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gg+q Collaboration,

Istvan Montvay!, Federico Farchion?, Claus Gebert,
Enno ScholZ, and Luigi Scorzato!

! Deutsches Elektronen-Synchrotron DESY
Notkestr. 85, 22603 Hamburg, Germany
E-mail: {istvan.montvay, claus.gebert, enno.e.scholz, luigizeto} @desy.de

2 Institut fur Theoretische Physik, Universitat Miinster
Wilhelm-Klemm-Str. 9, 48149 Minster, Germany
E-mail: farchion@uni-muenster.de

Numerical simulations in Quantum Chromodynamics — therthebthe strong interactions of
elementary particles — are performed with light dynamicedrgg degrees of freedom. At present
the main emphasis is put on the lightest quarks —thandd-quark — in order to confront the
results with expectations arising from spontaneously émathiral symmetry. The extension to
include the third light quark (the-quark) is straightforward and is postponed to a later stdige
our project.

1 Introduction

Most massive matter in the Universe consists of nucleomgdps and neutrons) which are
bound states of quarks held together by strong interactidhs theory of strong interac-
tions is Quantum Chromodynamics (QCD). The quarks bounbimvthe nucleons have
very small masses compared to the mass of the nucleon iteelsum of the masses of
the three constituent quarks is only about a percent of tres wfthe nucleon bound state.
This means that about 99% of the nucleon mass is a conseqoktiee strong interac-
tion. One of the most beautiful features of QCD is that thelemrt mass, together with a
large number of other hadron masses and many other strargdtibn parameters, can be
calculated — at least in principle — by numerical simulation space-time lattices (for an
introduction and references to QCD on the lattice see Ref. 1)

Numerical simulations in Lattice Quantum Chromodynamidg3CD) are being per-
formed already since more than twenty years but, in spitmpféssive developments both
in theoretical insights and in numerical simulation tecfugs, up to now no satisfactory
precision of the results has been achieved. The basic réat#msmallness of the masses
of the three “light” quarks«-, d- ands-quark) because the known simulation algorithms
show a considerable slowing down when going towards smalilgomasses. However, at
present there is a growing optimism in our scientific comrtyutiiat the combination of
the achieved understanding and the possibility to use T8opsputers for LQCD will lead
to first reliable results with controlled (and small) errorssome basic parameters of QCD
within the next few years.

Besides being the main obstacle to achieve good precisionrimerical simulations,
the smallness of the-, d- and s-quark massesi,, ~ my andmg, respectively) is also
the most important characteristic feature of the low enestgyng interaction dynamics.
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It implies that there exists an approxim&f€(3) ® SU(3) chiral flavor symmetry. From
the spontaneous breaking of this symmetry by the non-zemowra expectation value of
the quark condensati follows that there exist eight light pseudo-Goldstonsdius (the
pions, kaons ang-meson) which dominate strong interactions at low energies

The low energy dynamics in the pseudo-Goldstone bosonrsgfdfICD is constrained
by the non-linear realization of spontaneously brokenatlsymmetry. In an expansion
in powers of momenta and light quark masses a few low energgtants — the Gasser-
Leutwyler constants — appear which parameterize the dtresfgnteractions in the low
energy chiral Lagrangi@dnThe Gasser-Leutwyler constants are free parameters waich
be constrained by analyzing experimental data. In the fvarieof lattice regularization
they can be determined from first principles by numericalgations. In experiments one
can investigate processes with different momenta but taekquasses are, of course, fixed
by Nature. In numerical simulations there is, in principtejch more freedom because,
besides the possibility of changing momenta, one can adgdyfichange the masses of the
quarks. This allows for a precise determination of the Galssatwyler constants — once
the simulations reach high precision.

In order to exploit the regime of light quark masses in LQCD anllaboration applies
the two-step multi-boson (TSMB) algoritfvhich has been developed and extensively
used in our previous NIC-project on supersymmetric Yangjshtieory (for summary and
references see Ref. 5,6). The TSMB algorithm allows to parfsimulations with small
quark masses within the range of applicability of nexteaeing order (NLO) ChPTE.

An important aspect of investigating the quark mass depsseléor light quarks in
numerical simulations is the possibility to use ChPT for ¢x¢rapolation of the results
to the physical values af- andd-quark masses which is difficult to reach otherwise. In
fact, ChPT can be extended by changing ¥aéence quark massés quark propagators
independently from theea quark massan virtual quark loops which are represented in
the path integral by thquark determinantin this way one arrives at Partially Quenched
Chiral Perturbation Theory (PQChPT)The freedom of changing valence and sea quark
masses substantially contributes to the power of lattic®@G0th in performing quark
mass extrapolations and in determining the values of the&dsutwyler constant$

For a fast convergence of numerical results to the continlinih it is important to
explicitly deal with the leading () lattice artifacts ¢ denotes the lattice spacing). This
can be achieved by applyirahiral perturbation theory for the Wilson lattice actith'2
In this method the original Wilson lattice action is used lie tMonte Carlo generation
of gauge configurations and th@(a) effects are compensated in PQChPT itself. Our
calculations showed that in practice this method giveslt®with good precisioft.

In the next section the TSMB algorithm and the results of aliaboration concerning
its perfomance in LQCD simulations are shortly summariZedsection 3 recent results
on the quark mass dependence of masses and decay consttrespeeudo-Goldstone
bosons in QCD are discussed. The final section contains & slmmmary of the present
status and an outlook to our future plans.

2 The TSMB Algorithm for Light Quarks

The difficulty of numerical simulations with dynamical felons comes, in general, from
the non-locality of the effective lattice action for the bag (in case of QCD, the glu-
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onic gauge-) fields. In the effective gauge action the Idgariof the determinant of the
fermion matrix(Q) appears which becomes more and more non-local for fernviaths
small masses. It would be too much expensive to calculatetlgxthis determinant in
every Monte Carlo updating step. A stochastic evaluatidhéonly possibility.

In case of the TSMB algorithfrthe fermion determinant fa; equal mass flavors of
quarks is represented as

1
det(Q)|N" ~ ' 1
|det(Q)] det P (Q?) det P{Y(Q?) v

Here the hermitean fermion matr@ = Q' = ~5Q is used and the product of the two
ponnomiaIsP,ﬁ})(m) P,(é) (x) of ordersn; andns, respectively, satisfies

lim P (x) P (x) = 2= N1/2 z € e ). (2)
n9o— 00

The intervalle, )] is chosen in such a way that it covers the spectru@fThe first poly-

nomiaIPﬁ) (z) gives a first crude approximation of N+/2 and it is taken into account in

the local updating sweeps of the gauge field variables (‘iegi”). The second polynomial

P,(é)(x) with no > n; gives a good approximation and is realized in a global aegjptt

Monte Carlo step after several sweeps over the gauge fieddsqhd step”).

The TSMB algorithm was originally developed for numericiahglations in the su-
persymmetric Yang-Mills theoPy but, after appropriate tuning, it can also be applied to
QCD with light quarks. In the present version of TSMB severatiern ideas on fermionic
updating are incorporated: the local update step is basédischer'smulti-boson repre-
sentationof the fermion determinattt, the idea of aglobal correction stegn the update
is taken over from Borici and de Forcraidthe finalreweighting correctiorhas been
proposed by Frezzotti and Jansen in Ref. 16 and the clee&rdfideterminant breakup
boosting the performance has been inspired by the work obAfasenfratz and Alexan-
drut’.

The polynomial approximations for TSMB are optimized folielring a good update
performance with the smallest possible polynomial ordirsirned out that for this pur-
poseleast-square optimizatiois the best. (This is better than, for instance, Chebyshev-
typesapproximations minimizing the maximal relative @ain.) An important techni-
cal advantage of least-square optimization is its flextibilor different types of func-
tions to be approximated, for instance, in caseP;fL)i) () which is an approximation to

[:z:Nf/QPTS})(x)]*l. For the practical determination of least-square optichjzelynomials
a numerical package based on arbitrarily high precisigdhmetics has been develogéd
The features of least-square optimization are particularportant for the first polyno-
mial Pr(j). The reason is that in a typical situatiﬁ’é}) gives a much better approximation
in the upper part of the interv@, A] than in the lower part closest to zero. Typically, most
of the deviation is concentrated on the lowest 2-5% of therit [¢, \]. In this way the
two-step updating procedure realizes a simple and effeséiparation of the small fermion
action modes from the larger fermion action modes in suchyathat the latter are effec-
tively dealt with in the first step and the former ones in theosel step. Thiarge action
filtering is a basic feature which essentially contributes to the goedall performance of
TSMB in case of light fermions.
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The first task for our collaboration has been to tune the #tlyoic parameters of
TSMB for simulation runs with light quarks. At the same tinie t‘cost” of simulations
had to be estimated in order to facilitate future planninghefruns. It turned ot 1920
that the computational cost of producing statisticallydpendent gauge field configura-
tions can be well approximated by the empirical formula

C ~ Flamy)? Q, (3

wheream, is the quark mass in lattice units afdis the number of lattice points. The
factor F' depends on the type of measured quantity. The “worst casgt&in occurs
for quantities which are characteristic to the gauge fietsh@] for instance, the average
plaquette or the Sommer scale paramegerFor them we havé” ~ 107 floating point
operations (per independent configuration). For otheritgmtas for instance the pion
massm,, the factorF can be 5-10 smaller, furthermore, in this case even the saver
power of the quark mass seems to be somewhat smaller (at#@). The pion decay
constantf, has an even shorter autocorrelation in such a way that inumg its values
practically never show any autocorrelation.

The estimate in (3) implies that onl&3 - 32 lattice withQ ~ 1.3 10° lattice sites we
haveC ~ 1.310'?(am,)~2. This means that, for instance, for a quark mass, = 0.01
we need about.3 10*s per independent configuration on an 1 Tflops computer. Amothe
consequence of (3) is that the computer time growa &5if for « — 0 the physical
parameters like quark mass and lattice volume are keptaonst

Concerning the question of double versus single precisitthnaetics in the update
process our experience shdws?that for larger lattices (abotit > 10°) double precision
becomes necessary in the global correction step.

3 Pion Masses and Decay Constants

As discussed in the introduction, our first goal is to confithie results of numerical sim-
ulations with the (PQ)ChPT formulas. For this it is necegs$amreach the range of light
guark masses where the NLO (PQ)ChPT formulas give a goodzippation. Previous es-
timates and our first results at relatively large latticecspgs @ ~ 0.27 fm) showed:8 2313
that one has to reach roughly, 4 ~ 2m, ~ 20 MeV.

Our first series of rurfé with systematically chosen parameters have been performed
on 16 lattices with Ny = 2 light degenerate quark flavours at the gauge coupling pa-
rameter3 = 5.1 and three values of the hopping parameter:= 0.176, k1 = 0.1765
andk, = 0.177. The sample sizes of statistically independent gauge amatiigns were
relatively large, between 750 and 1800 per point. The atfgacing determined from the
Sommer scale parameteyturned out to be = 0.189(5) fm ~ (1.04 GeV)~! giving lat-
tice extensions of about ~ 3 fm. The pion masses built out of “sea” quarks corresponding
to the aboves values are in lattice unitsim, = 0.6747(14), 0.6211(22), 0.4354(68),
respectively. In physical units these corresponditp ~ 702, 646, 452 MeV, respec-
tively. The estimates for the sea quark masses are betg\merfor the firstx value and
%ms for the third one (approximatel§0 MeV to 30 MeV). The “valence” quark masses
for partial quenching were chosen in the rar%gesea < Myalence < 2Mseq-

In order to cancel the/-factors of multiplicative renormalization, which in thase
of a mass-independent renormalization only depend on thgegeoupling but not on the
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Figure 1. PQChPT fits afRny v — 1) and(RRn — 1) for three different sea quark mass values.
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quark mass, we considered ratios of quark massg$ &nd of pion decay constantg).
Specifically, the ratio of the valence to sea quark masgesnd the ratios of different sea
quark massess ») are defined as

= MV = MqSi

- Y 3

, (1=1,2). (4)
Mgqs Mgso

We investigated the-dependence of the following ratios of decay constants:

2
Rivy =22 Rpvs=25 . prp=_Tvs ©)
[ss [ss fvvfss
and pion mass squares:
m? 2m? 46ms
Rnyy = —Y Rnygs=—Y5%_ RRn= Vs . (6)
T emgg T T (e mi €+ 1?miymis

Examples of fits of these quantities by the PQChPT formukaslhown by figure 1. In the
formulas the NLO terms includin@(a) lattice artifacts are taken into account together
with the leading (i. e. tree-graph or “counter-term ingert) contributions given in Ref.
25.

The results of the simultaneous fits of the valence quark ehgssndences at the three
sea quark masses (i. & = rg,1,2) show a satisfactory description of the Monte Carlo
data, except for some points near both ends of¢thervals. It is remarkable that the
O(a) terms taking into account leading lattice artifacts argggingly small: their fitted
ratios to the sea quark masses satisfy. 7012 < 0.1. Contrary to expectation, there
is a tendency that the values of this decrease for decreasing sea quark mass, which
could be the consequence of the effective inclusion of sogieeh order contributions by
the fits. Another observation is that in our present quarksmasge the NNLO contribu-
tions (quadratic in the quark mass) are rather importangirihfluence can, however, be
diminished by goint to smaller quark masses.

The results from the fits of the valence quark mass depena=mcalso be used in the
investigation of the sea quark mass dependence. In patjthé values of

2Bomygs pPs ( QWOG) 7
XS =—"Fm ns=—, p=
13 Xs fs

are relevant there. (HerB, and f, are the parameters of lowest order ChPT &iglis
a parameter characterizing the magnitudéo#) terms.) Since we have for the moment
only three different sea quark mass values (and hence omlirntdependent ratios) the
only possibility is to extract the NLO parameters in the fofas of Ref. 12. The esti-
mates obtained for these parameters approximately camesjp the phenomenological
expectation®.

4 Discussion and Outlook

The results obtained in our papgéfor the Gasser-Leutwyler constants can only be taken as
estimates of the values in continuum. In order to deducdmamtn values with controlled
error estimates the left out lattice artifacts have to beawsd by performing simulations
at increasing? values and extrapolating the resultsate= 0. The possibility of a precise
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continuum extrapolation seems to be rather promising tsecthe fittedD(a) terms are
small and the scaling tests between our previous resultdadtice spacing: ~ 0.27 fm
(B = 4.68)*2 and the results at ~ 0.19 fm (8 = 5.1)?* turn out to be unexpectedly good
(for examples see figure 2 and in Ref. 27).

Valence quark mass dependence of RfVV

T T T T

T T T
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H

Figure 2. Comparison of the extrapolation of the fitldfyy at 3 = 5.1 from Ref. 24 with the previous fit at
B = 4.68 as given in Ref. 13.

Comparing our results to those obtained by the CP-PACS Iemitdior?® it turns out
their data show substantially larger scale breaking mtidifacts, which they actually fit
by largeO(a?) terms, although they are at smaller lattice spacingi) fm < a < 0.22 fm
(and at larger quark masse#d MeV < m, < 200 MeV). They use a clover improved
Wilson fermion actio® and the Hybrid Monte Carlo algorithth This shows that our
choice of the lattice action and of the simulation algoriflsrmore economic.

Since in our present quark mass range the NNLO terms arerligipertant, it is de-
sirable to perform simulations at still lighter quark masde fact, besides going froi6*
to the better suited6 - 32 lattice, our next aim is to decrease the quark mass. A promis-
ing approach for this is to choose the lattice action acogyth twisted mass LQCH. In
addition to having some favourable theoretical featutds,approach also has advantages
in the simulation costs because the overall cost fattof TSMB on the right hand side
of the estimate (3) can be decreased filBry 107 to F ~ 10° floating point operations.

Most of the computations reported here were carried out enAfREmille systems
installed at NIC Zeuthen, the Cray T3E systems at NIC Jidinththe PC cluster at DESY
Hamburg. Some parts of the simulations were performed orsthreFire SMP-Cluster
at the Rechenzentrum - RWTH Aachen and at the Eodtvos Wsityguarallel PC cluster
supported by Hungarian Science Foundation grants OTKAS889/T37615.
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