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We analyze two different systems, which show spatio–temporal chaos. One is spiral–defect
chaos (SDC) in thermal convection, a well established complex pattern, which competes with
stationary convection rolls near onset of convection. A quite simple two–dimensional model
for SDC is provided by (generalized) Swift–Hohenberg (SH) equations, which are extensively
used in the literature for many other systems as well. In particular we concentrate on the impact
of spatially periodic modulations of the main control parameter, which leed to a transition from
rolls to rectangles and in some cases to an interesting coexistence between stripes and defect
chains. As a byproduct we describe a certain coarsening process of SDC towards a few big
spirals for long–time SH-simulations. This is in contrast to experiments and rigorous solutions
of the standard Boussinesq equations for convection and insinuates possible limitations of the
SH-model. Our second pattern forming example addresses thedynamics of ionic channels
in biomembranes. For their description we propose a novel model, which captures a Hopf
bifurcations in systems with conserved quantities and which shows in fact surprising dynamical
coarsening phenomena and spatio–temporal chaos.

1 Introduction

Applying sufficient stress to a system in a uniform state, forinstance by a temperature or
a density gradient, will often result in spatial or temporalpatterns1. In particular striped
patterns are ubiquitous in nature and are found in physical,chemical, and biological sys-
tems1, 2. The analysis of the communality between the patterns and the understanding of
universal aspects of pattern formation has been significantly promoted by the analysis of
two–dimensional model equations like the various types of Ginzburg–Landau and Swift–
Hohenberg (SH) equations1, 3, 4. Their formulation reflects the spatial and temporal symme-
tries of the underlying systems and some gross features of the pattern forming mechanism.
While the patterns are typically well-ordered close to the bifurcation they reveal increasing
spatio-temporal complexity when moving into the nonlinearregime. The goal of this paper
is to exemplify the various types of such complex patterns intwo different systems, which
are both amenable to a description by 2d-models.

We will at first consider convection in a horizontal fluid layer heated from below, known
as Rayleigh-Bénard convection (RBC), which is one of the best studied examples of pattern
forming systems1, 5, 6. Beyond a critical temperature difference between the bottom and
top boundary of the convection cell shown in Fig. 1, convection rolls occur. Cold and
warm regions alternate periodically at the upper surface. They are optically visualized
as a 2d-striped pattern by exploiting the temperature dependence of the refraction index.
The resulting intensity modulations are considered as an order parameter. The system
is dissipative (heat diffusion, viscous flow) and the standard model equations resemble
generalized (nonlinear) diffusion equations.
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Figure 1. A sketch of a thermal convection cell. Beyond a critical temperature difference∆T between the lower
and the upper container boundary convection rolls bifurcate from the heat conducting state. The temperature
difference may be also spatially periodic modulated with a modulation wavelengthλm, as indicated by the read
heat wires.

The fully rigorous three-dimensional description of thermal convection rests upon the
Boussinesq equation. One obtains in fact stable roll solutions in a fairly large regime of
the applied temperature gradient to the fluid layer and wavenumber of the roll patterns (the
”Busse balloon”)1, 5. Therefore, the recent observation of spiral–defect chaos(SDC) in a
parameter regime where it competes with the stable roll attractor was rather surprising7, 8.
The complex spatio–temporal dynamics of SDC involves rotating spirals, targets, disloca-
tions etc. that have been modeled first by numerical simulations of so–called generalized
Swift–Hohenberg (SH) equations9–12. These simulations provided important insights into
the underlying mechanism of SDC, however, the generalized SH model implies approx-
imations with possible limitations. Therefore, the reliability and the range of validity of
2d-models for RBC is of considerable interest. A check of such models against rigorous
results is possible, because most of the characteristic properties of SDC are reproduced
with high precision by the standard Boussinesq equations13–15. In fact the long–time dy-
namics of solutions of the SH equation, which is characterized by small spirals coalescing
into a few big ones16, is in contrast to the experiments and rigorous Boussinesq solutions
(see Sec. 2.1).

In addition we will take the opportunity to investigate the impact of spatial modulations
of the control parameter on SDC (see Sect.2.2). We will show that in this case rolls can
be substituted by rectangles at threshold. Further above threshold instead of SDC defect
chains become favored against SDC. These features seem to begeneric, since they are
observed in the modulated generalized SH model and the modulated Boussinesq equations
as well17.

As a second example we will study in Sect. 3 the dynamics of interacting ion–channels
in biomembranes18. Their activity (measured at the outer 2d surface of the membrane)
can also display patterns that may vary in space and time. Thefact, that the number of
ion channels is fixed, gives rise to a ”conserved” order parameter, in contrast to the ”non-
conserved” order parameter (≡ temperature field in RBC), and requires substantially dif-
ferent types of models. Thus, to describe the ion–channel dynamics we have constructed
a novel universal model equation for a conserved order parameter. They lead to complex
spatio-temporal patterns and coarsening mechanism, whichdiffer substantially from those
observed in the complex Ginzburg-Landau equation19–21, which is used as the universal
description of waves (Hopf-bifurcations) in the case of an unconserved order parameter.
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2 Spiral-Defect Chaos and its Modulations

In this section we discuss simulations of the generalized SH–equations in a parameter
range where SDC occurs. In this model the two real fieldsψ(r, t) andζ(r, t) (see e.g.Ref.
9, 10) are coupled and we allow also a modulation of the control parameter by a spatially
periodic functionM(x) = 2G cos(kx) with k = 2πλM ,

[

∂t + gmU · ∇
]

ψ =
[

ε+M(x) − (1 + ∆)2
]

ψ − ψ3, (1a)
[

τζ∂t − P(η∇2 − c2)
]

∆ζ =
[

(∂yψ)∂x − (∂xψ)∂y

]

∆ψ. (1b)

ψ(r, t) describes the planar spatial variations of convection patterns (e.g. the tem-
perature field), which consist locally of convection-roll patches. ζ(r, t) is a veloc-
ity potential determining the mean flowU = (∂yζ, −∂xζ). The control parameter
ε = 2.78 (∆T − ∆ Tc)/ ∆ Tc serves as a dimensionless measure for the applied tem-
perature difference∆T across the fluid layer. The time is scaled in such a way that a time
lapse oft = 5 in Eqs. (1) corresponds to the common vertical diffusion time tv, which is
about a few seconds in experiments.

Any curvature of the rolls produces a vertical vorticity field−∆ζ(r, t) which increases
with decreasing Prandtl numberP according to Eq. (1b). In contrast to the claims ex-
pressed in several papers by Gunton and coworkers (see e.g. Ref. 25), only the dominant
term∼ c2 on the left-hand side of Eq. (1b) can be directly traced back to the Boussinesq
equations. The two other terms∝ τζ , η, respectively, are in principle phenomenological,
as discussed in some detail in Ref. 11. In Eq. (1a) the relevance ofζ(r, t) is controlled by
the coupling constantgm. The value ofgm can be calculated asgm = 12.2 for c2 = 2 and
P = 1 by comparison with the known zig-zag stability boundary of convection rolls22.

The coupling to the mean flow, which becomes more important either at smallP or
largegm is crucial for persistent SDC. In the limit of large Prandtl numbersP , whereζ
is hardly excited, the dynamics ofψ becomes purely relaxational and approaches a low
dimensional stationary state of the corresponding Lyapunov functional.1, 4 Note, how-
ever, that any strongly disordered pattern before it equilibrates generates virtually instan-
taneously a strong, long-range mean-flowU according to Eq. (1b) and can thus easily lead
to a transient SDC-like dynamics.

2.1 Coarsening of SDC

In our numerical solutions of Eqs. (1) without modulations (M(x) = 0) we have chosen
the same set of parameters as in the previous works9, 10, 25, namelyc2 = 2, gm = 50,
τζ = η = P = 1, ε = 0.7. Mostly we consider an aspect ratio ofΓ = L/2d = 32 where
L denotes the lateral extension of the convection cell andd its thickness. At first we have
performed simulations in a square domain with periodic boundary conditions in order to
avoid an artificial bias from the sides. Starting from randominitial conditions yields a
typical snapshot as shown in Fig. 2(a) at800tv. This pattern compares well with those
already shown in Refs. 9, 10 at the same time lapse. It resembles also the characteristic
SDC snapshots observed persistently in experiments7, 8 or during numerical solutions of
the fundamental Boussinesq equations13. However, when continuing the runs over much
longer periods beyond8000tv the scenario changes qualitatively and the pattern coarsens
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Figure 2. The the two dimensional solutionψ(r, t) of (1) for periodic boundary conditions is plotted at increasing
times t after starting with random initial conditions16. The parameters areΓ = 32 (aspect ratio),ε = 0.7,
gm = 50, c2 = 2, η = 1, P = 1 andτζ = 1.

towards a ”big spiral” as shown in Fig. 2(c) and Fig. 2(d), which rotates about a slowly
migrating center. Only at the boundaries of the big spiral one finds remnants of the pre-
vious persistent generation and annihilation of small spirals. ForP ≈ 1 the coarsening
to big spirals is neither observed in experiments nor duringsimulations of the Boussinesq
equations. For more details about this coarsening we refer to 16,26.

Though for many purposes generalized SH-models are certainly very valuable tools
to study 2d-patterns, however, our investigations of SDC show clearly that one has to be
aware that the long–time behavior of hydrodynamic systems might not be adequately mod-
eled. Accordingly, their application to coarsening studies27 or to the analysis of statistical
properties of SDC25 might be questionable.

2.2 Effects of a Spatially Modulated Control Parameter

Spatially periodic modulations of spatially periodic patterns can lead to commensurate–
incommensurate transitions28, 29 or to surprising two-dimensional patterns30–32. In other
cases spatial periodic modulations break in addition the local reflection symmetry and in-
duce time dependent patterns33–35. Spatial modulations of parameters may also be viewed
as a control technique in some analogy to temporal controlling of unstable states in low
dimensional temporal chaos36, 37 or to the control of spatio-temporal complex phenom-
ena38, 39. SDC is intrinsically quasi two–dimensional and of rather different nature than the
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Figure 3. In a) a rectangular pattern is shown, that occurs ata forcing wavenumberk = 5q0/4 and a forcing
amplitudeG = 0.3 immediately above threshold. Increasing the control parameter toε = 0.7 a transition to
modulated rectangles takes place as shown in part b). For a slightly smaller modulationG = 0.2 the solution as
shown in c) is stable. When the modulation amplitude is further reduced toG = 0.077 the range of the vertical
stripes becomes unstable against spiral formation.

examples mentioned before. Hence controlling or forcing ofthis experimentally accessible
pattern is expected to lead to different and new phenomena.

The onset of pattern described by the model in Eqs. (1) is reduced fromεc = 0 in the
case without modulations toεc = −2G with a finite modulation amplitudeG and modula-
tion wavenumberk < 2q0. In this range the projection of the wavenumberq0 = (qx, qy)
of the pattern onto thex–axis is in2 : 1−resonance with the modulation wave number
2qx = k. Especially in the rangek ∼ q0 rectangular pattern occur at threshold as shown in
Fig. 3a) fork = 5q0/4 andG = 0.15. If the control parameter is further increased beyond
threshold a transition from rectangles to modulated rectangles takes place, c.f. Fig. 3b).

If the effect of mean flow is taken into account with the coupling constantsgm = 50
andP = 1, again at threshold rectangles occur at first. However, increasing the control
parameter up toε = 0.7, where SDC occurs in the absence of modulationsM(x) = 0,
then one observes a transition from SDC to defect chains which are similar to the pattern
shown in Fig. 3d). This coexistence between the horizontal stripe pattern and the SDC
like pattern is due to an interplay between the mean flow fieldζ(x, y) and the modulation
M(x). This interplay stabilizes for stronger modulations also the surprising coexistence of
two orthogonal stripe pattern as shown forG = 0.2 in Fig. 3c). For a modulation amplitude
of aboutG = 0.07 the vertical stripes shown in Fig. 3c) become unstable with respect to
SDC like pattern as given in Fig. 3d). Also this surprising pattern persists forever. Close
to the transition from a pattern shown in Fig. 3c) to a patternas shown in Fig. 3d) the
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embedded SDC like ranges are stationary. Reducing the amplitudeG further, then the
SDC like pattern becomes time dependent, but the narrow SDC like range in Fig. 3d) is
still stable in some range ofG. However, after a further reduction ofG the SDC like stripes
invade the range of the horizontal stripes and forG→ 0 SDC patterns are met everywhere
as discussed in Sec. 240. From simulations of the Boussinesq equations with a modulated
temperature difference∆T a very similar scenario is obtained, as described in more detail
elsewhere17.

3 Biomembranes

In a model describing the collective dissipative dynamics of ionic channels in biomem-
branes, an oscillatory bifurcation has been found41. Since the ion–channels are neither cre-
ated nor annihilated, the ion–channel density is a conserved quantity. Therefore, the Hopf
bifurcation in this system is rather different from common oscillatory systems21, where the
major fields are unconserved. Accordingly, the common complex amplitude equation with
complex coefficients (see e.g. Ref. 1, 21), which describes the nonlinear solutions above
an oscillatory instability in systems with unconserved quantities, cannot be applied to a
description of the generic properties of the oscillating ion–channel density.

In a system with conserved fields, the equation for the complex order parameter field
A(x, y, t) beyond an oscillatory instability is as follows18

∂tA = −∇2
(

η + ia+ (1 + ib)∇2 − (1 + ic)|A|2
)

)A

+(d1 + id2)∇ [(A∗∇A−A∇A∗)A] . (2)

This equation has been derived on the basis of general symmetry principles and conserva-
tion laws. Alternatively Eq. (2) has been derived from the basic equations of motion of the
ionic–channels by a generalized perturbation expansion around the basic state18. In this
case the coefficients can be expressed in terms of the diffusion constants, the charge and
the mobility of the ion–channels.

The basic stateA = 0 becomes unstable against small perturbations of the formA ∝
eσt+iQx, if the growth rateλA = <(σ(Q)) becomes positive, with the complex dispersion

σ(Q) = Q2(η + ia− (1 + ib)Q2) . (3)

The growth rateλA(Q) takes its maximum at the wavenumberQm =
√

η/2 . Starting a
numerical simulation of Eq. (2) in one spatial dimension with random initial conditions, the
Fourier mode corresponding to the wave numberQm is indeed the fastest growing mode in
the initial state as can be seen at the bottom of Fig. 4a). However, the saturated nonlinear
right (left) traveling wave solutionsA = F exp[i(Ωt− (+)Qmx)] of Eq. (2) are unstable
with respect to modulations with a wavenumberK and the original traveling–wave solu-
tion even changes its propagation direction in most cases. At the same time the wavelength
(wavenumber) increases (decreases) and the resulting coarsening process can be observed
in the middle of the space–time plot of Fig. 4a). The resulting slightly modulated traveling
wave exists for a quite long transient period (that is not fully shown) but it becomes again
unstable with respect to a short wavelength instability, tobe seen in the middle of Fig. 4b).
In the late stage of the coarsening process the solution approaches always a traveling wave
state with the largest possible wavelength set by the periodicity lenghtL of the system (we
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Figure 4. The real part<(A(x, t)) of a one-dimensional solution of Eq. (2) is shown as a space-time plot in
panels a) (initial state), b) (later stage). The coarseningis obvious. The corresponding two-dimensional solutions
are shown in panels c)-f) each at a fixed time. The following parameters in Eq. (2) have been used:η = 1, a =
0.4, b = 1, c = −2, d1 = 0.2, d2 = −0.1.
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use periodic boundary conditions). If non-flux boundary conditions are used, the coarsen-
ing is essentially unchanged, but one has to deal with the opposite propagation direction of
the traveling waves too.

x

y

x

a)

x

tim
e

b)

c)

y

Figure 5. In a) the real part<(A(x, t)) of the one dimensional solution of Eq. (2) is shown. This is ina parameter
regime with persistent spatio-temporal chaos. In b) the real part<(A(x, y, t0)) of the two–dimensional solution
is shown at a fixed timet0 and in c) the modulus|A(x, y, t0)|. The parameters for these simulations in Eq. (2)
areη = 1, a = 0.5, b = 1, c = −1.73, d1 = 0.4, d2 = 1.1.

For the same parameters as in Fig. 4a) and in Fig. 4b) the coarsening process in two
spatial dimensions is slightly different as indicated by Figs. 4c)-f). Fig. 4c) shows the real
part of the solution at an intermediate time. Slightly afterward, similar as in Fig. 4d), very
often a Zig-Zag like pattern occur, which itself becomes unstable after a longer transient
period. During a further intermediate regime solutions similar as in Fig. 4e) occur, but
finally also in two spatial dimensions the traveling wave state, as shown in Fig. 4f), is the
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preferred state. This scenario holds for a large range of parameters in one and two spatial
dimensions. This dynamical coarsening is rather differentfrom the common coarsening
phenomena42, 27, 11and more details will be described elsewhere. The duration of the whole
coarsening process increases with the system sizeL.

There are also parameter regimes with persistent spatio-temporal chaotic solutions of
Eq. (2). An example of this solution type in one spatial dimension is given by a space-
time plot in Fig. 5a). In two spatial dimensions two snap shots of this solution at the same
parameters are given in Fig. 5b) and Fig. 5c), where the real part<(A(x, y) is shown in
part b) and the modulus|A(x, y)| in part c). The blue dots in Fig. 5c) correspond to zeros
of the modulus|A(x, y)| and therefore to defects of the complex fieldA(x, y). A more
complete characterization of these solutions is given elsewhere18.

4 Conclusions

We have shown, that certain 2-d models are very useful to describe generic features of
spatio-temporal complex patterns. Nevertheless one has tobe aware of their possible short-
comings. Forthcoming experiments (E. Bodenschatz, Cornell Univerity) are dedicated to
test in particular our predictions regarding the influence of spatial modulations on SDC.
This will certainly give rise to an interesting interplay between numerical and experiman-
tal investigations. Our investigations of the new model forthe dynamics of ion-channels
have just started. In view of the intensive work on the complex Ginzburg-Landau equation
for oscillatory patterns with a non-conserved orderparameter21, certainly one of the most
studied nonlinear equations in physics, and the applications to biophysics we are looking
forward to intensive studies of our model as well.
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