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Numerical simulations in Quantum Chromodynamics – the theory of the strong interactions of
elementary particles – are performed with light dynamical quark degrees of freedom. At present
the main emphasis is put on the lightest quarks – theu- andd-quark – in order to confront the
results with expectations arising from spontaneously broken chiral symmetry. The extension to
include the third light quark (thes-quark) is straightforward and is postponed to a later stageof
our project.

1 Introduction

Most massive matter in the Universe consists of nucleons (protons and neutrons) which are
bound states of quarks held together by strong interactions. The theory of strong interac-
tions is Quantum Chromodynamics (QCD). The quarks bound within the nucleons have
very small masses compared to the mass of the nucleon itself:the sum of the masses of
the three constituent quarks is only about a percent of the mass of the nucleon bound state.
This means that about 99% of the nucleon mass is a consequenceof the strong interac-
tion. One of the most beautiful features of QCD is that the nucleon mass, together with a
large number of other hadron masses and many other strong interaction parameters, can be
calculated – at least in principle – by numerical simulations on space-time lattices (for an
introduction and references to QCD on the lattice see Ref. 1).

Numerical simulations in Lattice Quantum Chromodynamics (LQCD) are being per-
formed already since more than twenty years but, in spite of impressive developments both
in theoretical insights and in numerical simulation techniques, up to now no satisfactory
precision of the results has been achieved. The basic reasonis the smallness of the masses
of the three “light” quarks (u-, d- ands-quark) because the known simulation algorithms
show a considerable slowing down when going towards small quark masses. However, at
present there is a growing optimism in our scientific community that the combination of
the achieved understanding and the possibility to use Tflopscomputers for LQCD will lead
to first reliable results with controlled (and small) errorson some basic parameters of QCD
within the next few years.

Besides being the main obstacle to achieve good precision innumerical simulations,
the smallness of theu-, d- ands-quark masses (mu ' md andms, respectively) is also
the most important characteristic feature of the low energystrong interaction dynamics.
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It implies that there exists an approximateSU(3) ⊗ SU(3) chiral flavor symmetry. From
the spontaneous breaking of this symmetry by the non-zero vacuum expectation value of
thequark condensateit follows that there exist eight light pseudo-Goldstone bosons (the
pions, kaons andη-meson) which dominate strong interactions at low energies.

The low energy dynamics in the pseudo-Goldstone boson sector of QCD is constrained
by the non-linear realization of spontaneously broken chiral symmetry2. In an expansion
in powers of momenta and light quark masses a few low energy constants – the Gasser-
Leutwyler constants – appear which parameterize the strength of interactions in the low
energy chiral Lagrangian3. The Gasser-Leutwyler constants are free parameters whichcan
be constrained by analyzing experimental data. In the framework of lattice regularization
they can be determined from first principles by numerical simulations. In experiments one
can investigate processes with different momenta but the quark masses are, of course, fixed
by Nature. In numerical simulations there is, in principle,much more freedom because,
besides the possibility of changing momenta, one can also freely change the masses of the
quarks. This allows for a precise determination of the Gasser-Leutwyler constants – once
the simulations reach high precision.

In order to exploit the regime of light quark masses in LQCD our collaboration applies
the two-step multi-boson (TSMB) algorithm4 which has been developed and extensively
used in our previous NIC-project on supersymmetric Yang-Mills theory (for summary and
references see Ref. 5, 6). The TSMB algorithm allows to perform simulations with small
quark masses within the range of applicability of next-to-leading order (NLO) ChPT7, 8.

An important aspect of investigating the quark mass dependence for light quarks in
numerical simulations is the possibility to use ChPT for theextrapolation of the results
to the physical values ofu- andd-quark masses which is difficult to reach otherwise. In
fact, ChPT can be extended by changing thevalence quark massesin quark propagators
independently from thesea quark massesin virtual quark loops which are represented in
the path integral by thequark determinant. In this way one arrives at Partially Quenched
Chiral Perturbation Theory (PQChPT)9. The freedom of changing valence and sea quark
masses substantially contributes to the power of lattice QCD both in performing quark
mass extrapolations and in determining the values of the Gasser-Leutwyler constants10.

For a fast convergence of numerical results to the continuumlimit it is important to
explicitly deal with the leadingO(a) lattice artifacts (a denotes the lattice spacing). This
can be achieved by applyingchiral perturbation theory for the Wilson lattice action11, 12.
In this method the original Wilson lattice action is used in the Monte Carlo generation
of gauge configurations and theO(a) effects are compensated in PQChPT itself. Our
calculations showed that in practice this method gives results with good precision13.

In the next section the TSMB algorithm and the results of our collaboration concerning
its perfomance in LQCD simulations are shortly summarized.In section 3 recent results
on the quark mass dependence of masses and decay constants ofthe pseudo-Goldstone
bosons in QCD are discussed. The final section contains a short summary of the present
status and an outlook to our future plans.

2 The TSMB Algorithm for Light Quarks

The difficulty of numerical simulations with dynamical fermions comes, in general, from
the non-locality of the effective lattice action for the bosonic (in case of QCD, the glu-
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onic gauge-) fields. In the effective gauge action the logarithm of the determinant of the
fermion matrix(Q) appears which becomes more and more non-local for fermionswith
small masses. It would be too much expensive to calculate exactly this determinant in
every Monte Carlo updating step. A stochastic evaluation isthe only possibility.

In case of the TSMB algorithm4 the fermion determinant forNf equal mass flavors of
quarks is represented as

|det(Q)|
Nf '

1

detP
(1)
n1

(Q̃2) detP
(2)
n2

(Q̃2)
. (1)

Here the hermitean fermion matrix̃Q = Q̃† = γ5Q is used and the product of the two
polynomialsP (1)

n1
(x)P

(2)
n2

(x) of ordersn1 andn2, respectively, satisfies

lim
n2→∞

P (1)
n1

(x)P (2)
n2

(x) = x−Nf /2 , x ∈ [ε, λ] . (2)

The interval[ε, λ] is chosen in such a way that it covers the spectrum ofQ̃2. The first poly-
nomialP (1)

n1
(x) gives a first crude approximation ofx−Nf /2 and it is taken into account in

the local updating sweeps of the gauge field variables (“firststep”). The second polynomial
P

(2)
n2

(x) with n2 � n1 gives a good approximation and is realized in a global accept-reject
Monte Carlo step after several sweeps over the gauge fields (“second step”).

The TSMB algorithm was originally developed for numerical simulations in the su-
persymmetric Yang-Mills theory5, 6 but, after appropriate tuning, it can also be applied to
QCD with light quarks. In the present version of TSMB severalmodern ideas on fermionic
updating are incorporated: the local update step is based onLüscher’smulti-boson repre-
sentationof the fermion determinant14, the idea of aglobal correction stepin the update
is taken over from Boriçi and de Forcrand15, the final reweighting correctionhas been
proposed by Frezzotti and Jansen in Ref. 16 and the clever trick of determinant breakup
boosting the performance has been inspired by the work of Anna Hasenfratz and Alexan-
dru17.

The polynomial approximations for TSMB are optimized for delivering a good update
performance with the smallest possible polynomial orders.It turned out that for this pur-
poseleast-square optimizationis the best. (This is better than, for instance, Chebyshev-
typesapproximations minimizing the maximal relative deviation.) An important techni-
cal advantage of least-square optimization is its flexibility for different types of func-
tions to be approximated, for instance, in case ofP

(2)
n2

(x) which is an approximation to

[xNf /2P
(1)
n1

(x)]−1. For the practical determination of least-square optimized polynomials
a numerical package based on arbitrarily high precision arithmetics has been developed18.

The features of least-square optimization are particularly important for the first polyno-
mial P (1)

n1
. The reason is that in a typical situationP

(1)
n1

gives a much better approximation
in the upper part of the interval[ε, λ] than in the lower part closest to zero. Typically, most
of the deviation is concentrated on the lowest 2-5% of the interval [ε, λ]. In this way the
two-step updating procedure realizes a simple and effective separation of the small fermion
action modes from the larger fermion action modes in such a way that the latter are effec-
tively dealt with in the first step and the former ones in the second step. Thislarge action
filtering is a basic feature which essentially contributes to the goodoverall performance of
TSMB in case of light fermions.
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The first task for our collaboration has been to tune the algorithmic parameters of
TSMB for simulation runs with light quarks. At the same time the “cost” of simulations
had to be estimated in order to facilitate future planning ofthe runs. It turned out7, 8, 19, 20

that the computational cost of producing statistically independent gauge field configura-
tions can be well approximated by the empirical formula

C ' F (amq)
−2 Ω , (3)

whereamq is the quark mass in lattice units andΩ is the number of lattice points. The
factor F depends on the type of measured quantity. The “worst case” situation occurs
for quantities which are characteristic to the gauge field alone, for instance, the average
plaquette or the Sommer scale parameterr0. For them we haveF ' 107 floating point
operations (per independent configuration). For other quatities, as for instance the pion
massmπ, the factorF can be 5-10 smaller, furthermore, in this case even the inverse
power of the quark mass seems to be somewhat smaller (about−3/2). The pion decay
constantfπ has an even shorter autocorrelation in such a way that in our runs its values
practically never show any autocorrelation.

The estimate in (3) implies that on a163 · 32 lattice withΩ ' 1.3 105 lattice sites we
haveC ' 1.3 1012(amq)

−2. This means that, for instance, for a quark massamq = 0.01
we need about1.3 104s per independent configuration on an 1 Tflops computer. Another
consequence of (3) is that the computer time grows asa−6 if for a → 0 the physical
parameters like quark mass and lattice volume are kept constant.

Concerning the question of double versus single precision arithmetics in the update
process our experience shows21, 22 that for larger lattices (aboutΩ > 105) double precision
becomes necessary in the global correction step.

3 Pion Masses and Decay Constants

As discussed in the introduction, our first goal is to confront the results of numerical sim-
ulations with the (PQ)ChPT formulas. For this it is necessary to reach the range of light
quark masses where the NLO (PQ)ChPT formulas give a good approximation. Previous es-
timates and our first results at relatively large lattice spacings (a ' 0.27 fm) showed7, 8, 23, 13

that one has to reach roughlymu,d ' 1
5ms ' 20 MeV.

Our first series of runs24 with systematically chosen parameters have been performed
on 164 lattices withNf = 2 light degenerate quark flavours at the gauge coupling pa-
rameterβ = 5.1 and three values of the hopping parameter:κ0 = 0.176, κ1 = 0.1765
andκ2 = 0.177. The sample sizes of statistically independent gauge configurations were
relatively large, between 750 and 1800 per point. The lattice spacing determined from the
Sommer scale parameterr0 turned out to bea = 0.189(5) fm ' (1.04 GeV)−1 giving lat-
tice extensions of aboutL ' 3 fm. The pion masses built out of “sea” quarks corresponding
to the aboveκ values are in lattice units:amπ = 0.6747(14), 0.6211(22), 0.4354(68),
respectively. In physical units these correspond tomπ ' 702, 646, 452 MeV, respec-
tively. The estimates for the sea quark masses are between2

3ms for the firstκ value and
1
3ms for the third one (approximately60 MeV to 30 MeV). The “valence” quark masses
for partial quenching were chosen in the range1

2msea ≤ mvalence ≤ 2msea.
In order to cancel theZ-factors of multiplicative renormalization, which in the case

of a mass-independent renormalization only depend on the gauge coupling but not on the
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Figure 1. PQChPT fits of(RnV V − 1) and(RRn − 1) for three different sea quark mass values.
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quark mass, we considered ratios of quark masses (mq) and of pion decay constants (fπ).
Specifically, the ratio of the valence to sea quark masses (ξ) and the ratios of different sea
quark masses (σ1,2) are defined as

ξ ≡
mqV

mqS
, σi ≡

mqSi

mqS0
, (i = 1, 2) . (4)

We investigated theξ-dependence of the following ratios of decay constants:

RfV V ≡
fV V

fSS
, RfV S ≡

fV S

fSS
, RRf ≡

f2
V S

fV V fSS
(5)

and pion mass squares:

RnV V ≡
m2

V V

ξm2
SS

, RnV S ≡
2m2

V S

(ξ + 1)m2
SS

, RRn ≡
4ξm4

V S

(ξ + 1)2m2
V V m2

SS

. (6)

Examples of fits of these quantities by the PQChPT formulas are shown by figure 1. In the
formulas the NLO terms includingO(a) lattice artifacts are taken into account together
with the leading (i. e. tree-graph or “counter-term insertion”) contributions given in Ref.
25.

The results of the simultaneous fits of the valence quark massdependences at the three
sea quark masses (i. e.κ = κ0,1,2) show a satisfactory description of the Monte Carlo
data, except for some points near both ends of theξ-intervals. It is remarkable that the
O(a) terms taking into account leading lattice artifacts are surprisingly small: their fitted
ratios to the sea quark masses satisfy0 < η0,1,2 < 0.1. Contrary to expectation, there
is a tendency that the values of theη’s decrease for decreasing sea quark mass, which
could be the consequence of the effective inclusion of some higher order contributions by
the fits. Another observation is that in our present quark mass range the NNLO contribu-
tions (quadratic in the quark mass) are rather important. Their influence can, however, be
diminished by goint to smaller quark masses.

The results from the fits of the valence quark mass dependencecan also be used in the
investigation of the sea quark mass dependence. In particular, the values of

χS ≡
2B0mqS

f2
0

, ηS ≡
ρS

χS
,

(

ρ ≡
2W0a

f2
0

)

(7)

are relevant there. (HereB0 andf0 are the parameters of lowest order ChPT andW0 is
a parameter characterizing the magnitude ofO(a) terms.) Since we have for the moment
only three different sea quark mass values (and hence only two independent ratios) the
only possibility is to extract the NLO parameters in the formulas of Ref. 12. The esti-
mates obtained for these parameters approximately correspond to the phenomenological
expectations26.

4 Discussion and Outlook

The results obtained in our paper24 for the Gasser-Leutwyler constants can only be taken as
estimates of the values in continuum. In order to deduce continuum values with controlled
error estimates the left out lattice artifacts have to be removed by performing simulations
at increasingβ values and extrapolating the results toa = 0. The possibility of a precise
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continuum extrapolation seems to be rather promising because the fittedO(a) terms are
small and the scaling tests between our previous results at alattice spacinga ' 0.27 fm
(β = 4.68)13 and the results ata ' 0.19 fm (β = 5.1)24 turn out to be unexpectedly good
(for examples see figure 2 and in Ref. 27).
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Figure 2. Comparison of the extrapolation of the fit ofRfV V at β = 5.1 from Ref. 24 with the previous fit at
β = 4.68 as given in Ref. 13.

Comparing our results to those obtained by the CP-PACS Collaboration28 it turns out
their data show substantially larger scale breaking lattice artifacts, which they actually fit
by largeO(a2) terms, although they are at smaller lattice spacings:0.09 fm ≤ a ≤ 0.22 fm
(and at larger quark masses:40 MeV ≤ mq ≤ 200 MeV). They use a clover improved
Wilson fermion action29 and the Hybrid Monte Carlo algorithm30. This shows that our
choice of the lattice action and of the simulation algorithmis more economic.

Since in our present quark mass range the NNLO terms are rather important, it is de-
sirable to perform simulations at still lighter quark masses. In fact, besides going from164

to the better suited163 · 32 lattice, our next aim is to decrease the quark mass. A promis-
ing approach for this is to choose the lattice action according to twisted mass LQCD31. In
addition to having some favourable theoretical features, this approach also has advantages
in the simulation costs because the overall cost factorF of TSMB on the right hand side
of the estimate (3) can be decreased fromF ' 107 to F ' 106 floating point operations.

Most of the computations reported here were carried out on the APEmille systems
installed at NIC Zeuthen, the Cray T3E systems at NIC Jülichand the PC cluster at DESY
Hamburg. Some parts of the simulations were performed on theSun Fire SMP-Cluster
at the Rechenzentrum - RWTH Aachen and at the Eötvös University parallel PC cluster
supported by Hungarian Science Foundation grants OTKA-T349809/T37615.
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