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M agnetohydrodynamic Simulations of the Geodynamo

Helmut Harder, Stephan Stellmach, and Ulrich Hansen

Institute of Geophysics
University Minster, 48148 Munster, Germany
E-mail: {harder,stellma,hansen} @earth.uni-muenster.de

The generation of the interior magnetic field of the Earthusled by numerical simulations of
the magnetohydrodynamic dynamo problem. The main probdeim ieach extreme parameter
values relevant to the Earth’s molten, electrically conidedron core. With simplified cartesian
models we are able to perform calculations in the relevagitrre where viscous forces are small
compared to rotational Coriolis and magnetic Lorentz ferass theoretically predicted, these
simulations show that the generated magnetic field tende#klihe Taylor Proudman theorem
and that it promotes a vigorous, large-scaled flow in the ffoie. For the more Earth-like case
of dynamo action within a spherical shell, a new paralletdinolume approach is in progress.
A comparison with published benchmark solutions shows tiearacy, but also the limitations,
of this method.

1 Introduction

Seismological studies of the propagation of elastic waase shown that the Earth’s outer
core, in a depth of about 3000 to 5000 km, consists of moltem iBlight density variations
in this liquid, electrically conductive layer drive a comtige flow, which inturn generates
and maintains the magnetic field of the Earth. Density viaran the fluid outer core are
induced by the secular cooling of the Earth and by the frepainthe inner, solid core.
Due to the importance of the magnetic field and its occasimvadrsals to terrestrial life,
a proper understanding of the dynamo processes in the cone isf the grand challenges
in modern geophysics.

Numerical simulations of the dynamo processes are extgetine intensive and have
only become feasable during the past decade by the increasext of modern computer
architectures. Still up to now, numerical simulations aosgible only in a parameter
regime far from values expected for the Earth’'s core. Egfigdhe low values of vis-
cosity and of thermal and compositional diffusivities pes®ere difficulties which have
not been overcome yet.

In this study, we use the plane layer dynamo model originalbposed by Childress
and Soward to investigate the regime of low viscosity. A very usefulgraeter to indi-
cate the strength of viscous effects is the Ekman nuniber v/2QL? which is defined
as the ratio of the rotational time scale to the time scaldsifous dissipation. Typically,
spherical models are able to reath= O(10~%) if all diffusion operators are retained
in the classical form. The geometrical simplicity of ourtegfan model allows us to pre-
form calculations aff = 5 x 1075, This low value allows us to investigate effects which
are absent in the high Ekman number regime and which are grygifficult to study in
spherical geometry.

Nevertheless, we think that also in the case of sphericaletsgorogress could be
made in this respect. Based on the experience gained by ttesiem models, we have
currently developed a finite volume method to solve the dpakdynamo problem. Since
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this approach is much more suitable for parallel computatitan a spectral transform
method, which up to now is dominantly used in spherical dymammulations, we hope that
a much higher grid resolution could be used in future sinmat This will allow to shift
parameter values towards a more Earth-like regime. Howexésnsive tests of the new
method are needed, before such computatial demandingationg could be started. A
comparison with benchmark results obtained previoushpegsal methods demonstrates
the prospects of the finite volume approach.

2 Mathematical Modd

The model consists of an incompressible electrically catidg fluid layer confined be-
tween planes which is heated from below and rotates with langelocity ©2 about a
vertical axise,. Under these conditions the equations governing magndtodynamic
dynamos are the coupled heat transport equation, Navi&keStquations with Coriolis
and Lorentz terms included, the magnetic induction eqonaémd constraints to ensure
solenoidal vector fielda andB, i.e.

) P P
=y v.(uu - —TBB) — PV?u+ VP + E—Tez xu—P.R,Ta=0, (1)
k

ot Rb
OB 1
§+v.(uBfBu)va B =0, 2)
or ,
§+v.(uT)—v T =0, 3)
Vu=VB =0, (4)

where P denotes the pressure, the vector of fluid flow,B the vector of magnetic in-
duction,T the temperature, angl, the unit vector parallel to the axis of rotation. In the
cartesian casa = e, holds, whereas in the spherical case- r/r( is valid, whererg
denotes the radius to the outer boundary. By the scalingecddiuations the following four
dimensionless numbers are intoduced:

Rayleigh numbeRa = aATgd?/(kv), ~ Ekman numbeFE = v/(2Qd?)
Prandtl numberPr = v/k, Roberts numbeRb = /7.

The Rayleigh numbeRa defines the ratio of buoyancy forces to viscous forces, the Ek
man numbew is the ratio of viscous forces to the Coriolis force, whereesndtl Pr and
Roberts numberBb are ratios of diffusivities. In these definitionslenotes the coefficient
of thermal expansior, the thermal diffusivityy the dynamical viscosity; magnetic vis-
cosity, gg gravity at the outer boundar§), the rotation rateA7T" the temperature difference,
and d the distance of outer to inner boundary.

In the cartesian case we apply isothermal, free slip andridalty perfect conducting
top and bottom boundaries. Horizontal boundaries are gierioln the spherical case
isothermal, rigid and quasi vacudnir x B = 0) conditions are applied. The applied
magnetic boundary conditions are not realistic and areerhér numerical convenience
only.
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3 Numerical Method

In the cartesian method we solve the magnetohydrodynamatieqs (1-4) with a primi-
tive variable approach. The spatial discretization is doye cell centered (collocated)
finite volume method, where the diffusive term are calculdtg a central approximation,
whereas advection term are approximated by an upwind-bhi@s#CK scheme. Time
stepping is performed by a second order BDF scheme.

The computational grid is divided by domain decompositiod aach domain is at-
tributated to a processor. We use the Message PassingaliegflPl) to communicate
values at domain boundaries to neighboring processes. dinaids overlap by two grid
cells to include values of neighboring domains. The oveofavo cells follows from the
approximation of advection terms by the QUICK scheme.

We use a block Gauss Seidel iteration to calculate temperahagnetic induction and
velocity in a fully implicit fashion. Since only small timeps are used, usually very few
SIMPLE iterations suffice to reduce the residuals by 5 ordémagnitude. To calculate
the pressure and magnetic field correction, which is the cwspute intensive part of the
algorithm, we use the Krylov subspace method BIiCGSTAB. Aertetailed description
of the fully implicit method is availabfke

ideal speedup , ~

of 7
.

s .
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8
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Figure 1. Speedup of the spherical calculation by the usepobcesses.

The spherical method has some similiarities with our cateapproach. The finite
volume discretization is in this case generated by the ptioje of an equidistant mesh
of the enscribed cube onto the unit sphere, followed by amogdnalization of the grid.
In the 3. spatial dimension we use an non-equidistant disat®n of the radius. By this
method, we project topologically a spherical shell to six@ed cubes, which is convenient
for parallel computation.

The most important deviation from the cartesian method ésdifferent implemen-
tation of the collocated grid arrangment. Here we use presaeigthed interpolation
(PWI)® to calculate normal components at the cell surfaces whiemaeded to fulffill
the incompressibiliy condition. This method has been ss&fcdly tested for several sim-
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ple convection problems. The scalability of the code is destrated in Figure 1. The
calculations were performed at our local Pentium clustea grid with6 x 323 cells.

4 Dynamo Calculations

4.1 Cartesian Geometry

To get a proper understanding of the dynamo processes at kowa: number, our ap-
proach is to chose the Ekman number as low as possible whilsta the other param-
eters in a way that keeps the numerical cost at a minimum. ahenpeters for the run
presented here are=b = 1,E = 5 x 1075, Pr = 1,Rb = 1 andRa = 1.2 x 108.
The spatial resolution i$28° control volumes. The dynamo is initiated by inserting a
small magnetic field into fully developed non-magnetic aagtion. Figure 2 shows the
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Figure 2. Temporal evolution of the magnetic Reynolds nunibe,,, which is proportional to the mean flow
velocity, the Elsasser numbar, which is proportional to the mean magnetic energy, and ifnemtsional ratio of
magnetic to kinetic energy faf = 5 x 1076, Ra = 1.2 x 108, Pr = Rb = 1. The grey bar indicates the
phase of kinematic growth characterized by a constant mesavily rate.

temporal evolution of the magnetic Reynolds numBer,, :=< Rb vu? >y, the El-
sasser numbex :=< E B? >y, and the ratio of dimensional magnetic to kinetic energy
Erag/FErin == (Rb Pr/E)A/Re,, where< ... >y, denotes a volume average over the
computational domaiy. We firstly calculated a non-magnetic solution and inseged
small magnetic perturbation after a statistically stadignstate was reached. This per-
turbation is amplified by the convective flow through kineimatynamo action until the
magnetic field becomes strong enough to significantly inflteghe flow pattern. As the
magnetic field grows, the magnetic Reynolds number and sporedingly the convec-
tive velocities of the flow increase. Figure 2 shows that #gain leads to more efficient
dynamo action resulting in very fast, non-exponential gloef the field strength until
saturation occurs. This strongly indicates a tendency efrttagnetic field to promote
convection.
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Figure 3. Comparison of typical flow structures for non-nmetgnconvection (left column) and the corresponding
magnetically saturated dynamo solution (right column)Hot= 5E —6, Pr = 1, Rb = 1 andRa = 1.2 x 108.
The upper rowa) shows isosurfaces at, = 50 (yellow) andu, = —50 (blue). b) shows an iso-surface of
temperature &’ = 0.5. The lowermost plot) shows iso-surfaces of helicif = u- (V x u) at+20% of the
maximum value. Here, blue indicates negative and yellovcatds positive helicity.

To give an impression of the resulting flow structures, weene visualizations in fig-
ure 3. The pictures on the left side show the non-magnetitisolwhile the corresponding
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: b)
Nonmagnetic Saturated Dynamo

Figure 4. Time averaged spectral distribution of kinetiergy fora) the nonmagnetic anb) the dynamo case.
The time average was taken over a time interval covering ¢inenvagnetic and the saturated period.

saturated dynamo solution is displayed on the right. Thedepa) shows isosurfaces of
u, atu, = £50. The next ronb) shows an iso-surface of the temperature fieldf at 0.5.
In the dynamo case, the iso-surface is much more deformedrtthe non-magnetic case
illustrating the convection promoting character of the metg field. The last row) shows
iso-surfaces of helicity? = u - (V x u) at £20% of its maximum absolute value. For
both the non-magnetic and the dynamo case, the velocitydaeidists of vertical columns
with positive helicity in the lower and negative helicitytime upper half of the layer. These
columns move through the domain in an irregular fashion. @yjgaring the non-magnetic
and the dynamo solution, it can be anticipated from figureaBttine relevant spatial scales
increase through the action of the magnetic field.

To quantify this effect we calculate the spectra

u= Z Uy m,pn exp(2mi(le + my))(cos(nmz), cos(nz), sin(nmz)) (1)

l,m,n

of the solution. The plots shown in figure 4 show the:-distribution of the quantity
logyv%(l,m) = logy, < . E(l,m,n) >, where E(l,m,n) denotes the dimension-

n

less kinetic energy in the mode with wavenumbkrs, andn. Here< .. > indicates
a time average. Only horizontal wavenumbers uR@chave been plotted to highlight
differences between the dynamo and the non-magnetic a@plufror the non-magnetic
case, the most striking features are very pronounced maikinraodes of wavenumbers
11 < k := /12 + m?2 < 14 while modes with both lower and highgrcontain by far less
energy. A second local maximum exists for long wavelengtdesobut its contribution to
the entire kinetic energy is small.

The kinetic energy spectrum for the dynamo case is conditiedifferent. As com-
pared to the non-magnetic case, the spatial scales incriéasesharp peaks at higher
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wavenumbers nearly disappear and the energy spectrunyrapigps off for modes with
k > 9. The whole time averaged kinetic energy exceeds the camekipg non-magnetic
value by roughly a factor di.5.

b)

I I I I I I I I
0.42 0.44 046 0.48 0.5 0.52 0.54 0.56 0.58 0.6
time

Figure 5. Visualization of the structure of the generatedymetic field. The upper picture on the left sidp
shows an iso-surface of the magnetic energ30&% of its maximum value. Pldb) shows the spectral distribution
of the magnetic energy based on the Elsasser number amohgribental modes (see text for details). The left
picture in the bottom row) is a plot of the horizontally averaged magnetic field. Agéie, arrows are scaled by
the absolute value. Pld) shows the time history of the Fourier coeﬁicielﬁg(oﬁnyl) andBy(O,Uyl) .

The structure of the magnetic field is shown in figure 5. Thedieture shows a snap-
shot of an iso-surface of the magnetic energy densigp@t of its maximum value at the
displayed time step. The time averaged spectral distdhuif magnetic energy is shown
in the second image in the upper row. The magnetic field ism@ain Fourier series as
above in the case of the velocity field. Most of the magnetergyis contained in modes
with (I, m) = (0, 0) corresponding to the so called mean fidld := (B,, B,,0) where
the bar indicates a horizontal average. Small scale coovef@eds energy into the high
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wavenumber components of the magnetic field which then mawése spectrum in an in-
verse cascade. In sharp contrast to the velocity field, thgneta spectrum monotonically
decreases with increasinig

Since the magnetic field is strongly dominated by modes iith 0, which play a key
role in the dynamo process, we give a visualization of themfidd in figure 5, where
again arrows are scaled by its absolute value. The meandiekelrly antisymmetric with
respect to the plane = 0.5 which can be interpreted as a consequence of the fact that
under the chosen magnetic boundary condition, the z-iatedmean field has to vanish
B, resembles a spiral staircase twisting in the same sense asltitity field. Together
with the helicity, atz = 1/2 the sense of twisting of the mean field changes sign. The
appearance of this spiral staircase structur®ofis best understood by picturing each
half of the layer as a crude representation of a G.O. Robgnardd.

The time evolution of the mean field is quite simple. To ilhagt this, the last picture
of figure 5 shows the temporal evolution of tt@ 0, 1)-mode of the horizontal magnetic
field. The plot is typical for the strongest mean-field modéscv are primarily the odd
modes. The mean field rotates in a sense opposke with a period of the order of the
free decay time of the system.

4.2 Spherical Geometry

In spherical geometry we test the finite volume approacherctise of non-magnetic con-
vection within a rotating spherical shell. The benchmarketas defined by Rayleigh
numberRa = 10°, Prandtl numbe®r = 1, Ekman numbe®s = 5 x 104, and ratio
of the radii to lower and outer boundary/ry = 7/13. The solution is quasi-stationary
and is characterized by four uprising and four descendirgs8raylor columns. After a
transient period of about one thermal diffusion time, tineetidependency of the solution
is reduced to a slow azimuthal drift. However, since the gridot rotationally invariant,
slight variations are introduced, which depend on the mdargrazimuthal position of
the solution on the grid. The solution is identical after aimauthal drift of 90 degrees,
which is the common periodicity of both the grid and the dolut A convergence test
of the average flow velocity, s and a local velocity,, defined at a specified feature
of the solution, demonstrates that these variations angceztiwith the square of the grid
resolution (Figure 6), as it is expected with a second ordevergent method. A Romberg
extrapolation of the results is in excellent agreement Withbest estimates obtained by
various spectral and semi-spectral transform methods

The full dynamo problem has been solved in a series of simonstvith Roberts num-
bers Rb = 8,5,4,1), all other parameter as before. In accordance with thetheark
results, stable dynamos are obtained onlyRbér> 4, for smallerRb the initial magnetic
field decays exponentially. Figure 7 displays the time evmfuof the spatially averaged
magnetic inductionRb = 8. After approximately one magnetic diffusion time=¢ 8)
a quasi-stationary magnetic field is obtained. The flow stingcis similiar to the case of
non-magnetic convection, which indicates that Lorentedsrare of minor importance in
this model. The magnetic field is strongly concentratediwitiux bundles in the descend-
ing Busse Taylor columns (Figure 7). Due to different magnlebundary conditions a
more quantitative comparison to benchmark results is rasifide in this case.
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Figure 6. Root mean square velocity:,s and local azimuthal velocity,, for different resolution and azimuthal
grid positione. Grid resolution i$5 x n3, circlesn =24, squares: = 32, crosses =48, diamonds: =64, and

solid line indicates the Romberg extrapolation of the asubhaded rectangle at= 270 gives the benchmark
solution with uncertainti€s
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12

Figure 7. Time evolution of the spatially averaged magnietiltiction (left). Amplitude of magnetic induction
|B| (colour coded: red high intensity and blue low intensity}l dlow velocity (arrows) below the top Ekman
boundary layer (right). It should be noted that the indidatpherical grid is not rotationally invariant.

5 Discussion

By comparing cartesian nonmagnetic and magnetic solytwadind that the magnetic
field strongly promotes convection in the low Ekman numbegime consistently with
results from magnetoconvection thetfty® As would be expected, the magnetic field acts
to weaken the rotational constraint leading to a decreasgeisize of the convection cells
as compared to the nonmagnetic solution. We are thus in angéearegime where the
flow field is substantially altered by the action of the Loeefutrce.

The spherical simulations are obtained in the moderate Bkmanber regime. How-
ever, the results are encouraging, especially the congratisbenchmark solutions. We
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anticipate that in the near future simulations in a morelizhke regime are possible. How-
ever, such simulations will be computationally expensive: eertainly require parallel high
performance architectures.
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