects
compete with one another and give rise to the non-monotonic variation of D with xchol

at intermediate temperatures. The diffusion results of Fig. 16 are qualitatively consistent
with those of a Fluorescence-Recovery-After-Photobleaching (FRAP) experimental study
of lateral diffusion in dimyristoylphosphatidylcholine (DMPC)-cholesterol binary mixture
model membranes38. Thus, the minimal model designed to reproduce the phase behaviour
of lipid-sterol mixtures also yields a correct description of the equilibrium dynamics.

5 The Final Words

In this set of lecture notes we gave a detailed description of our minimal, off-lattice mod-
els for lipid-cholesterol and lipid-lanosterol bilayers using random-lattice simulation tech-
niques. The difference in behavior between these two sterols was modeled, based on
their specific molecular characteristics, in terms of their differential interactions with lipid
molecules, namely, that cholesterol tends to rigidify neighboring lipid chains more strongly
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Figure 15. Enlarged version of the box highlighted in Fig. 14, showing a local ‘thread-like’ distribution of lipid
and cholesterol molecules. Lipid chains in the ordered state are shown by filled circles, lipid chains in the
disordered state are shown by open circles, and cholesterol molecules are shown by crosses.

Figure 16. Diffusion coefficient D vs cholesterol concentration fraction xs. The inset shows the data for T =
0.99Tm and 1.0Tm in an expanded scale to illustrate the increase in D with xchol in the lo phase. The diffusion
results for D are given in units of d2/MCS× 106, where d is the hard-core diameter.

than lanosterol due to the relative smoothness of its α-face compared to that of lanosterol.
We also discussed the MC method as well as the algorithm used in the MC simulations
of the model. We also presented applications of various modern statistical-mechanical
methods used to obtain the phase behavior of both lipid-cholesterol and lipid-lanosterol
bilayers.

We were able to establish the occurrence/absence of the lo phase as a distinct, thermo-
dynamically stable phase in the lipid-cholesterol and lipid-lanosterol system, respectively.
We pointed out that this might have significant implications for understanding sterol evo-
lution within the context of the structural evolution of membranes as well as the sterol
requirement for the formation of rafts. In particular our results correlate with the current
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hypothesis that cholesterol is an important factor in the formation of rafts and their stability
and that lanosterol is unable to stabilize rafts.

We were also able to use our model to predict the behavior of the diffusion constant in
lipid-cholesterol systems as a function of both temperature and cholesterol concentration.
No additional parameters or parameter values were used in these simulations and the re-
sults were found to agree qualitatively with experimental results. It is significant that the
minimal theoretical models have both descriptive and predictive capabilities, as this shows
that the essential microscopic physical mechanisms have been included correctly in the
models.
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12. R. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller, Biophys. J. 85, 1647 (2002).
13. A. M. Smondyrev and M. L. Berkowitz, Biophys. J. 80, 1649 (2001).
14. S. W. Chiu, E. Jakobsson, R. J. Mashl, and H. L. Scott, Biophys. J. 83, 1842 (2002).
15. See for example: G. W. Feigenson and J. T. Buboltz, Biophys. J. 80, 2775 (2001).
16. J. H. Ipsen, G. Karlström, O. G. Mouritsen, H. Wennerström, and M. J. Zuckermann,

Biochim. Biophys. Acta 905, 162 (1987); J. H. Ipsen, M. J. Zuckermann, and O. G.
Mouritsen In Cholesterol in Model Membranes (L. X. Finegold, ed.) CRC Press, Boca
Raton, Florida, 1993, pp. 223-257.

373



17. S. Doniach, J. Chem. Phys. 68, 4912-4916 (1978).
18. O. G. Mouritsen, B. Dammann, H. C. Fogedby, J. H. Ipsen, C. Jeppersen, K.

Jørgensen, J. Risbo, M. C. Sabra, M. M. Sperotto, and M. J. Zuckermann, Biophys.
Chem. 55, 55 (1995).

19. O. G. Mouritsen. In Advances in the Computer Simulations of Liquid Crystals (P.
Pasini and C. Zannoni, eds.) Kluwer Academic Publ. Dordrecht, 2000, pp. 139-187.

20. M. Nielsen, L. Miao, J. H. Ipsen, O. G. Mouritsen, and M. J. Zuckermann, Phys. Rev.
E 54, 6889 (1996).

21. M. Nielsen, L. Miao, J. H. Ipsen, M. J. Zuckermann, and O. G. Mouritsen, Phys. Rev.
E 59, 5790 (1999).

22. L. Miao, M. Nielsen, J. Thewalt, J. H. Ipsen, M. Bloom, M. J. Zuckermann, and O.
G. Mouritsen, Biophys. J. 82, 1429 (2002).

23. M. C. Sabra and O. G. Mouritsen, Meth. Enzymol. 321, 263 (2000).
24. M. Vist and J. H. Davis, Biochemistry 29, 451 (1990).
25. J. Thewalt and M. Bloom, Biophys. J. 63, 1176 (1992); J. Thewalt, F. M. Hanert, M.

Liseisen, A. J. Farral, and M. Bloom, Pharmacology 42, 9 (1992).
26. K. Bloch, Science 150, 19 (1965); CRC Crit. Rev. Biochim. 14, 47 (1983).
27. X. Xu and E. London, Biochemistry 39, 843 (2000).
28. An excellent textbook for both MC and Molecular Dynamics is: D. Frenkel and B.

Smit, Understanding Molecular Dynamics, 2nd Edition, Computational Science Se-
ries, Vol. 1, Academic Press, 2002.

29. M. Nielsen, Ph. D. Thesis, McGill University, Montreal, 1999.
30. S. Marcelja, Biochim. Biophys. Acta 367, 165 (1974).
31. D. A. Pink, T. J. Green, and D. Chapman, Biochemistry 19, 349 (1980).
32. J. Risbo, Ph. D. Thesis, Technical University of Denmark, 1997; J. Risbo, G. Besold,

and O. G. Mouritsen, Comp. Mat. Sci. 15, 311 (1999).
33. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988); ibid 63,

1195 (1991).
34. J. Lee and J. L. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990); Phys. Rev. B 43, 3625

(1991).
35. I. Vattulainen and O. G. Mouritsen. In Diffusion in Condensed Matter (J. Kärger, P.

Heitjans, and R. Haberlandt, eds.) Springer-Verlag, Berlin (in press, 2003).
36. I. Vattulainen, J. H. Ipsen, and O. G. Mouritsen, Biophys. J. (submitted, 2003).
37. J. M. Polson, I. Vattulainen, H. Zhu, and M. J. Zuckermann, Eur. Phys. J. 5, 485

(2001).
38. P. F. F. Alameida, W. L. C. Vaz, and T. E. Thomson, Biochemistry 31, 6739 (1992).

374


