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Magnetohydrodynamic Simulations of the Geodynamo

Helmut Harder, Stephan Stellmach, and Ulrich Hansen

Institute of Geophysics
University Münster, 48148 Münster, Germany

E-mail: {harder,stellma,hansen}@earth.uni-muenster.de

The generation of the interior magnetic field of the Earth is studied by numerical simulations of
the magnetohydrodynamic dynamo problem. The main problem is to reach extreme parameter
values relevant to the Earth’s molten, electrically conductive iron core. With simplified cartesian
models we are able to perform calculations in the relevant regime where viscous forces are small
compared to rotational Coriolis and magnetic Lorentz forces. As theoretically predicted, these
simulations show that the generated magnetic field tends to break the Taylor Proudman theorem
and that it promotes a vigorous, large-scaled flow in the fluidcore. For the more Earth-like case
of dynamo action within a spherical shell, a new parallel finite volume approach is in progress.
A comparison with published benchmark solutions shows the accuracy, but also the limitations,
of this method.

1 Introduction

Seismological studies of the propagation of elastic waves have shown that the Earth’s outer
core, in a depth of about 3000 to 5000 km, consists of molten iron. Slight density variations
in this liquid, electrically conductive layer drive a convective flow, which inturn generates
and maintains the magnetic field of the Earth. Density variation in the fluid outer core are
induced by the secular cooling of the Earth and by the freezing of the inner, solid core.
Due to the importance of the magnetic field and its occasionalreversals to terrestrial life,
a proper understanding of the dynamo processes in the core isone of the grand challenges
in modern geophysics.

Numerical simulations of the dynamo processes are extremely time intensive and have
only become feasable during the past decade by the increasedpower of modern computer
architectures. Still up to now, numerical simulations are possible only in a parameter
regime far from values expected for the Earth’s core. Especially the low values of vis-
cosity and of thermal and compositional diffusivities posesevere difficulties which have
not been overcome yet.

In this study, we use the plane layer dynamo model originallyproposed by Childress
and Soward1–3 to investigate the regime of low viscosity. A very useful parameter to indi-
cate the strength of viscous effects is the Ekman numberE = ν/2ΩL2 which is defined
as the ratio of the rotational time scale to the time scale of viscous dissipation. Typically,
spherical models are able to reachE = O(10−4) if all diffusion operators are retained
in the classical form. The geometrical simplicity of our cartesian model allows us to pre-
form calculations atE = 5 × 10−6. This low value allows us to investigate effects which
are absent in the high Ekman number regime and which are thus very difficult to study in
spherical geometry.

Nevertheless, we think that also in the case of spherical models progress could be
made in this respect. Based on the experience gained by the cartesian models, we have
currently developed a finite volume method to solve the spherical dynamo problem. Since
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this approach is much more suitable for parallel computation than a spectral transform
method, which up to now is dominantly used in spherical dynamo simulations, we hope that
a much higher grid resolution could be used in future simulations. This will allow to shift
parameter values towards a more Earth-like regime. However, extensive tests of the new
method are needed, before such computatial demanding simulations could be started. A
comparison with benchmark results obtained previously by spectral methods demonstrates
the prospects of the finite volume approach.

2 Mathematical Model

The model consists of an incompressible electrically conducting fluid layer confined be-
tween planes which is heated from below and rotates with angular velocity Ω about a
vertical axisez. Under these conditions the equations governing magnetohydrodynamic
dynamos are the coupled heat transport equation, Navier Stokes equations with Coriolis
and Lorentz terms included, the magnetic induction equation, and constraints to ensure
solenoidal vector fieldsu andB, i.e.

∂u

∂t
+ ∇.

(

uu − Pr

Rb
BB

)

− Pr∇2
u + ∇P +

Pr

Ek

ez × u− PrRaTa = 0, (1)

∂B

∂t
+ ∇.

(

uB− Bu

)

− 1

Rb
∇2

B = 0, (2)

∂T

∂t
+ ∇.

(

uT
)

−∇2T = 0, (3)

∇u = ∇B = 0, (4)

whereP denotes the pressure,u the vector of fluid flow,B the vector of magnetic in-
duction,T the temperature, andez the unit vector parallel to the axis of rotation. In the
cartesian casea = ez holds, whereas in the spherical casea = r/r0 is valid, wherer0

denotes the radius to the outer boundary. By the scaling of the equations the following four
dimensionless numbers are intoduced:

Rayleigh numberRa = α∆Tgd3/(κν), Ekman numberE = ν/(2Ωd2)

Prandtl numberPr = ν/κ, Roberts numberRb = κ/η.

The Rayleigh numberRa defines the ratio of buoyancy forces to viscous forces, the Ek-
man numberE is the ratio of viscous forces to the Coriolis force, whereasPrandtlPr and
Roberts numbersRb are ratios of diffusivities. In these definitionsα denotes the coefficient
of thermal expansion,κ the thermal diffusivity,ν the dynamical viscosity,η magnetic vis-
cosity,g0 gravity at the outer boundary,Ω the rotation rate,∆T the temperature difference,
and d the distance of outer to inner boundary.

In the cartesian case we apply isothermal, free slip and electrically perfect conducting
top and bottom boundaries. Horizontal boundaries are periodic. In the spherical case
isothermal, rigid and quasi vacuum4 (r × B = 0) conditions are applied. The applied
magnetic boundary conditions are not realistic and are chosen for numerical convenience
only.
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3 Numerical Method

In the cartesian method we solve the magnetohydrodynamic equations (1-4) with a primi-
tive variable approach. The spatial discretization is doneby a cell centered (collocated)
finite volume method, where the diffusive term are calculated by a central approximation,
whereas advection term are approximated by an upwind-biased QUICK scheme. Time
stepping is performed by a second order BDF scheme.

The computational grid is divided by domain decomposition and each domain is at-
tributated to a processor. We use the Message Passing Interface (MPI) to communicate
values at domain boundaries to neighboring processes. The domains overlap by two grid
cells to include values of neighboring domains. The overlapof two cells follows from the
approximation of advection terms by the QUICK scheme.

We use a block Gauss Seidel iteration to calculate temperature, magnetic induction and
velocity in a fully implicit fashion. Since only small timesteps are used, usually very few
SIMPLE iterations suffice to reduce the residuals by 5 ordersof magnitude. To calculate
the pressure and magnetic field correction, which is the mostcompute intensive part of the
algorithm, we use the Krylov subspace method BiCGSTAB. A more detailed description
of the fully implicit method is available5.
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Figure 1. Speedup of the spherical calculation by the use of nprocesses.

The spherical method has some similiarities with our cartesian approach. The finite
volume discretization is in this case generated by the projection of an equidistant mesh
of the enscribed cube onto the unit sphere, followed by an orthogonalization of the grid.
In the 3. spatial dimension we use an non-equidistant discretisation of the radius. By this
method, we project topologically a spherical shell to six coupled cubes, which is convenient
for parallel computation.

The most important deviation from the cartesian method is the different implemen-
tation of the collocated grid arrangment. Here we use pressure weigthed interpolation
(PWI)6 to calculate normal components at the cell surfaces which are needed to fullfill
the incompressibiliy condition. This method has been successfully tested for several sim-
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ple convection problems. The scalability of the code is demonstrated in Figure 1. The
calculations were performed at our local Pentium cluster ona grid with6 × 323 cells.

4 Dynamo Calculations

4.1 Cartesian Geometry

To get a proper understanding of the dynamo processes at low Ekman number, our ap-
proach is to chose the Ekman number as low as possible while adjusting the other param-
eters in a way that keeps the numerical cost at a minimum. The parameters for the run
presented here area = b = 1, E = 5 × 10−6, P r = 1, Rb = 1 andRa = 1.2 × 108.
The spatial resolution is1283 control volumes. The dynamo is initiated by inserting a
small magnetic field into fully developed non-magnetic convection. Figure 2 shows the
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Figure 2. Temporal evolution of the magnetic Reynolds number Rem, which is proportional to the mean flow
velocity, the Elsasser numberΛ, which is proportional to the mean magnetic energy, and the dimensional ratio of
magnetic to kinetic energy forE = 5 × 10−6, Ra = 1.2 × 108, P r = Rb = 1. The grey bar indicates the
phase of kinematic growth characterized by a constant mean growth rate.

temporal evolution of the magnetic Reynolds numberRem :=< Rb
√

u2 >V , the El-
sasser numberΛ :=< E B

2 >V and the ratio of dimensional magnetic to kinetic energy
Emag/Ekin := (Rb Pr/E)Λ/Rem where< ... >V denotes a volume average over the
computational domainV . We firstly calculated a non-magnetic solution and inserteda
small magnetic perturbation after a statistically stationary state was reached. This per-
turbation is amplified by the convective flow through kinematic dynamo action until the
magnetic field becomes strong enough to significantly influence the flow pattern. As the
magnetic field grows, the magnetic Reynolds number and correspondingly the convec-
tive velocities of the flow increase. Figure 2 shows that thisagain leads to more efficient
dynamo action resulting in very fast, non-exponential growth of the field strength until
saturation occurs. This strongly indicates a tendency of the magnetic field to promote
convection.
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Figure 3. Comparison of typical flow structures for non-magnetic convection (left column) and the corresponding
magnetically saturated dynamo solution (right column) forE = 5E−6, P r = 1, Rb = 1 andRa = 1.2×108 .
The upper rowa) shows isosurfaces atuz = 50 (yellow) anduz = −50 (blue). b) shows an iso-surface of
temperature atT = 0.5. The lowermost plotc) shows iso-surfaces of helicityH = u · (∇×u) at±20% of the
maximum value. Here, blue indicates negative and yellow indicates positive helicity.

To give an impression of the resulting flow structures, we present visualizations in fig-
ure 3. The pictures on the left side show the non-magnetic solution while the corresponding
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Figure 4. Time averaged spectral distribution of kinetic energy fora) the nonmagnetic andb) the dynamo case.
The time average was taken over a time interval covering the nonmagnetic and the saturated period.

saturated dynamo solution is displayed on the right. The toprow a) shows isosurfaces of
uz atuz = ±50. The next rowb) shows an iso-surface of the temperature field atT = 0.5.
In the dynamo case, the iso-surface is much more deformed than in the non-magnetic case
illustrating the convection promoting character of the magnetic field. The last rowc) shows
iso-surfaces of helicityH = u · (∇ × u) at ±20% of its maximum absolute value. For
both the non-magnetic and the dynamo case, the velocity fieldconsists of vertical columns
with positive helicity in the lower and negative helicity inthe upper half of the layer. These
columns move through the domain in an irregular fashion. By comparing the non-magnetic
and the dynamo solution, it can be anticipated from figure 3 that the relevant spatial scales
increase through the action of the magnetic field.

To quantify this effect we calculate the spectra

u =
∑

l,m,n

ul,m,n exp(2πi(lx + my))(cos(nπz), cos(nπz), sin(nπz)) (1)

of the solution. The plots shown in figure 4 show thel, m-distribution of the quantity
log10 v2(l, m) = log10 <

∑

n

E(l, m, n) >, whereE(l, m, n) denotes the dimension-

less kinetic energy in the mode with wavenumbersl, m andn. Here< .. > indicates
a time average. Only horizontal wavenumbers up to20 have been plotted to highlight
differences between the dynamo and the non-magnetic solution. For the non-magnetic
case, the most striking features are very pronounced maximafor modes of wavenumbers
11 ≤ k :=

√
l2 + m2 ≤ 14 while modes with both lower and higherk contain by far less

energy. A second local maximum exists for long wavelength modes, but its contribution to
the entire kinetic energy is small.

The kinetic energy spectrum for the dynamo case is considerably different. As com-
pared to the non-magnetic case, the spatial scales increase, the sharp peaks at higher
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wavenumbers nearly disappear and the energy spectrum rapidly drops off for modes with
k ≥ 9. The whole time averaged kinetic energy exceeds the corresponding non-magnetic
value by roughly a factor of2.5.
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Figure 5. Visualization of the structure of the generated magnetic field. The upper picture on the left sidea)
shows an iso-surface of the magnetic energy at20% of its maximum value. Plotb) shows the spectral distribution
of the magnetic energy based on the Elsasser number among thehorizontal modes (see text for details). The left
picture in the bottom rowc) is a plot of the horizontally averaged magnetic field. Again,the arrows are scaled by
the absolute value. Plotd) shows the time history of the Fourier coefficientsBx(0,0,1)

andBy(0,0,1)
.

The structure of the magnetic field is shown in figure 5. The left picture shows a snap-
shot of an iso-surface of the magnetic energy density at20% of its maximum value at the
displayed time step. The time averaged spectral distribution of magnetic energy is shown
in the second image in the upper row. The magnetic field is expanded in Fourier series as
above in the case of the velocity field. Most of the magnetic energy is contained in modes
with (l, m) = (0, 0) corresponding to the so called mean fieldB⊥ := (Bx, By, 0) where
the bar indicates a horizontal average. Small scale convection feeds energy into the high
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wavenumber components of the magnetic field which then movesup the spectrum in an in-
verse cascade. In sharp contrast to the velocity field, the magnetic spectrum monotonically
decreases with increasingk.

Since the magnetic field is strongly dominated by modes withk = 0, which play a key
role in the dynamo process, we give a visualization of the mean field in figure 5, where
again arrows are scaled by its absolute value. The mean field is nearly antisymmetric with
respect to the planez = 0.5 which can be interpreted as a consequence of the fact that
under the chosen magnetic boundary condition, the z-integrated mean field has to vanish7.
B⊥ resembles a spiral staircase twisting in the same sense as the velocity field. Together
with the helicity, atz = 1/2 the sense of twisting of the mean field changes sign. The
appearance of this spiral staircase structure ofB⊥ is best understood by picturing each
half of the layer as a crude representation of a G.O. Roberts dynamo8.

The time evolution of the mean field is quite simple. To illustrate this, the last picture
of figure 5 shows the temporal evolution of the(0, 0, 1)-mode of the horizontal magnetic
field. The plot is typical for the strongest mean-field modes which are primarily the odd
modes. The mean field rotates in a sense opposite toΩ with a period of the order of the
free decay time of the system.

4.2 Spherical Geometry

In spherical geometry we test the finite volume approach in the case of non-magnetic con-
vection within a rotating spherical shell. The benchmark case9 is defined by Rayleigh
numberRa = 105, Prandtl numberPr = 1, Ekman numberE = 5 × 10−4, and ratio
of the radii to lower and outer boundaryrl/r0 = 7/13. The solution is quasi-stationary
and is characterized by four uprising and four descending Busse-Taylor columns. After a
transient period of about one thermal diffusion time, the time-dependency of the solution
is reduced to a slow azimuthal drift. However, since the gridis not rotationally invariant,
slight variations are introduced, which depend on the momentary azimuthal position of
the solution on the grid. The solution is identical after an azimuthal drift of 90 degrees,
which is the common periodicity of both the grid and the solution. A convergence test
of the average flow velocityvrms and a local velocityvφ, defined at a specified feature
of the solution, demonstrates that these variations are reduced with the square of the grid
resolution (Figure 6), as it is expected with a second order convergent method. A Romberg
extrapolation of the results is in excellent agreement withthe best estimates obtained by
various spectral and semi-spectral transform methods9.

The full dynamo problem has been solved in a series of simulations with Roberts num-
bers (Rb = 8, 5, 4, 1), all other parameter as before. In accordance with the benchmark
results, stable dynamos are obtained only forRb > 4, for smallerRb the initial magnetic
field decays exponentially. Figure 7 displays the time evolution of the spatially averaged
magnetic induction (Rb = 8). After approximately one magnetic diffusion time (t = 8)
a quasi-stationary magnetic field is obtained. The flow structure is similiar to the case of
non-magnetic convection, which indicates that Lorentz forces are of minor importance in
this model. The magnetic field is strongly concentrated within flux bundles in the descend-
ing Busse Taylor columns (Figure 7). Due to different magnetic boundary conditions a
more quantitative comparison to benchmark results is not feasible in this case.
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Figure 7. Time evolution of the spatially averaged magneticinduction (left). Amplitude of magnetic induction
|B| (colour coded: red high intensity and blue low intensity) and flow velocity (arrows) below the top Ekman
boundary layer (right). It should be noted that the indicated spherical grid is not rotationally invariant.

5 Discussion

By comparing cartesian nonmagnetic and magnetic solutions, we find that the magnetic
field strongly promotes convection in the low Ekman number regime consistently with
results from magnetoconvection theory10, 11. As would be expected, the magnetic field acts
to weaken the rotational constraint leading to a decrease inthe size of the convection cells
as compared to the nonmagnetic solution. We are thus in a parameter regime where the
flow field is substantially altered by the action of the Lorentz force.

The spherical simulations are obtained in the moderate Ekman number regime. How-
ever, the results are encouraging, especially the comparison to benchmark solutions. We
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anticipate that in the near future simulations in a more Earth-like regime are possible. How-
ever, such simulations will be computationally expensive and certainly require parallel high
performance architectures.
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