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Relieving the Fermionic and the Dynamical Sign Problem:
Multilevel Blocking Monte Carlo Simulations

Reinhold Egger1 and Chi H. Mak2

1 Institut für Theoretische Physik, Heinrich-Heine-Universität
40225 Düsseldorf, Germany

E-mail: egger@thphy.uni-duesseldorf.de
2 Department of Chemistry, University of Southern California

Los Angeles, CA 90089-0482, USA

This article gives an introduction to the multilevel blocking (MLB) approach to both the fermion
and the dynamical sign problem in path-integral Monte Carlo simulations. MLB is able to sub-
stantially relieve the sign problem in many situations. Besides an exposition of the method, its
accuracy and several potential pitfalls are discussed, providing guidelines for the proper choice
of certain MLB parameters. Simulation results are shown for strongly interacting electrons in
a 2D parabolic quantum dot, the real-time dynamics of several simple model systems, and the
dissipative two-state dynamics (spin-boson problem).

1 Introduction: The Sign Problem

Quantum Monte Carlo (QMC) techniques are among the most powerful and versatile meth-
ods for the computer simulation of a large variety of interesting quantum systems encoun-
tered in physics, chemistry or biology1. In particular, QMC is capable of delivering nu-
merically exact results. Despite the great potential of this method, there are several restric-
tions and handicaps inherent to all QMC techniques, the perhaps most pressing one being
due to the sign problem2. There are various sign problems, namely the fermionic sign
problem encountered in equilibrium (imaginary-time) simulations of strongly correlated
many-fermion systems, and the dynamical sign problem in real-time (dynamical) simula-
tions, which already shows up for a single particle. Unfortunately, apart from variational or
approximate treatments (such as the fixed-node approximation), a completely general and
totally satisfactory solution to the sign problem in QMC simulations is still lacking. Nev-
ertheless, over the past few years considerable and substantial progress has been achieved
along several different lines without introducing approximations into the QMC scheme,
see, for instance, Refs.3–5.

In these notes focus is put on one specific class of QMC methods called Path-integral
Monte Carlo (PIMC). PIMC is based on a discretized path-integral representation of the
quantities of interest. The sign problem then arises when different paths that contribute to
averages carry different sign (or complex-valued phase). For instance, for the fermionic
sign problem, as a consequence of exchange, one typically has to deal with determinants,
so that non-positive-definite fermionic density matrix elements arise. The sign cancella-
tions arising from sampling fermion paths then manifest themselves as a signal-to-noise
ratio, η ∼ exp(−NβE0), that vanishes exponentially with both particle number N and
inverse temperature β = 1/kBT ; here E0 is a system-dependent energy scale. The
small signal surviving the interference of many fermion paths is then inevitably lost in
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the large background noise of the stochastic simulation. Similarly, when studying the real-
time dynamics of even a single particle, the quantum-mechanical time evolution operator
exp(−iHt/

�
) attaches a complex-valued phase to each quantum path, which in turn gives

rise to the dynamical sign problem. Again the signal-to-noise ratio will vanish exponen-
tially, η ∼ exp(−t∗/τ0), where t∗ is the maximum real time under study and τ0 a system-
and implementation-specific characteristic time scale. The exponential scaling is typical
for the “naive” approach, where one simple uses the absolute value of the complex-valued
weight function for the MC sampling, and includes the phase information in the accumu-
lation.

In Ref.3 a general scheme for tackling the sign problem in PIMC simulations was
proposed. The method has been applied to interacting electrons in a quantum dot6 and to
the real-time dynamics of simple few-degrees-of-freedom systems7. The generalization of
the algorithm to the case of effective actions – which are long-ranged along the Trotter or
real-time direction – along with the application to the dissipative two-state (spin-boson)
dynamics has been given in Refs.8, 9. This multilevel blocking (MLB) approach represents
the systematic implementation of a simple blocking strategy. The blocking strategy states
that by sampling groups of paths (“blocks”) at the same time, the sign problem can always
be reduced compared to sampling single paths as would be done normally; for a proof,
see Sec. 2.1 below. By suitably bunching paths together into sufficiently small blocks,
the sign cancellations among paths within the same block can be accounted for without
the sign problem, simply because there is no sign problem for a sufficiently small system.
The MLB approach is based on a recursive implementation of this idea, i.e. after building
“elementary” blocks, new blocks are formed out of these, and the process is then iterated.
This leads to a powerful implementation of the blocking strategy. This algorithm is able to
turn the exponential severity of the sign problem into an “only” algebraic one. This is still
difficult enough but in practice implies that significantly larger systems (lower temperature,
longer real time) can be studied by MLB-PIMC than under the naive PIMC approach.
Nevertheless, it should be stressed that MLB is definitely not a black-box scheme. There
are several potential pitfalls related to incorrect or inadequate choices of certain MLB
parameters, and one needs to be quite careful in applying this technique10. Given some
experience, however, it represents a powerful handle to relieve the sign problem, with
potential for additional improvement.

The plan for the remainder of these notes is as follows. In Sec. 2 the MLB approach
is discussed in detail, first in an intuitive way in Sec. 2.1, and subsequently on a more
formal or technical level in Sec. 2.2 for fermions. The modifications for real-time simula-
tions are summarized in Sec. 2.3. This is then followed by a discussion of the performance
and the accuracy of this algorithm in Sec. 2.4. In Sec. 2.5, the generalization to effective-
action problems is outlined. To demonstrate the power of this approach, MLB results are
presented in Sec. 3. As an example for the fermionic sign problem, low-temperature simu-
lation results for strongly correlated electrons in a 2D quantum dot are shown in Sec. 3.1.
The remainder of that section is then concerned with the dynamical sign problem. After
presenting results for several simple model systems in Sec. 3.2, the dynamics of the dissi-
pative two-state system is discussed in Sec. 3.3. Finally, some conclusions can be found in
Sec. 4.

400



2 Multilevel Blocking (MLB) Approach

Before diving into the details of the MLB approach, the underlying idea (“blocking strat-
egy”) will be explained, focusing for simplicity on fermionic imaginary-time simulations.
For those interested in working with this method, technical details and practical guide-
lines are provided in Secs. 2.2 to 2.4. In the last part the generalization of MLB to PIMC
simulations of the effective-action type is described.

2.1 Blocking Strategy

Let us consider a many-fermion system whose state is described by a set of quantum num-
bers ~r denoting, e.g. the positions and spins of all particles. These quantum numbers can
correspond to electrons living on a lattice or in continuous space. For notational simplic-
ity, we focus on calculating the equilibrium expectation value of a diagonal operator or
correlation function (this can be easily generalized),

〈A〉 =

∑

~r A(~r)ρ(~r, ~r)
∑

~r ρ(~r, ~r)
, (1)

where
∑

~r represents either a summation for the case of a discrete system or an integration
for a continuous system, and ρ(~r, ~r′) denotes the (reduced) density matrix of the system.
In PIMC applications, imaginary time is discretized into P slices of length ε = β/P .
Inserting complete sets at each slice m = 1, . . . , P , and denoting the corresponding con-
figuration on slice m by ~rm, the diagonal elements of the density matrix at ~r = ~rP entering
Eq. (1) are:

ρ(~rP , ~rP ) =
∑

~r1,...,~rP−1

P
∏

m=1

〈~rm+1|e
−εH |~rm〉 . (2)

Of course, periodic boundary conditions have to be enforced here, ~rP+1 = ~r1. To proceed,
one then has to construct accurate analytical approximations for the short-time propagator.
This formulation of the problem excludes effective actions such as those arising from an
integration over the fermions using the Hubbard-Stratonovich transformation2, since that
generally leads to long-ranged imaginary-time interactions. The MLB approach suitable
for such a situation8 is described below in Sec. 2.5.

Since we are dealing with a many-fermion system, the short-time propagators need to
be antisymmetrized, leading to the appearance of determinants causing the sign problem.
Strictly speaking, the antisymmetrization has to be done only on one time slice, but the
intrinsic sign problem is much better behaved if one antisymmetrizes on all time slices.
Choosing the absolute value of the product of the short-time propagators in Eq. (2) as the
positive definite MC weight function P [X ], one has to keep the sign Φ[X ] associated with
a particular discretized path X = (~r1, . . . , ~rP ) during the accumulation procedure,

〈A〉 =

∑

X P [X ]Φ[X ]A[X ]
∑

X P [X ]Φ[X ]
. (3)

Assuming that there are no further exclusivity problems in the numerator so that A[X ]
is well-behaved, one can then analyze the sign problem in terms of the variance of the
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denominator,

σ2 ≈
1

Ns

(

〈Φ2〉 − 〈Φ〉2
)

, (4)

where Ns is the number of MC samples taken and stochastic averages are calculated with P
as the weight function. For the fermion sign problem, where Φ = ±1 and hence 〈Φ2〉 = 1,
the variance of the signal is controlled by the size of |〈Φ〉|.

Remarkably, one can achieve considerable progress by blocking paths together. Instead
of sampling single paths along the MC trajectory, one can consider sampling sets of paths
called blocks. Under such a blocking operation, the stochastic estimate for 〈A〉 takes the
form

〈A〉 =

∑

B

(
∑

X∈B P [X ]Φ[X ]A[X ]
)

∑

B

(
∑

X∈B P [X ]Φ[X ]
) , (5)

where one first sums over the configurations belonging to a block B in a way that is not
affected by the sign problem, and then stochastically sums over the blocks. The summation
within a block must therefore be done non-stochastically, or alternatively the block size
must be chosen sufficiently small. Of course, there is considerable freedom in how to
choose this blocking.

Let us analyze the variance σ′2 of the denominator of Eq. (5). First define new sampling
functions in terms of the blocks which are then sampled stochastically,

P ′[B] =

∣

∣

∣

∣

∣

∑

X∈B

P [X ]Φ[X ]

∣

∣

∣

∣

∣

, Φ′[B] = sgn

(

∑

X∈B

P [X ]Φ[X ]

)

. (6)

Rewriting the average sign in the new representation, i.e. using P ′[B] as the weight, then
inserting the definition of P ′ and Φ′ in the numerator,

〈Φ′[B]〉 =

∑

B P ′[B]Φ′[B]
∑

B P ′[B]
=

∑

X P [X ]Φ[X ]
∑

B P ′[B]
,

and comparing to the average sign in the standard representation using P [X ] as the weight,
one finds

|〈Φ′〉|

|〈Φ〉|
=

∑

X P [X ]
∑

B P ′[B]
.

By virtue of the Schwarz inequality,

∑

B

P ′[B] =
∑

B

∣

∣

∣

∣

∣

∑

X∈B

P [X ]Φ[X ]

∣

∣

∣

∣

∣

≤
∑

B

∣

∣

∣

∣

∣

∑

X∈B

P [X ]

∣

∣

∣

∣

∣

=
∑

X

P [X ] ,

it follows that for any kind of blocking, the average sign improves, |〈Φ′〉| ≥ |〈Φ〉|. Further-
more, since 〈Φ′2〉 = 〈Φ2〉 = 1, Eq. (4) implies that

σ′ 2 ≤ σ2 , (7)

and hence the signal-to-noise ratio is always improved upon blocking configurations to-
gether. Clearly, the worst blocking one could possibly choose would be to group the con-
figurations into two separate blocks, one collecting all paths with positive sign and the
other with negative sign. In this case, blocking yields no improvement whatsoever, and the
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“≤” becomes “=” in Eq. (7). It is apparent from Eq. (7) that the blocking strategy provides
a systematic handle to reduce the sign problem. In our realization of the blocking strategy,
a block is defined by all paths that differ only at one time slice, i.e. only ~rm is updated with
all other ~rn6=m being frozen.

A direct implementation of the blocking strategy does indeed improve the sign problem
but will not remove its exponential severity. The reason is simply that for a sufficiently
large system, there will be too many blocks, and once the signals coming from these blocks
are allowed to interfere, one again runs into the sign problem, albeit with a smaller scale E0

entering the signal-to-noise ratio. The resolution to this problem comes from the multilevel
blocking (MLB) approach3 where one applies the blocking strategy in a recursive manner
to the blocks again. In a sense, new blocks containing a sufficiently small number of
elementary ones are formed, and this process is repeated until only one block is left. Each
step of this hierarchy is called level in what follows. Blocks are then defined living on
these levels, and after taking care of the sign cancellations within all blocks on a given
(fine) level, the resulting sign information is transferred to the next (coarser) level. On
each step, the blocking strategy ensures that no sign problem occurs provided one has
chosen sufficiently small block sizes. By doing this recursively, the sign problem on all the
coarser levels can be handled in the same manner. It is then possible to proceed without
numerical instabilities from the bottom up to the top level. The cancellations arising at the
top level will create a sign problem again, which is however strongly reduced. As is argued
below, the resulting sign problem is characterized by an only algebraic severity.

In many ways, the MLB idea is related to the renormalization group approach. But
instead of integrating out information on fine levels, sign cancellations are “synthesized”
within a given level and subsequently their effects are transferred to coarser levels. While
the renormalization group filters out information judged “relevant” and then ignores the
“irrelevant” part, no such approximation is introduced here. Therefore our approach is
actually closer in spirit to the multi-grid algorithm11. The technical implementation of
MLB is discussed next following Ref.3.

2.2 Systematic Implementation: MLB

To keep notation simple, the slice index m is used as a shorthand notation for the quantum
numbers rm. From Eq. (2) the level-0 bonds, which are simply the short-time propagators,
then follow in the form:

(m, m + 1)0 = 〈rm+1|e
−εH |rm〉 . (8)

Next the different levels 0 ≤ ` ≤ L, where L defines the Trotter number P = 2L, have
to be specified. Each slice m belongs to a unique level `, such that m = (2j + 1)2` and j
is a nonnegative integer. For instance, the slices m = 1, 3, 5, · · · , P − 1 belong to ` = 0,
m = 2, 6, 10, · · · , P − 2 belong to ` = 1, etc., such that there are N` = 2L−`−1 (but
NL = 1) different slices on level `, see Fig. 1. An elementary blocking is achieved by
grouping together configurations that differ only at slice m, so only rm varies in that block
while all rm′ 6=m remain fixed. Sampling on level ` therefore extends over configurations
{rm} living on the N` different slices. In the MLB scheme, one moves recursively from
the finest (` = 0) up to the coarsest level (` = L), and the measurement of the diagonal
operator is done only at the top level using the configuration rP .
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m=1

(4,2)

2

1

(2,4) 1

4

(1,2) 0

(2,3)0 3 (3,4)0

(4,1)0

(4,4)

Figure 1. Levels for L = 2 (P = 4). Imaginary time flows along the circle (solid curve), and the slices
m = 1, 2, 3, 4 are distributed among the three levels: The finest level ` = 0 contains m = 1, 3, level ` = 1
contains m = 2, and ` = 2 contains m = 4. Level-` bonds are indicated by dashed and dotted lines.

A MC sweep starts by changing only configurations associated with the slices on level
` = 0 according to the standard weight

P0 = |(1, 2)0(2, 3)0 · · · (P, 1)0| , (9)

generating a MC trajectory containing K samples for each slice on level ` = 0. TheseN0K
samples are stored and they are used to generate additional coarser interactions among the
higher-level slices,

(m, m + 2)1 = 〈sgn[(m, m + 1)0(m + 1, m + 2)0]〉P0[m+1]

= K−1
∑

m+1

sgn[(m, m + 1)0(m + 1, m + 2)0] , (10)

where the summation
∑

m+1 extends over the K samples available for slice m. As will be
discussed later on, the important MLB parameter K - subsequently called sample number -
should be chosen as large as possible to ensure that the second equality in Eq. (10) is
justified. The level-1 bonds (10) contain precious and crucial information about the sign
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cancellations that occured on the previous level ` = 0. Using these bonds, the density
matrix (2) is rewritten as

ρ(P, P ) =
∑

1,2,...,P−1

|(1, 2)0(2, 3)0 · · · (P, 1)0|(2, 4)1 · · · (P − 2, P )1(P, 2)1 . (11)

Comparing this to Eq. (2), the entire sign problem has been transferred to the next coarser
level by using the level-1 bonds.

In the next step, the sampling is carried out on level ` = 1 in order to generate the
next-level bonds, i.e. only slices m = 2, 6, . . . , P − 2 are updated, using the weight P0P1

with

P1 = |(2, 4)1(4, 6)1 · · · (P, 2)1| . (12)

Moving the level-1 configurations modifies the level-0 bonds, which in turn requires that
the level-1 bonds be updated. A direct re-calculation of these bonds according to Eq. (10)
would be too costly. Instead, the stored configurations on level ` = 0 are used to perform
an importance sampling of the new level-1 bonds. Under the test move m → m′, i.e. rm →
r
′
m, on level ` = 1, the bond (10) can be obtained from

(m′, m + 2)1 =

∑

m+1
(m′,m+1)0(m+1,m+2)0
|(m,m+1)0(m+1,m+2)0|

∑

m+1
|(m′,m+1)0(m+1,m+2)0|
|(m,m+1)0(m+1,m+2)0|

, (13)

where
∑

m+1 runs over the previously stored MC configurations rm+1. Note that for small
values of K, Eq. (13) is only approximative, and thus a sufficiently large value of K should
be chosen. With the aid of Eq. (13), the updated level-1 bonds follow with only moderate
computational effort. Generating a sequence of K samples for each slice on level ` = 1
and storing them, level-2 bonds can be calculated in analogy to Eq. (10),

(m, m + 4)2 = 〈sgn [(m, m + 2)1(m + 2, m + 4)1]〉P1P0 . (14)

Finally, the process is iterated up to the top level ` = L using the obvious recursive gener-
alization of Eqs. (10) and (14) to define level-` bonds.

Thereby the diagonal elements of the density matrix are obtained as

ρ(P, P ) =
∑

1,2,...,P−1 |(1, 2)0(2, 3)0 · · · (P, 1)0||(2, 4)1 · · · (P − 2, P )1(P, 2)1|

· · · |(P/2, P )L−1(P, P/2)L−1| (P, P )L . (15)

By virtue of this algorithm, the sign problem is transferred step by step up to the coars-
est level. The expectation value (1) can thus be computed from

〈A〉 =
〈A(P ) sgn(P, P )L〉P

〈sgn(P, P )L〉P
. (16)

The manifestly positive definite MC weight P used for the averaging in Eq. (16) can be
read off from Eq. (15),

P = |(1, 2)0(2, 3)0 · · · (P, 1)0||(2, 4)1 · · · (P − 2, P )1(P, 2)1|

· · · |(P/2, P )L−1(P, P/2)L−1| |(P, P )L| . (17)

The denominator in Eq. (16) gives the average sign and indicates to what extent the sign
problem has been solved. For proper choice of MLB parameters, in particular the sample
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number K, this method can solve the sign problem. The price to pay for the stability of the
algorithm is the increased memory requirement ∼ K2 associated with having to store the
sampled configurations.

2.3 Real-Time Simulations

The same method, described so far for fermions, can be applied with minor modifications
to a computation of real-time correlation functions or occupation probabilities. For con-
creteness, let us focus on an equilibrium time-correlation function,

〈A(0)B(t)〉 =
Tr
{

e−(β � +it)H/ � Ae+itH/ � B
}

Tr
{

e−(β � +it)H/ � e+itH/ � } . (18)

Similarly other dynamical properties like the thermally symmetrized correlation func-
tion12,

Cs(t) = Z−1Tr{e−(β � /2+it)H/ � Ae−(β/ � /2−it)H/ � B} , (19)

with Z being the partition function, can be computed. In terms of path integrals, the traces
in (18) involve two quantum paths, one propagated backward in time for the duration −t
and the other propagated in complex time for the duration t− iβ

�
. Discretizing each of the

two paths into P slices, the entire cyclic path has a total of 2P slices. A slice on the first
half of them has length −t/P and on the second half (t − iβ

�
)/P . Denoting the quantum

numbers (e.g. spin or position variables) at slice j by rj , the correlation function (18) reads
∫

dr1 · · · dr2P B(r2P )A(rP )
∏2P

j=1(rj , rj+1)0
∫

dr1 · · · dr2P

∏2P
j=1(rj , rj+1)0

, (20)

where the level-0 bond (rj , rj+1)0 is again the short-time propagator between slices j and
j + 1, and r2P+1 = r1. First assign all slices along the discretized path to different levels
` = 0, . . . , L, where P = 2L, in close analogy to the treatment for fermions, see Fig. 1.
Each slice j = 1, . . . , 2P belongs to a unique level `, such that j = (2k + 1)2` and k is a
nonnegative integer. For instance, slices j = 1, 3, 5, . . . belong to level ` = 0, slices j =
2, 6, 10, . . . to ` = 1, etc. The MLB algorithm starts by sampling only configurations which
are allowed to vary on slices associated with the finest level ` = 0, using the weight P0 =
|(r1, r2)0 · · · (r2P , r1)0|. The short-time level-0 bonds are then employed to synthesize
longer-time level-1 bonds that connect the even-j slices. Subsequently the level-1 bonds
are used to synthesize level-2 bonds, and so on. In this way the MLB algorithm moves
recursively from the finest level (` = 0) up to increasingly coarser levels until ` = L,
where the measurement is done using r2P and rP .

Generating a MC trajectory containing K samples for each slice on level ` = 0 and
storing these samples, the level-1 bonds (10) can be computed, where the “sgn” has to be
replaced by the complex-valued phase Φ[z] = eiarg(z). Their benefit becomes clear when
rewriting the integrand of the denominator in (20) as

P0 × (r2, r4)1 · · · (r2P−2, r2P )1(r2P , r2)1 .

Comparing this to (20), the entire sign problem has been transferred to the next coarser
level. In the next step, the sampling is carried out on level ` = 1 in order to compute the
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next-level bonds, using the weight P0P1 with P1 = |(r2, r4)1 · · · (r2P , r2)1|. Generating
a sequence of K samples for each slice on level ` = 1, and storing these samples, level-2
bonds can be calculated,

(rj , rj+4)2 = 〈Φ [(rj , rj+2)1(rj+2, rj+4)1]〉P0P1 .

This process is then iterated up to the top level. Finally, the correlation function (18) can
be computed from

〈B(r2P )A(rP )Φ[(rP , r2P )L(r2P , rP )L]〉P
〈Φ[(rP , r2P )L(r2P , rP )L]〉P

, (21)

with the positive definite MC weight P = P0P1 · · · PL. The denominator in Eq. (21) gives
the average phase and indicates to what extent the sign problem has been solved. With a
suitable choice of MLB parameters, the average phase remains close to unity even for long
times.

2.4 Accuracy and Pitfalls

Next questions concerning the exactness and performance of the MLB approach are ad-
dressed, in particular the dependence on the sample number K. Clearly, K needs to be
sufficiently large to produce a reliable estimate for the level-` bonds. If these bonds could
be calculated exactly – corresponding to the limit K → ∞ –, the manipulations leading
to Eq. (15) yield the exact result. Hence for large enough K, the MLB algorithm must
become exact and completely solve the sign problem. Since the level-` bonds can however
only be computed for finite K, the weight function P amounts to using a noisy estimator,
which in turn can introduce bias into the algorithm13. In principle, this problem could
be avoided by using a linear acceptance criterion instead of the algorithmically simpler
Metropolis choice1 which was employed in the applications reported here. But even with
the Metropolis choice, the bias can be made arbitrarily small by increasing K. Therefore,
with sufficient computer memory, the MLB approach can be made to give numerically ex-
act results. One might then worry about the actual value of K > K∗ required to obtain
stable and exact results. If the critical value K∗ were to scale exponentially with β and/or
system size, the sign problem would be present in disguise again.

Although a rigorous non-exponential bound on K∗ has not yet been established, our
experience with the MLB algorithm indicates that this scaling is at worst algebraic. This
is corroborated by a recent careful study of this issue10. Therefore the exponential severity
of the sign problem is replaced by an algebraic one under MLB. A heuristic argument
supporting this statement goes as follows. If one needs K samples for each slice on a
given level in order to have satisfactory statistics despite of the sign problem, the total
number of paths needed in the naive approach depends exponentially on P , namely ∼ KP .
This is precisely the well-known exponential severity of the sign problem under the naive
approach. However, with MLB the work on the last level, which is the only one affected by
a sign problem provided K was chosen sufficiently large, scales only ∼ KL. Note that it
does not scale ∼ K because one must update the level-` bonds on all L finer levels as well.
So in MLB, the work needed to sample the KP paths with satisfactory statistical accuracy
grows ∼ K log2 P = P log2 K , i.e. algebraically with P . An important point to mention
at this point concerns the high-temperature (or short-time) limit, where the direct PIMC
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Table 1. MLB results for N = 8 and λ = 2 (see Sec. 3.1). Ns is the number of samples (in 104), tCPU the total
CPU time (in hours), MB the required memory (in mega-bytes), and 〈sgn〉 the average sign. Bracketed numbers
are error estimates.

K Ns tCPU MB 〈sgn〉 EN/
�
ω0

1 120 95 2 0.02 48.6(3)
100 7 33 14 0.48 48.43(8)
200 9 83 30 0.63 48.55(7)
400 8 174 64 0.73 48.53(9)
600 10 308 96 0.77 48.54(8)
800 9 429 150 0.81 48.59(8)

simulation does not face a significant sign problem. In this case, however, the above-
mentioned bias problematics of the MLB-PIMC is quite serious and can give erroneous
results. Fortunately, since that regime is of little interest to MLB, this is not a serious
restriction. A more detailed discussion of this point can be found in Ref.10.

To elucidate how the MLB algorithm works in practice, in Table 1 simulation results
for N = 8 electrons in a quantum dot at various values of K are listed. For details, see
Sec. 3.1. Compared to the naive approach where K = 1, using a moderate K = 200
already increases the average sign from 0.02 to 0.63, making it possible to obtain more
accurate results from much fewer samples. The data in Table 1 also confirms that the bias
can be systematically eliminated by increasing K, so that the energy found at K ≥ 200
essentially represents the exact result (within error bars). The value K∗ ≈ 200 is quite
typical for many applications. For a simple model system, a value K∗ ≈ 50 was found in
Ref.10. Table 1 also shows that the CPU time per sample scales linearly with K, whereas
memory requirements grow ∼ K2.

2.5 Effective Actions

So far the MLB algorithm was only discussed for the case of nearest-neighbor interactions
along the Trotter/time direction. This situation is encountered under a direct Trotter-Suzuki
breakup of the short-time propagator. In many cases, however, one has to deal with effec-
tive actions that may include long-ranged interactions along the (complex) time direction.
Such effective actions arise from degrees of freedoms having been traced out, e.g. a har-
monic heat bath14, or through a Hubbard-Stratonovich transformation in auxiliary-field
MC simulations of lattice fermions1. Remarkably, because such effective actions capture
much of the physics such as symmetries or the dissipative influence of traced-out degrees
of freedom, the corresponding path integral very often exhibits a significantly reduced in-
trinsic sign problem compared to the original (time-local) formulation. To be specific, let
us focus on the dynamical sign problem arising in real-time PIMC computations here. The
modifications required to implement the method for fermion simulations are then straight-
forward.

Let us consider a discretized path integral along a slightly different but fully equiva-
lent contour in the complex-time plane compared to Sec. 2.3, namely a forward branch
from t = 0 to t = t∗, where t∗ is the maximum time studied in the simulation, followed
by a branch going back to the origin, and then by an imaginary-time branch from t = 0
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to t = −i
�
β. Here a “factorized” initial preparation is studied, where the relevant degrees

of freedom, r(t), are held fixed for t < 014. That implies that the imaginary-time dynam-
ics must be frozen at the corresponding value, and one only needs to sample on the two
real-time branches. Note that such a nonequilibrium calculation cannot proceed by first
doing an imaginary-time QMC simulation followed by a generally troublesome analytic
continuation of the numerical data1. Using time slices of length t∗/P , forward [r(tm)]
and backward [r′(tm)] path configurations at time tm = mt∗/P are combined into the
configuration sm, where m = 1, . . . , P . The configuration at t = 0 is held fixed, and for
t = t∗ one must be in a diagonal state, r(t∗) = r

′(t∗). For an efficient application of the
current method, it is essential to combine several neighboring slices m into new blocks.
For instance, think of m = 1, . . . , 5 as a new “slice” ` = 1, m = 6, . . . , 10 as another slice
` = 2, and so on. Combining q elementary slices into a block s`, instead of the original
P slices one has L = P/q blocks, where L is the number of MLB levels. Instead of the
“circular” structure of the time contour inherent in the trace operation, it is actually more
helpful to view the problem as a linear chain, where the MLB scheme proceeds from left to
right. In actual applications, there is considerable freedom in how these blocks are defined,
e.g. if there is hardly any intrinsic sign problem, or if there are only few variables in r, one
may choose larger values of q. Additional flexibility can be gained by choosing different q
for different blocks.

Say one is interested in sampling the configurations sL on the top level ` = L according
to the appropriate matrix elements of the (reduced) density matrix,

ρ(sL) = Z−1
∑

�
1,..., �

L−1

exp{−S[s1, . . . , sL]} , (22)

where S is the effective action under study and Z is a normalization constant so that
∑

�
L

ρ(sL) = 1. Due to the time-non-locality of this action, there will be interactions
among all blocks s`. The sum in Eq. (22) denotes either an integration over continuous
degrees of freedom or a discrete sum. In the case of interest here, the effective action is
complex-valued and e−S/|e−S| represents an oscillatory phase factor Φ. The “naive ap-
proach” to the sign problem is to sample configurations using the positive definite weight
function P ∼ | exp{−S}|, and to include the oscillatory phase in the accumulation proce-
dure. Below it is assumed that one can decompose the effective action according to

S[s1, . . . , sL] =

L
∑

`=1

W`[s`, . . . , sL] . (23)

All dependence on a configuration s` is then contained in the “partial actions” Wλ with
λ ≤ `. One could, of course, put all W`>1 = 0, but the approach becomes more powerful
if a nontrivial decomposition is possible.

Let us now describe the algorithm in some detail, employing a somewhat different but
equivalent notation than before. This may be helpful to some readers in order to better
understand the MLB algorithm, see also Ref.10 for a formulation of Sec. 2.2 in this nota-
tion. The MC sampling starts on the finest level ` = 1, where only the configuration s`=1

containing the elementary slices m = 1, . . . , q will be updated with all s`>1 remaining
fixed at their initial values s

0
` . Using the weight function

P0[s1] = | exp{−W1[s1, s
0
2, . . . , s

0
L]}| ,
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generate K samples s
(i)
1 , where i = 1, . . . , K, and store them for later use. As usual, the

sample number K should be chosen large enough. For K = 1, the algorithm will simply
reproduce the naive approach. The stored samples are now employed to generate informa-
tion about the sign cancellations. All knowledge about the interference that occured at this
level is encapsulated in the quantity

B1 =

〈

exp{−W1[s1, . . . , sL]}

| exp{−W1[s1, s0
2, . . . , s

0
L]}|

〉

P0[
�
1]

= C−1
0

∑

�
1

exp{−W1[s1, . . . , sL]}

= K−1
K
∑

i=1

exp{−W1[s
(i)
1 , s2, . . . , sL]}

| exp{−W1[s
(i)
1 , s0

2, . . . , s
0
L]}|

= B1[s2, . . . , sL] , (24)

which are analogously called level-1 bonds, with the normalization constant
C0 =

∑

�
1
P0[s1]. Combining the second expression in Eq. (24) with Eq. (22), the density

matrix reads

ρ(sL) = Z−1
∑

�
2,..., �

L−1

exp

{

−
∑

`>1

W`

}

C0B1 = Z−1
∑

�
1,..., �

L−1

P0B1

∏

`>1

e−W` .

(25)
When comparing Eq. (25) with Eq. (22), the sign problem has now been transferred to
levels ` > 1, since oscillatory phase factors only arise when sampling on these higher
levels. Note that B1 = B1[s2, . . . , sL] introduces couplings among all levels ` > 1, in
addition to the ones already contained in the effective action S.

Next proceed to the next level ` = 2 and, according to Eq. (25), update configurations
for m = q + 1, . . . , 2q using the weight

P1[s2] = |B1[s2, s
0
3, . . . , s

0
L] exp{−W2[s2, s

0
3, . . . , s

0
L]}| . (26)

Under the move s2 → s
′
2, one should then resample and update the level-1 bonds,

B1 → B′
1. Exploiting the fact that the stored K samples s

(i)
1 are correctly distributed

for the original configuration s
0
2, the updated bond can be computed according to

B′
1 = K−1

K
∑

i=1

exp{−W1[s
(i)
1 , s′

2, . . . , sL]}

| exp{−W1[s
(i)
1 , s0

2, . . . , s
0
L]}|

. (27)

Again, to obtain an accurate estimate for B′
1, the number K should be sufficiently large. In

the end, sampling under the weight P1 implies that the probability for accepting the move
s2 → s

′
2 under the Metropolis algorithm is

p =

∣

∣

∣

∣

∣

∣

∣

∑

i
exp{−W1[ � (i)

1 , � ′

2, � 0
3,...]}

| exp{−W1[ � (i)
1 , � 0

2,...]}|

∑

i
exp{−W1[ � (i)

1 , �
2, � 0

3,...]}

| exp{−W1[ � (i)
1 , � 0

2,...]}|

∣

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

exp{−W2[s
′
2, s

0
3, . . .]}

exp{−W2[s2, s0
3, . . .]}

∣

∣

∣

∣

. (28)

Using this method, one generates K samples s
(i)
2 , stores them, and computes the level-2
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bonds,

B2 =

〈

B1[s2, s3, . . .] exp{−W2[s2, s3, . . .]}

|B1[s2, s0
3, . . .] exp{−W2[s2, s0

3, . . .]}|

〉

P1[ �
2]

= C−1
1

∑

�
2

B1[s2, . . .] exp{−W2[s2, . . .]}

= K−1
K
∑

i=1

B1[s
(i)
2 , s3, . . .] exp{−W2[s

(i)
2 , s3, . . .]}

|B1[s
(i)
2 , s0

3, . . .] exp{−W2[s
(i)
2 , s0

3, . . .]}|
= B2[s3, . . . , sL] , (29)

with C1 =
∑

�
2
P1[s2]. Following above strategy, one then rewrites the reduced density

matrix by combining Eq. (25) and the second expression in Eq. (29),

ρ(sL) = Z−1
∑

�
3,..., �

L−1

exp

{

−
∑

`>2

W`

}

C0C1B2 = Z−1
∑

�
1,..., �

L−1

P0P1B2

∏

`>2

e−W` .

(30)
Clearly, the sign problem has been transferred one block further to the right along the chain.
Note that the normalization constants C0, C1, . . . depend only on the initial configuration
s
0
` so that their precise values need not be known. This procedure is then iterated in a

recursive manner. Sampling on level ` using the weight function

P`−1[s`] = |B`−1[s`, s
0
`+1, . . .] exp{−W`[s`, s

0
`+1, . . .]}| (31)

requires the recursive update of all bonds Bλ with λ < `. Starting with B1 → B′
1 and

putting B0 = 1, this recursive update is done according to

B′
λ = K−1

K
∑

i=1

B′
λ−1[s

(i)
λ , sλ+1, . . .] exp{−W ′

λ[s
(i)
λ , sλ+1, . . .]}

|Bλ−1[s
(i)
λ , s0

λ+1, . . .] exp{−Wλ[s
(i)
λ , s0

λ+1, . . .]}|
, (32)

where the primed bonds or partial actions depend on s
′
` and the unprimed ones on s

0
` .

Iterating this to get the updated bonds B`−2 for all s
(i)
`−1, the test move s` → s

′
` is then

accepted or rejected according to the probability

p =

∣

∣

∣

∣

B`−1[s
′
`, s

0
`+1, . . .] exp{−W`[s

′
`, s

0
`+1, . . .]}

B`−1[s`, s0
`+1, . . .] exp{−W`[s`, s0

`+1, . . .]}

∣

∣

∣

∣

. (33)

On this level, one again generates K samples s
(i)
` , stores them and computes the level-`

bonds according to

B`[s`+1, . . .] = K−1
K
∑

i=1

B`−1[s
(i)
` , s`+1, . . .] exp{−W`[s

(i)
` , s`+1, . . .]}

|B`−1[s
(i)
` , s0

`+1, . . .] exp{−W`[s
(i)
` , s0

`+1, . . .]}|
.

This process is iterated up to the top level, where the observables of interest may be com-
puted. Since the sampling of B` requires the resampling of all lower-level bonds, the mem-
ory and CPU requirements of the algorithm laid out here are quite large. For λ < ` − 1,
one needs to update Bλ → B′

λ for all s
(i)
`′ with λ < `′ < `, which implies a tremendous

amount of computer memory and CPU time, scaling approximately ∼ KL at the top level.
Fortunately, an enormous simplification can often be achieved by exploiting the fact that
the interactions among distant slices are usually weaker than between near-by slices. For
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instance, when updating level ` = 3, the correlations with the configurations s
(i)
1 may be

very weak, and instead of summing over all K samples s
(i)
1 in the update of the bonds

Bλ<`, one may select only a small subset. When invoking this argument, one should be
careful to also check that the additional interactions coming from the level-λ bonds with
λ < ` are sufficiently short-ranged. From the definition of these bonds, this is to be ex-
pected though.

3 Applications

In this section, several different applications of the MLB approach will be presented. The
first will focus on the equilibrium behavior of interacting electrons in a parabolic quantum
dot, a situation characterized by a fermionic sign problem. The two other subsections then
deal with the dynamical sign problem.

3.1 Quantum Dots

Quantum dots are solid-state artificial atoms with tunable properties. Confining a small
number of electrons N in a 2D electron gas in semiconductor heterostructures, novel ef-
fects due to the interplay between confinement and the Coulomb interaction have been
observed experimentally15–17. For small N , comparison of experiments to the generalized
Kohn theorem indicates that the confinement potential is parabolic and hence quite shal-
low compared to conventional atoms. Employing the standard electron gas parameter rs

to quantify the correlation strength, only for small rs, a Fermi-liquid picture is applicable.
In the low-density (strong-interaction) limit of large rs, classical considerations suggest a
Wigner crystal-like phase with electrons spatially arranged in shells. We call this a Wigner
molecule due to its finite extent. Of particular interest is the crossover regime between these
two limits, where both single-particle and classical descriptions break down, and basically
no other sufficiently accurate method besides QMC is available. Exact diagonalization is
limited to very small N since one otherwise introduces a huge error due to the trunca-
tion of the Hilbert space. Hartree-Fock (and related) calculations become unreliable for
large rs and incorrectly favor spin-polarized states. Furthermore, density functional cal-
culations can introduce uncontrolled approximations. Regarding QMC, to avoid the sign
problem, the fixed-node approximation has been employed by Bolton18 and later by oth-
ers19. For N > 5, typical fixed-node errors in the total energy are found to be of the order
of 10%3. It is then clear that one should resort to exact methods, especially when looking
at spin-dependent quantities, where often extremely small spin splittings are found. After
our original studies3, 6, other studies using the naive PIMC approach were published20, 21.
These studies are however concerned with the deep Wigner regime rs >

∼ 2021, which is es-
sentially a classical regime without sign problem not further discussed here, or employ a
special virial estimator20 that unfortunately appears to be incorrect except for fully spin-
polarized states22. A clean 2D parabolic quantum dot in zero magnetic field is described
by

H =
N
∑

j=1

(

~pj
2

2m∗
+

m∗ω2
0

2
~xj

2

)

+
N
∑

i<j=1

e2

κ|~xi − ~xj |
. (34)
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The electron positions (momenta) are given by ~xj (~pj), their effective mass is m∗, and
the dielectric constant is κ. The MLB calculations are carried out at fixed N and fixed z-
component of the total spin, S = (N↑ − N↓)/2. As a check, the exact solution for N = 2
has been reproduced.

Here results for the energy, E = 〈H〉 (since H is a non-diagonal operator, two Trotter
slices are kept at the top level), and the spin sensitivity ξN (rs) will be discussed. The latter
quantity is useful to study the crossover from weak to strong correlations,

ξN (rs) ∝
∑

S,S′

∫ ∞

0

dy y |gS(y) − gS′(y)| , (35)

where the prefactor is chosen to give ξN = 1 for rs = 0. This definition makes use of the
spin-dependent two-particle correlation function

gS(~x) =
2πl20

N(N − 1)

〈

N
∑

i6=j=1

δ(~x − ~xi + ~xj)

〉

, (36)

which is isotropic. With y = r/l0 prefactors are chosen such that
∫∞

0 dy ygS(y) = 1.
The confinement length scale l0 =

√ �
/m∗ω0 allows the interaction strength to be

parametrized by the dimensionless parameter λ = l0/a = e2/κω0l0, where a is the ef-
fective Bohr radius of the artificial atom. For any given N and λ, the density parameter
rs = r∗/a with nearest-neighbor distance r∗ follows by identifying r∗ with the first max-
imum in

∑

S gS(r). The correlation function (36) is a very sensitive measure of Fermi
statistics, in particular revealing the spin-dependent correlation hole. Because interactions
tend to wash out the Fermi surface, the spin sensitivity (35) is largest for a Fermi gas,
rs = 0. Since for rs → ∞, one approaches the totally classical limit, where gS(r) is com-
pletely spin-independent, ξN (rs) decays from unity at rs = 0 down to zero as rs → ∞.
The functional dependence of this decay provides insight about the crossover phenomenon
under study.

By computing charge densities, the PIMC simulations can directly reveal shell forma-
tion in real space6. Such a spatial structure is clear evidence for near-classical Wigner
molecule behavior. The classical shell filling sequence is as follows. For N < 6, the
electrons arrange on a ring, but the sixth electron then goes into the center. Furthermore,
electrons 7 and 8 enter the outer ring again. These predictions are in accordance with our
PIMC data. Clear indications of a spatial shell structure at N ≥ 6 can be observed already
for λ ≈ 4, albeit quantum fluctuations tend to wash them out somewhat. For λ >

∼ 4, charge
densities are basically insensitive to S. This is characteristic for a classical Wigner crystal,
where the Pauli principle and spin-dependent properties are of little importance. Numerical
results for the spin density in this regime simply follow the corresponding charge density
according to sz(r) ' (S/N)ρ(r). A significant S-dependence of charge and spin den-
sities is observed only for weak correlations. Figure 2 reveals that ξN (rs) is remarkably
universal, i.e. it depends only very weakly on N . Its decay defines a crossover scale rc,
where an exponential fit for small rs yields rc ≈ 4. For rs > 4, the data can be well fitted
by ξ(rs) ∼ exp(−

√

rs/r′c), where r′c ≈ 1.2. Remarkably, this is precisely the behavior
expected from a semiclassical WKB estimate for a Wigner molecule6. The crossover value
rc ≈ 4 is also consistent with the onset of spatial shell structures in the density, and with
the spin-dependent ground state energies expected for a Wigner molecule. Therefore the
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Figure 2. Numerical results for ξN (rs) at kBT/ � ω0 = 0.1. Statistical errors are of the order of the symbol
size. The dotted curve, given by exp(−rs/rc) with rc = 4, is a guide to the eye only. The inset shows the same
data on a semi-logarithmic scale as a function of

√
rs. The dashed line is the WKB estimate (see text).

crossover from weak to strong correlations is characterized by the surprisingly small value
rc ≈ 4, instead of rc ≈ 37 found for the bulk 2D electron gas23. This enormous stabiliza-
tion of the Wigner molecule can be ascribed to the effects of the confinement potential. In
the thermodynamic limit, ω0 → 0 with rs fixed, plasmons govern the low-energy physics,
and hence the bulk value rc ≈ 37 becomes relevant for very large N . For GaAs based
quantum dots, one can estimate6 that for N <

∼ 104, the value rc ≈ 4 is the relevant one.
Remarkably, recent experiments on vertical quantum dots16 have found evidence for an
even smaller crossover scale rc ≈ 1.8. The experimental study was carried out in a mag-
netic field, and the dot contained several impurities. Since both effects tend to stabilize a
Wigner crystallized phase, our prediction and the experimental observation appear to be
consistent.

MLB results for the energy at different parameter sets {N, S, λ} are listed in Table 2.
For given N and λ, if the ground state is (partially) spin-polarized with spin S, the sim-
ulations should yield the same energies for all S ′ < S. Within the accuracy of the cal-
culation, this consistency check is indeed fulfilled. For strong correlations, rs > rc, the
spin-dependent energy levels differ substantially from a single-particle orbital picture. In
particular, the ground-state spin S can change and the relative energy of higher-spin states
becomes much smaller than

�
ω0. For N = 3 electrons, as rs is increased, a transition oc-

curs from S = 1/2 to S = 3/2 at an interaction strength λ ≈ 5 corresponding to rs ≈ 8.
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Table 2. MLB data for the energy for various {N, S, λ} parameter sets at kBT/ � ω0 = 0.1. Bracketed numbers
denote statistical errors.

N S λ E/ � ω0 N S λ E/ � ω0

3 3/2 2 8.37(1) 5 5/2 8 42.86(4)
3 1/2 2 8.16(3) 5 3/2 8 42.82(2)
3 3/2 4 11.05(1) 5 1/2 8 42.77(4)
3 1/2 4 11.05(2) 5 5/2 10 48.79(2)
3 3/2 6 13.43(1) 5 3/2 10 48.78(3)
3 3/2 8 15.59(1) 5 1/2 10 48.76(2)
3 3/2 10 17.60(1) 6 3 8 60.42(2)
4 2 2 14.30(5) 6 1 8 60.37(2)
4 1 2 13.78(6) 7 7/2 8 80.59(4)
4 2 4 19.42(1) 7 5/2 8 80.45(4)
4 1 4 19.15(4) 8 4 2 48.3(2)
4 2 6 23.790(12) 8 3 2 47.4(3)
4 1 6 23.62(2) 8 2 2 46.9(3)
4 2 8 27.823(11) 8 1 2 46.5(2)
4 1 8 27.72(1) 8 4 4 69.2(1)
4 2 10 31.538(12) 8 3 4 68.5(2)
4 1 10 31.48(2) 8 2 4 68.3(2)
5 5/2 2 21.29(6) 8 4 6 86.92(6)
5 3/2 2 20.71(8) 8 3 6 86.82(5)
5 1/2 2 20.30(8) 8 2 6 86.74(4)
5 5/2 4 29.22(7) 8 4 8 103.26(5)
5 3/2 4 29.15(6) 8 3 8 103.19(4)
5 1/2 4 29.09(6) 8 2 8 103.08(4)
5 5/2 6 36.44(3)
5 3/2 6 36.35(4)
5 1/2 6 36.26(4)

For N = 4, a Hund’s rule case with a small-rs ground state characterized by S = 1 is
encountered. From our data, this standard Hund’s rule covers the full range of rs. A sim-
ilar situation arises for N = 5, where the ground state is characterized by S = 1/2 for all
rs. Turning to N = 6, while one has filled orbitals and hence a zero-spin ground state for
weak correlations, for λ = 8 a S = 1 ground state is found. A similar transition from a
S = 1/2 state for weak correlations to a partially spin-polarized S = 5/2 state is found
for N = 7. Finally, for N = 8, as expected from Hund’s rule, a S = 1 ground state is
observed for small rs. However, for λ >

∼ 4, corresponding to rs >
∼ 10, the ground state spin

changes to S = 2, implying a different “strong-coupling” Hund’s rule.
Let us finally address the issue of magic numbers. For small rs, the simple picture of

filling up single-particle orbitals predicts that certain N are exceptionally stable. Results
for the energy per electron, EN/N , in the spin-polarized state S = N/2, are shown in
Figure 3. Notably, there are no obvious cusps or breaks in the N -dependence of the energy.
The λ = 2 data in Fig. 3 suggest that an explanation of the experimentally observed magic
numbers17 has to involve spin and/or magnetic field effects, since the single-particle picture
breaks down so quickly. Remarkably, there are no pronounced cusps in EN/N for strong
correlations (λ = 8). Therefore magic numbers seem to play only a minor role in the
Wigner molecule phase.
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Figure 3. Energy per electron, EN /N , for S = N/2 and kBT/ � ω0 = 1/6, in units of � ω0, for λ = 2
(squares) and λ = 8 (diamonds). Statistical errors are smaller than the symbol size. Open circles are T = 0
fixed-node QMC results18 for λ = 2.

3.2 Real-Time Simulations: Simple Model Systems

In each of the following examples, a time-correlation function was computed directly in
real time for a simple model system, with increasing level of complexity. The average
phase is larger than 0.6 for the presented data sets.

3.2.1 Harmonic Oscillator

For H = p2/2m + mω2x2/2, the real and imaginary parts of 〈x(0)x(t)〉 oscillate in time
due to vibrational coherence. In dimensionless units m = ω = 1, the oscillation period
is 2π. Figure 4(a) shows MLB results for C(t) = Re 〈x(0)x(t)〉. With P = 32 for the
maximum time t = 26, K = 200 samples were used for sampling the coarser bonds.
Within error bars, the data coincide with the exact result and the algorithm produces stable
results free of the sign problem. Without MLB, the signal-to-noise ratio was practically
zero for t > 2.

3.2.2 Two-Level System

For a symmetric two-state system, H = − 1
2∆σx, the dynamics is controlled by tunneling.

The spin correlation function 〈σz(0)σz(t)〉 exhibits oscillations indicative of quantum co-
herence. Figure 4(b) shows MLB results for C(t) = Re 〈σz(0)σz(t)〉, Putting ∆ = 1, the
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tunneling oscillations have a period of 2π. With P = 64 for the maximum time t = 64,
only K = 100 samples were used for sampling the coarser bonds. The data agree well
with the exact result. Again the simulation is stable and free of the sign problem. Without
MLB, the simulation failed for t > 4.

3.2.3 Double-Well Potential

Next, let us examine a double-well system with the quartic potential V (x) = −x2 + 1
4x4.

At low temperatures, interwell transfer occurs through tunneling motions on top of in-
trawell vibrations. These two effects combine to produce nontrivial structures in the posi-
tion correlation function. At high temperatures, interwell transfer can also occur by classi-
cal barrier crossings. Figure 4(c) shows MLB results for C(t) = Re 〈x(0)x(t)〉. The slow
oscillation corresponds to interwell tunneling, with a period of approximately 16. The
higher-frequency motions are characteristic of intrawell oscillations. In this simulation,
K = 300 samples were used. The data reproduce the exact result well, capturing all the
fine features of the oscillations. Again the calculation is stable and free of the sign problem,
whereas a direct simulation failed for t > 3.

3.2.4 Multidimensional Tunneling System

As a final example, consider a problem with three degrees of freedom, in which a particle
in a double-well potential is bilinearly coupled to two harmonic oscillators. The quartic
potential in the last example is used for the double-well, and the harmonic potential in
the first example is used for both oscillators. The coupling constant between each oscil-
lator and the tunneling particle is α = 1/2 in dimensionless units. For this example, the
correlation function Cs(t) in Eq. (19) has been computed for the position operator of the
tunneling particle. Direct application of MC sampling to Cs(t) has generally been found
unstable for t > β

�
/212. In contrast, employing only moderate values of K = 400 to 900

allow to go up to t = 10β
�

. Figure 4(d) shows MLB results for C ′
s(t) = Re Cs(t). For

the coupled system, the position correlations have lost the coherent oscillations and instead
decay monotonically with time. Coupling to the medium clearly damps the coherence and
tends to localize the tunneling particle.

3.3 Spin-Boson Dynamics

Finally, to demonstrate the performance of the MLB approach for effective-action-type
problems, the real-time dynamics of the celebrated spin-boson model14

H = −(
�
∆/2) σx + (

�
ε/2) σz +

∑

α

[

p2
α

2mα
+ 1

2mαω2
α

(

xα −
cα

mαω2
α

σz

)2
]

(37)

is discussed. This model has a number of important applications14, e.g. the Kondo prob-
lem, interstitial tunneling in solids, quantum computing and electron transfer reactions,
to mention only a few. The bare two-level system (TLS) has a tunneling matrix element
∆ and the asymmetry (bias) ε between the two localized energy levels (σx and σz are
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Figure 4. MLB results (closed circles) for various systems. Error bars indicate one standard deviation. (a) C(t)
for a harmonic oscillator at β � = 1. The exact result is indicated by the solid curve. (b) Same as (a) for a
two-level system at β � = 10. (c) Same as (a) for a double-well system at β � = 1. This temperature corresponds
to the classical barrier energy. (d) C ′

s(t) for a double-well system coupled to two oscillators at β � = 1. For
comparison, open diamonds are for the uncoupled (α = 0) system. Note that C ′

s(t) is similar but not identical
to C(t) shown in (c). Solid and dashed lines are guides to the eye only.

Pauli matrices). Dissipation is introduced via a linear heat bath, i.e. an arbitrary col-
lection of harmonic oscillators {xα} bilinearly coupled to σz. Concerning the TLS dy-
namics, all information about the coupling to the bath is contained in the spectral density
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Table 3. MLB performance for α = 1/2, ωc/∆ = 6, ∆t∗ = 10, P = 40, and several L. q` denotes the
number of slices for ` = 1, . . . L.

K L q` 〈sgn〉
1 1 40 0.03
200 2 30 - 10 0.14
800 2 30 - 10 0.20
200 3 22 - 12 - 6 0.39
600 3 22 - 12 - 6 0.45

J(ω) = (π/2)
∑

α(c2
α/mαωα) δ(ω − ωα), which has a quasi-continuous form in typical

condensed-phase applications and dictates the form of the (twice-integrated) bath correla-
tion function

Q(t) =

∫ ∞

0

dω

π
�

J(ω)

ω2

cosh[ω
�
β/2] − cosh[ω(

�
β/2 − it)]

sinh[ω
�
β/2]

. (38)

For the calculations here, an ohmic spectral density J(ω) = 2π
�
αω exp(−ω/ωc) has been

assumed, for which Q(t) can be found in closed form14. Here ωc is a cutoff frequency, and
the damping strength is measured by the dimensionless Kondo parameter α. In the scaling
limit ∆ � ωc with α < 1, all dependence on ωc enters via a renormalized tunnel splitting14

∆eff = [cos(πα)Γ(1 − 2α)]1/2(1−α)(∆/ωc)
α/(1−α)∆ , (39)

and powerful analytical and alternative numerical methods are readily available14. How-
ever, there are important applications (e.g. electron transfer reactions) that require to study
the spin-boson problem away from the scaling limit. Here one generally has to resort to
numerical methods. Basically all other available computational techniques can only deal
with equilibrium quantities, or explicitly introduce approximations; for an overview and
references, see Ref.14. The MLB approach is computationally more expensive than other
methods but at the same time unique in yielding numerically exact results for the nonequi-
librium spin-boson dynamics for arbitrary system parameters ∆, ε, J(ω) and β = 1/kBT .

Below only results for the occupation probability P (t) = 〈σz(t)〉 under the nonequi-
librium initial preparation σz(t < 0) = +1 are presented. P (t) gives the time-dependent
difference of the quantum-mechanical occupation probabilities of the left and right states,
with the particle initially confined to the left state. To obtain P (t) numerically, in a dis-
cretized path-integral representation one traces out the bath to get a long-ranged effective
action, the influence functional14. In discretized form the TLS path is represented by spins
σi, σ

′
i = ±1 on the forward- and backward-paths, respectively. The total action S consists

of three terms. First, there is the “free” action S0 determined by the bare TLS propagator
U0,

exp(−S0) =

P−1
∏

i=0

U0(σi+1, σi; t
∗/P ) U0(σ

′
i+1, σ

′
i;−t∗/P ) , (40)

where t∗ is the maximum time and P the Trotter number. Next there is the influence
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functional, SI = S
(1)
I +S

(2)
I , which contains the long-ranged interaction among the spins,

S
(1)
I =

∑

j≥m

(σj − σ′
j)
{

L′
j−m (σm − σ′

m) + iL
′′

j−m (σm + σ′
m)
}

,

where Lj = L′
j + iL

′′

j is given by

Lj = [Q((j + 1)t∗/P ) + Q((j − 1)t∗/P ) − 2Q(jt∗/P )]/4 (41)

for j > 0, and L0 = Q(t∗/P )/4. In the scaling regime at T = 0, this effective ac-
tion produces interactions ∼ α/t2 between the spins (“inverse-square Ising model”). The
contribution

S
(2)
I = i(t∗/P )

∑

m

γ(mt∗/P )(σm − σ′
m)

describes the interactions with the imaginary-time branch where σz = +1, with the damp-
ing kernel

γ(t) =
2

π
�
∫ ∞

0

dω
J(ω)

ω
cos(ωt) .

The most difficult case for PIMC corresponds to an unbiased two-state system at zero
temperature, ε = T = 0. To check the code, the case α = 1/2 was studied in some detail,
where the exact solution14 is very simple, P (t) = exp(−∆efft). This exact solution only
holds in the scaling limit, which is already reached for ωc/∆ = 6 where the MLB-PIMC
simulations yield precisely this result. Typical MLB parameters and the respective average
sign are listed in Table 3. The first line in Table 3 corresponds to the naive approach. It
is then clear that the average sign and hence the signal-to-noise ratio can be dramatically
improved thus allowing for a study of long timescales t∗. For a fixed number of levels
L, the average sign grows by increasing the parameter K. Alternatively, for fixed K, the
average sign increases with L. Evidently, the latter procedure is more efficient in curing
the sign problem, but at the same time computationally expensive. In practice, it is then
necessary to find a suitable compromise.

Figure 5 shows scaling curves for P (t) at α = 1/4 for ωc/∆ = 6 and ωc/∆ = 1.
The first value for ωc/∆ is within the scaling regime. This is confirmed by a comparison
to the noninteracting blip approximation (NIBA)14, which is known to be very accurate
for α < 1 in the scaling limit. However, for ωc/∆ = 1, scaling concepts and also NIBA
are expected to fail dramatically. This is seen in the simulations. MLB results show that
away from the scaling limit, quantum coherence is able to persist for much longer, and
both frequency and decay rate of the oscillations differ significantly from the predictions
of NIBA. In electron transfer reactions in the adiabatic-to-nonadiabatic crossover regime,
such coherence effects can then strongly influence the low-temperature dynamics. One
obvious and important consequence of these coherence effects is the breakdown of a rate
description, implying that theories based on an imaginary-time formalism might not be
appropriate in this regime. A detailed analysis of this crossover regime using MLB is
currently in progress9.
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Figure 5. Scaling curves for P (t) for α = 1/4 with ωc/∆ = 6 (closed diamonds) and ωc/∆ = 1 (open
circles). The solid curve is the NIBA prediction. Statistical errors are of the order of the symbol sizes.

4 Concluding Remarks

These notes summarize our previous activities using the multilevel blocking approach to
the sign problem in path-integral Monte Carlo simulations. The approach holds substan-
tial promise towards relieving (and eventually overcoming) the sign problem, but clearly
there is still much room for improvement. The applications presented here demonstrate
unambiguously that there are general and powerful handles to relieve the sign problem,
even though a problem characterized by an intrinsic sign problem is still much harder than
one without. We hope that especially young researchers will be attracted to work on this
subject themselves.

Acknowledgments

Parts of this review are based on work with Lothar Mühlbacher. This research has been
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