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Nonadiabatic Dynamics:
Mean-Field and Surface Hopping

Nikos L. Doltsinis

Lehrstuhl für Theoretische Chemie
Ruhr-Universität Bochum, 44780 Bochum, Germany

E-mail: nikos.doltsinis@theochem.ruhr-uni-bochum.de

This contribution takes a closer look at the foundations of conventional molecular dynamics
simulations such as the Born-Oppenheimer approximation and the treatment of atomic nuclei
according to the laws of classical mechanics. Regimes of validity of the adiabatic approximation
are defined and models that take into account nonadiabatic effects in situations where the Born-
Oppenheimer approximation breaks down are introduced. We focus on two mixed quantum-
classical methods that differ only in the way the forces on the — classical — atomic nuclei are
determined from the solutions to the time-independent electronic Schrödinger equation. In the
Ehrenfest approach, the system moves on a single potential energy surface obtained by weighted
averaging over all adiabatic states, whereas the ’surface hopping’ method allows transitions
between pure adiabatic potential energy surfaces according to their weights. In both cases,
the weights are the squares of the coefficients of the total electronic wavefunction expanded in
terms of the adiabatic state functions.

1 Introduction

Molecular dynamics (MD), in the literal sense, is the simultaneous motion of a number
of atomic nuclei and electrons forming a molecular entity. Strictly speaking, a complete
description of such a system requires solving the full time-dependent Schrödinger equation
including both electronic and nuclear degrees of freedom. This, however, is a formidable
computational task which is in fact altogether unfeasible, at present, for systems consisting
of more than three atoms and more than one electronic state1. In order to study the
dynamics of the vast majority of chemical systems, several approximations, therefore,
have to be imposed.

Firstly, it is assumed in MD that the motions of slow and fast degrees of freedom are
separable (adiabatic or Born-Oppenheimer approximation). In the molecular context this
means that the electron cloud adjusts instantly to changes in the nuclear configuration.
As a consequence, nuclear motion evolves on a single potential energy surface (PES),
associated with a single electronic quantum state, which is obtained by solving the
time-independent Schrödinger equation for a series of fixed nuclear geometries. In
practice, most MD simulations are performed on a ground state PES.

Moreover, in addition to making the Born-Oppenheimer approximation, MD treats
the atomic nuclei as classical particles whose trajectories are computed by integrating
Newton’s equations of motion.

MD has been applied with great success to study a wide range of systems from
biomolecules to condensed phases2, 3. Its underlying approximations, on the other hand,
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break down in many important physical situations and extensions of the method are
needed for those scenarios. An accurate description of hydrogen motion, for instance,
requires quantum mechanical treatment. Processes such as charge-transfer reactions and
photochemistry are inherently nonadiabatic, i.e., they involve (avoided) crossings of
different electronic states rendering the Born-Oppenheimer approximation invalid.

Critical assessment of the adiabatic approximation as well as discussion of nonadia-
batic extensions will be the subject of the present paper.
Since our focus here is on potential applicability to large-scale systems, we shall retain the
classical treatment of the nuclei and only describe the electrons quantum mechanically.
We will use the term semiclassical for such mixed quantum-classical models. Both
expressions can be frequently found in the literature.
Out of the great many semiclassical approaches to nonadiabatic dynamics that have
been proposed two “standard” methods different in philosophy have emerged as the
most popular ones. One extreme is the Ehrenfest method1, 4–8, where the nuclei move
on one effective PES which is an average of all adiabatic states involved weighted by
their populations (therefore also called mean-field method). The other extreme is the
surface hopping approach9, 10, 7, 8, 11,12, where the nuclei evolve on pure adiabatic PESs, but
switches between adiabatic states are allowed when their populations change.

This article is organised as follows. In Section 2, the Born-Oppenheimer approxima-
tion is introduced. Starting from the full time-dependent Schrödinger equation, the un-
coupled nuclear equations of motion are derived. Section 3 deals with the semiclassical
approach replacing the nuclear wavefunction by a classical trajectory. This will form the
basis of all nonadiabatic methods presented in later sections. Conditions for the validity of
the Born-Oppenheimer approximation are discussed qualitatively. Two of the most com-
monly employed nonadiabatic dynamics methods are described in Section 4, namely the
Ehrenfest and the surface hopping methods. The section closes by presenting a recent im-
plementation of the surface hopping technique within the framework of Car-Parrinello MD
together with an application to the cis-trans photoisomerisation of formaldimine as a case
study.

2 Born-Oppenheimer Approximation

A complete, non-relativistic, description of a system of N atoms having the positions R =
(R1,R2, . . . ,RK , . . . ,RN ) with n electrons located at r = (r1, r2, . . . , rK , . . . , rn) is
provided by the time-dependent Schrödinger equation

HΞ(r,R; t) = i
� ∂

∂t
Ξ(r,R; t) , (1)

with the total Hamiltonian

H(r,R) = T (R) + T (r) + V(R) + V(r,R) + V(r) , (2)

being the sum of kinetic energy of the atomic nuclei,

T (R) = −
� 2

2

N
∑

K=1

∇
2
K

MK

, (3)
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kinetic energy of the electrons,

T (r) = −
� 2

2me

n
∑

k=1

∇
2
k , (4)

internuclear repulsion,

V(R) =
e2

4πε0

N−1
∑

K=1

N
∑

L>K

ZKZL

|RK −RL|
, (5)

electronic – nuclear attraction,

V(r,R) = − e2

4πε0

N
∑

K=1

n
∑

k=1

ZK

|rk −RK | , (6)

and interelectronic repulsion,

V(r) =
e2

4πε0

n−1
∑

k=1

n
∑

l>k

1

|rk − rl|
. (7)

Here, MK and ZK denote the mass and atomic number of nucleus K; me and e are the
electronic mass and elementary charge, and ε0 is the permittivity of vacuum. The nabla
operators ∇K and ∇k act on the coordinates of nucleus K and electron k, respectively.

Defining the electronic Hamiltonian (fixed-nuclei approximation of H) as

Hel(r,R) = T (r) + V(R) + V(r,R) + V(r) , (8)

we can rewrite the total Hamiltonian as

H(r,R) = T (R) + Hel(r,R) . (9)

Let us suppose the solutions of the time-independent (electronic) Schrödinger equation,

Hel(r,R)φi(r,R) = Ei(R)φi(r,R) , (10)

are known. Furthermore, the spectrum of Hel(r,R) is assumed to be discrete and the
eigenfunctions orthonormalised:

∫

∞

−∞

φ∗

i (r,R)φj(r,R)dr ≡ 〈φi|φj〉 = δij . (11)

The total wavefunction Ξ can be expanded in terms of the eigenfunctions of Hel since these
form a complete set:

Ξ(r,R; t) =
∑

j

φj(r,R)χj(R, t) . (12)

Insertion of this ansatz into the time-dependent Schrödinger equation (1) followed by mul-
tiplication from the left by φ∗

i (r,R) and integration over the electronic coordinates leads
to a set of coupled differential equations:

[T (R) + Ei(R)] χi +
∑

j

Cijχj = i
� ∂

∂t
χi , (13)
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where the coupling operator Cij is defined as

Cij ≡ 〈φi|T (R)|φj〉 −
∑

K

� 2

MK

〈φi|∇K |φj〉∇K . (14)

The diagonal term Cii represents a correction to the (adiabatic) eigenvalue Ei of the elec-
tronic Schrödinger equation (10). In the case that all coupling operators Cij are negligible,
the set of differential eqns (13) becomes uncoupled:

[T (R) + Ei(R)] χi = i
� ∂

∂t
χi . (15)

This means that the nuclear motion proceeds without changes of the quantum state of the
electron cloud and, correspondingly, the wavefunction (12) is reduced to a single term
(adiabatic approximation):

Ξ(r,R; t) ≈ φi(r,R)χi(R, t) . (16)

For a great number of physical situations the Born-Oppenheimer approximation can be
safely applied. On the other hand, there are many important chemical phenomena like, for
instance, charge transfer and photoisomerisation reactions, whose very existence is due to
the inseparability of electronic and nuclear motion. Inclusion of nonadiabatic effects will
be the subject of the following sections.

3 Semiclassical Approach

Further simplification of the problem can be achieved by describing nuclear motion by
classical mechanics and only the electrons quantum mechanically. In this so-called semi-
classical approach13, 14, the atomic nuclei follow some trajectory R(t) while the electronic
motion is captured by some time-dependent total wavefunction Φ(r; t) satisfying the time-
dependent electronic Schrödinger equation,

Hel(r,R(t))Φ(r; t) = i
� ∂

∂t
Φ(r; t) . (17)

Again, the total wavefunction is written as a linear combination of adiabatic eigenfunctions
φi(r,R) (solutions of the time-independent Schrödinger equation (10)):

Φ(r; t) =
∑

j

aj(t)φj(r,R)e−
i��� Ej(R)dt . (18)

Insertion of this ansatz into the time-dependent electronic Schrödinger equation (17) fol-
lowed by multiplication from the left by φ∗

i (r,R) and integration over the electronic coor-
dinates leads to a set of coupled differential equations:

ȧi = −
∑

j

ajCije
−

i� � (Ej−Ei)dt , (19)

where

Cij ≡ 〈φi|
∂

∂t
|φj〉 (20)
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are the nonadiabatic coupling elements. Integration of eqns (19) yields the expansion
coefficients ai(t) whose square modulus, |ai(t)|2, can be interpreted as the probability of
finding the system in the adiabatic state i at time t.

We now want to develop a condition for the validity of the Born-Oppenheimer approx-
imation based on qualitative arguments. For this purpose, we shall consider a two-state
system. To illustrate the problem, fig. 1 shows the avoided crossing between the covalent
and ionic potential energy curves of NaCl15, 16. As we can see, the adiabatic wavefunctions
φ1 and φ2 change their character as the bond length is varied. The characteristic length, l,
over which φ1 and φ2 change significantly clearly depends on the nuclear configuration R;
in the vicinity of the NaCl avoided crossing, for instance, the character of the wavefunc-
tions varies rapidly, whereas at large separations it remains more or less constant.

E

R

Na++Cl−

Na++Cl−

φ2

φ1

Na+Cl

Na+Cl

�
�
�

� � � � � � �

Figure 1. Avoided crossing between the covalent and ionic adiabatic potential curves of NaCl (thin lines: crossing
of diabatic states).

Division of the characteristic length l by the velocity of the nuclei, Ṙ = |Ṙ|, at a
particular configuration R defines the time the system needs to travel the distance l around
R:

passage time τp =
l

Ṙ
. (21)

In order for the Born-Oppenheimer approximation to be valid, the electron cloud has to
adjust instantly to the nuclear changes. The time scale characteristic of electronic motion
can be obtained from the relation

∆E = |E1 − E2| =
�
ω (22)
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by taking the inverse transition frequency:

τe =
1

ω
=

�

∆E
. (23)

The ratio

ξ =
τp

τe

=
∆E l
�
Ṙ

(24)

is the so-called Massay parameter. For values ξ � 1, i.e. large energy gaps ∆E and small
velocities Ṙ, nonadiabatic effects are negligible. In this case, if the system is prepared in
some pure adiabatic state i (|ai|2 = 1) at time t = 0, the rhs of eqn (19) will be zero at all
times and the wavefunction expansion (eqn (18)) can be replaced by a single term:

Φ(r; t) = φi(r,R)e−
i��� Ei(R)dt . (25)

The atomic nuclei are then propagated by solving Newton’s equations

MKR̈K = FK(R) , (26)

where

FK(R) = −∇KEi(R) (27)

is the force on atom K.

4 Approaches to Nonadiabatic Dynamics

4.1 Mean-Field (Ehrenfest) Method

As we have discussed in the previous section, nonadiabaticity involves changes in the adia-
batic state populations |ai|2 with changing nuclear configuration. Clearly, such a distortion
of the electron cloud will, in turn, influence the nuclear trajectory. Although there are situa-
tions in which the impact of electronic nonadiabaticity on nuclear motion is negligible (e.g.
for high energy collisions or small energy separations between adiabatic states), for many
chemical systems it is of prime importance to properly incorporate electronic–nuclear feed-
back7, 8.
The simplest way of doing this is to replace the adiabatic potential energy surface Ei in
eqn (27) by the energy expectation value

Eeff = 〈Φ|Hel|Φ〉 =
∑

i

|ai|2Ei , (28)

where we have used eqn (18). Thus, the atoms evolve on an effective potential representing
an average over the adiabatic states weighted by their state populations |ai|2 (as illustrated
in fig. 2). The method is therefore referred to as mean-field (also known as Ehrenfest)
approach.

It is instructive to derive an expression for the nuclear forces either from the gradient
of eqn (28) or using the Hellmann-Feynman theorem

FK = −〈Φ|∇KHel|Φ〉 . (29)
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Figure 2. Top: avoided crossing between two adiabatic PES, E1 and E2, and effective potential, Eeff , on which
the nuclei are propagated in the Ehrenfest method. In the asymptotic region (right) Eeff contains contributions
from classically forbidden regions of E2. Bottom: corresponding adiabatic state populations |a1|2 and |a2|2.
The system is prepared in state 1 initially with zero kinetic energy. Upon entering the coupling region state 2 is
increasingly populated.

Opting for the latter, we start by writing down the relation

∇K〈φi|Hel|φj〉 = ∇KEiδij (30)
= 〈∇Kφi|Hel|φj〉 + 〈φi|∇KHel|φj〉 + 〈φi|Hel|∇Kφj〉 (31)
= 〈φi|∇KHel|φj〉 + (Ej − Ei)dji , (32)

where we have defined the nonadiabatic coupling vectors, dji, as

dji = 〈φj |∇K |φi〉 , (33)

and used eqn (10) together with the hermiticity of Hel:

〈φi|Hel|∇Kφj〉 = 〈∇Kφj |Hel|φi〉∗ = 〈∇Kφj |Ejφi〉∗ = Eid
∗

ij = −Eidji . (34)

Note that

d
∗

ji = −dij , (35)

because

∇K〈φi|φj〉 = ∇Kδij = 0 (36)
= 〈∇Kφi|φj〉 + 〈φi|∇Kφj〉 = d

∗

ji + dij . (37)
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Figure 3. Top left: forward path effective potential, Eeff , for two weakly coupled adiabatic PES, E1 and E2.
Bottom left: state occupations for a system initially prepared in state 1. The final value of |a2|2 is equal to the
transition probability P12. Top right: backward path effective potential, Eeff , for two weakly coupled adiabatic
PES, E1 and E2. Bottom left: state occupations for a system initially prepared in state 2. The final value of |a1|2

is equal to the transition probability P21.

Equating the rhss of eqns (30) and (32) one obtains after rearranging,

〈φi|∇KHel|φj〉 = ∇KEiδij − (Ej − Ei)dji . (38)

The nuclear forces (29) are thus given by

FK = −
∑

i

|ai|2∇KEi +
∑

i,j

a∗

i aj(Ej − Ei)dji . (39)

Equation (39) illustrates the two contributions to the nuclear forces; the first term is simply
the population-weighted average force over the adiabatic states, while the second term
takes into account nonadiabatic changes of the adiabatic state occupations. We would
like to point out here that the nonadiabatic contributions to the nuclear forces are in the
direction of the nonadiabatic coupling vectors dji.

The Ehrenfest method has been applied with great success to a number of chemical
problems including energy transfer at metal surfaces17. However, due to its mean-field
character the method has some serious limitations. A system that was initially prepared
in a pure adiabatic state will be in a mixed state when leaving the region of strong
nonadiabatic coupling. In general, the pure adiabatic character of the wavefunction cannot
be recovered even in the asymptotic regions of configuration space. In cases where
the differences in the adiabatic potential energy landscapes are pronounced, it is clear
that an average potential will be unable to describe all reaction channels adequately.
In particular, if one is interested in a reaction branch whose occupation number is very
small, the average path is likely to diverge from the true trajectory. Furthermore, the
total wavefunction may contain significant contributions from adiabatic states that are
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energetically inaccessible (see fig. 2).

Figure 3 illustrates another severe drawback of the mean-field approach. The principle
of microscopic reversibility demands that the forward path probability, P for

12 = |afinal
2 |2

for a system that was initially prepared in state 1 to end up in state 2 must be equal to the
backward path probability, P back

21 = |afinal
1 |2 for a system that was initially prepared in

state 2 to end up in state 1. One can easily think of situations, like the one depicted in fig.
3, for which the effective potentials for the forward and backward paths are very different,
resulting also in different populations, |ai|2. The Ehrenfest method, therefore, violates
microscopic reversibility.

It should be noted that the expansion of the total wavefunction in terms of (adiabatic)
basis functions (eqn (18)) is not a necessary requirement for the Ehrenfest method; the
wavepacket Φ can be propagated numerically using eqn (17). However, projection of Φ
onto the adiabatic states facilitates interpretation. Knowledge of the expansion coefficients,
ai, is also the key to refinements of the method such as the surface hopping technique.

4.2 Surface Hopping

We have argued above that after exiting a well localised nonadiabatic coupling region it is
unphysical for nuclear motion to be governed by a mixture of adiabatic states. Rather it
would be desirable that in asymptotic regions the system evolves on a pure adiabatic PES.
This idea is fundamental to the surface hopping approach. Instead of calculating the ’best’
(i.e., state-averaged) path like in the Ehrenfest method, the surface hopping technique in-
volves an ensemble of trajectories. At any moment in time, the system is propagated on
some pure adiabatic state i, which is selected according to its state population |ai|2. Chang-
ing adiabatic state occupations can thus result in nonadiabatic transitions between different
adiabatic PESs (see fig. 4). The ensemble averaged number of trajectories evolving on
adiabatic state i at any time is equal to its occupation number |ai|2.
In the original formulation of the surface hopping method by Tully and Preston9, switches
between adiabatic states were allowed only at certain locations defined prior to the simula-
tion. Tully10 later generalized the method in such a way that nonadiabatic transitions can
occur at any point in configuration space. At the same time, an algorithm — the so-called
fewest switches criterion — was proposed which minimises the number of surface hops per
trajectory whilst guaranteeing the correct ensemble averaged state populations at all times.
The latter is important because excessive surface switching effectively results in weighted
averaging over the adiabatic states much like in the case of the Ehrenfest method.

We shall now derive the fewest switches criterion. Out of a total of N trajectories, Ni

will be in state i at time t,

Ni(t) = ρii(t)N . (40)

Here we have introduced the density matrix notation

ρij(t) = a∗

i (t)aj(t) . (41)

At a later time t′ = t + δt the new occupation numbers are

Ni(t
′) = ρii(t

′)N (42)
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Figure 4. Top: avoided crossing between two adiabatic PES, E1 and E2, and two typical forward surface hopping
trajectories. Nonadiabatic transitions are most likely to occur in the coupling region. Bottom: corresponding
adiabatic state populations |a1|2 and |a2|2. The system is prepared to be in state 1 initially with zero kinetic
energy. Upon entering the coupling region state 2 is increasingly populated.

Let us suppose that Ni(t
′) < Ni(t) or δN = Ni(t) − Ni(t

′) > 0. Then the minimum
number of transitions required to go from Ni(t) to Ni(t

′) is δN hops from state i to any
other state and zero hops from any other state to state i (see fig. 5). The probability
Pi(t, δt) for a transition out of state i to any other state during the time interval [t, t + δt]
is then given by

Pi(t, δt) =
δN

N
=

ρii(t) − ρii(t
′)

ρii

≈ − ρ̇iiδt

ρii

, (43)

where we have used

ρ̇ii ≈
ρii(t

′) − ρii(t)

δt
. (44)

The lhs of eqn (44) can be written as

ρ̇ii =
d

dt
(a∗

i ai) = ȧ∗

i ai + a∗

i ȧi = (a∗

i ȧi)
∗ + a∗

i ȧi = 2<(a∗

i ȧi) . (45)

Inserting eqn (19) into eqn (45) we obtain

ρ̇ii = −2<





∑

j

ρijCije
−

i��� (Ej−Ei)dt



 . (46)
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50%

50%

50%

50%

60%

40%

40%

60%

fewest switches

Figure 5. A two-state system with each state being equally (50% ) populated at time t. At time t + ∆t the lower
and the upper state are populated by 40 % and 60 % of ensemble members, respectively. The top panel shows
how this distribution can be achieved with the minimum number of transitions, whereas the bottom panel shows
one alternative route involving a larger number of transitions.

Substituting expression (46) into eqn (43) the probability Pi can be rewritten as follows

Pi(t, δt) =

2<





∑

j

ρijCije
−

i� � (Ej−Ei)dt



 δt

ρii

. (47)

Since the probability, Pi, for a switch from state i to any other state must be the sum over
all states of the probabilities, Pij , for a transition from state i to a specific state j,

Pi(t, δt) =
∑

j

Pij(t, δt) , (48)

it follows from eqn (47) that

Pij(t, δt) =
2<

(

ρijCije
−

i� � (Ej−Ei)dt
)

δt

ρii

. (49)

A transition from state i to state k is now invoked if

P
(k)
i < ζ < P

(k+1)
i , (50)

where ζ (0 ≤ ζ ≤ 1) is a uniform random number and P
(k)
i is the sum of the transition

probabilities for the first k states,

P
(k)
i =

k
∑

j

Pij . (51)
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Figure 6. Top: avoided crossing between two adiabatic PES, E1 and E2, and two typical forward surface hopping
trajectories. Nonadiabatic transitions are most likely to occur in the coupling region. The cross indicates a
classically forbidden transition; no switch is carried out in this case. Bottom: corresponding adiabatic state
populations |a1|2 and |a2|2. The system is prepared in state 2 initially with zero kinetic energy. Upon entering the
coupling region state 1 is increasingly populated. Upon exiting the coupling region, state population 1 decreases.
For configurations R for which E2 is in the classsically forbidden region, the percentages of trajectories in state
i, N∗

i
, are unequal to |ai|

2; N∗

2
is zero whereas N∗

1
remains constant.

In order to conserve total energy after a surface hop has been carried out, the atomic
velocities have to be rescaled. The usual procedure is to adjust only the velocity com-
ponents in the direction of the nonadiabatic coupling vector dik(R) (eqn (33))10. We
can qualitatively justify this practice by our earlier observation that the nonadiabatic
contribution to the Ehrenfest forces also are in the direction of the nonadiabatic coupling
vector dik(R) (see eqn (39)). Certainly, such discontinuities in nuclear velocities must
be regarded as a flaw of the surface hopping approach. In most physical scenarios,
however, nonadiabatic surface switches take place only at relatively small potential energy
separations so that the necessary adjustment to the nuclear velocities is reasonably small.
Nevertheless, a severe limitation of the method is presented by its inability to properly
deal with situations in which the amount of kinetic energy is insufficient to compensate
for the difference in potential energy (so-called classically forbidden transitions). Tully’s
original suggestion not to carry out a surface hop while retaining the nuclear velocities in
such cases has been demonstrated18 to be more accurate than later proposals to reverse
the velocity components in the direction of the nonadiabatic coupling vector dik(R)19, 20.
The example presented in Figure 6 illuminates how classically forbidden transitions cause
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divergence between the target occupation numbers, |ai|2, and the actual percentages of
trajectories evolving in state i, N∗

i .

It should be noted that surface hopping exhibits a large degree of electronic coherence
through continuous integration of eqns (19) along the entire trajectory. On the one hand,
this enables the method to reproduce quantum interference effects10 such as Stueckelberg
oscillations13. On the other hand, due to treating nuclei classically, dephasing of the elec-
tronic degrees of freedom may be too slow, a shortcoming shared by the surface hopping
and the Ehrenfest method alike. A number of semiclassical approaches incorporating de-
coherence have, therefore, been proposed21–27. Some of these alternative methods attempt
to combine the advantages of surface hopping (mainly, pure adiabatic states in asymptotic
regions) with those of the mean-field method (no discontinuities in potential energy, no dis-
allowed transitions) by employing an effective potential whilst enforcing gradual demixing
of the total wavefunction away from the coupling regions25–27.

4.3 Car-Parrinello Surface Hopping

So far we have assumed that a number of adiabatic potential energy surfaces (at least
two) have been obtained by solving the time-independent Schrödinger equation (10)
in some unspecified manner. Instead of precalculating the entire PESs, it is advan-
tageous to compute the electronic energies and nuclear gradients “on the fly” as the
system is propagated along the trajectory. A popular method in this context has been
the Diatomics-in-Molecules (DIM)28–40 method which cheaply provides the required
electronic eigenvalues and atomic forces for a multitude of molecular valence states
simultaneously through diagonalisation of the Hamiltonian matrix. However, although the
DIM method works remarkably well for some simple systems such as cationic rare-gas
clusters41–44, it is not generally applicable to more complex systems.

For ground state calculations, density functional theory45–47 based ab initio MD in the
spirit of Car and Parrinello48 has become the method of choice to study large molecules
and condensed phase systems. Recently, Car-Parrinello simulations have become possible
also in the first excited singlet state using a restricted open-shell Kohn-Sham (ROKS)
approach49. We now report here of a Tully-style10 trajectory surface hopping method
coupling nonadiabatically the S0 ground state and the S1 excited state accessible within
the Car-Parrinello framework50.

4.3.1 Restricted Open-Shell Kohn-Sham Method

Let us first take a brief look at the ROKS method for the S1 state. Starting from a closed-
shell ground state, S0, consider an excitation of an electron out of the HOMO into the
LUMO. The resulting two unpaired spins can be arranged in four different ways, as il-
lustrated in fig. 7, parallel spins forming triplet determinants and antiparallel spins being
equal mixtures of singlet and triplet determinants. The S1 singlet wavefunction, φ1, is
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constructed as

φ1 =
1√
2
{|m1〉 + |m2〉}

=
1√
2

{

|ϕ(1)
1 ϕ̄

(1)
1 ϕ

(1)
2 ϕ̄

(1)
2 · · ·ϕ(1)

l ϕ̄
(1)
l+1〉

+ |ϕ(1)
1 ϕ̄

(1)
1 ϕ

(1)
2 ϕ̄

(1)
2 · · · ϕ̄(1)

l ϕ
(1)
l+1〉

}

, (52)

where the “ket” notation signifies Slater determinants made up of Kohn-Sham orbitals,
ϕ

(1)
i (spin up) and ϕ̄

(1)
i (spin down); l = n

2 is half the number of electrons.
It has been shown by Ziegler et al.51 that the S1 energy, E(S1), can be written as the
difference between twice the energy of the mixed determinant, E(m), and the energy of
the triplet determinant, E(t),

E(S1) = 2E(m) − E(t) . (53)

Within the ROKS scheme, a single set of orbitals {ϕ(1)
i } is determined that minimises the

energy functional,

E[{ϕ(1)
i }] = 2〈m|HKS|m〉 − 〈t|HKS|t〉 −

l+1
∑

i,j=1

λij

{

〈ϕ(1)
i |ϕ(1)

j 〉 − δij

}

, (54)

where HKS is the Kohn-Sham Hamiltonian47 and the λij are Lagrange multipliers taking
care of the orthonormality of the orbitals.
Due to this optimisation the entire set of orbitals {ϕ(1)

i } will, in general, differ from the set
of orbitals {ϕ(0)

i } that define the ground state wavefunction, φ0,

φ0 = |ϕ(0)
1 ϕ̄

(0)
1 ϕ

(0)
2 ϕ̄

(0)
2 · · ·ϕ(0)

l ϕ̄
(0)
l 〉 . (55)

As a consequence the two state functions, φ0 and φ1, are nonorthogonal giving rise to the
overlap matrix elements, Sij ,

S01 = S10 ≡ S , Sii = 1 . (56)

�

�

�

�

�

�

�

�

LUMO

HOMO

t1 t2 m1 m2

Figure 7. Four possible spin configurations upon excitation of one electron out of the highest occupied molecular
orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). The two parallel spin configurations, t1

and t2 form triplet determinants, while the two antiparallel configurations, m1 and m2 form mixed determinants
with equal singlet and triplet contributions.
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4.3.2 S0–S1 Surface Hopping

Inserting ansatz (18) using the above basis functions, φ0 and φ1, into eqn (17) and replac-
ing Hel with HKS we obtain after integration over the electronic coordinates following
multiplication by φ∗

i from the left

∑

j

ajpj(Hij − EjSij) = i
�







∑

j

ȧjpjSij +
∑

j

ajpjCij







, (57)

where the Hamiltonian matrix elements are given by

Hii = 〈Φi|HKS|Φi〉 = Ei , (58)

H01 = H10 = E0S , (59)

and the phase factor has been abbreviated as

pj ≡ e−
i��� Ejdt . (60)

We should stress here that the discrepancy between eqns (57) and (19) arises purely because
φ1 is not an eigenfunction of HKS.
For i = 0, eq. (57) thus becomes

a1p1S(E0 − E1) = i
� {ȧ0p0 + ȧ1p1S + a1p1C01} , (61)

and for i = 1

0 = ȧ0p0S + ȧ1p1 + a0p0C10 . (62)

Solving equations (61) and (62) for ȧ0 and ȧ1 one finds

ȧ0 =
1

S2 − 1

[

ia1
p1

p0
S(E0 − E1) + a1C01

p1

p0
− a0C10S

]

, (63)

ȧ1 =
1

S2 − 1

[

a0C10
p0

p1
− a1C01S − ia1S

2(E0 − E1)

]

. (64)

We integrate these two coupled differential equations numerically using a fourth order
Runge-Kutta scheme52. It is computationally attractive to work with the nonadiabatic
coupling elements, Cij (eqn (20)), instead of the nonadiabatic coupling vectors, dji (eqn
(33)), since the orbital velocities are readily available within the Car-Parrinello method.

If both electronic state functions were eigenfunctions of the Kohn-Sham Hamiltonian,
|a0|2 and |a1|2 would be their respective occupation numbers. A look at the normalisation
integral of the total wavefunction Φ,

〈Φ|Φ〉 = |a0|2 + |a1|2 + 2S <
(

a∗

0a1
p1

p0

)

≡ 1 , (65)

shows that the definition of state populations in this basis is ambiguous. We therefore
expand the total wavefunction Φ in terms of an orthonormal set of auxiliary wavefunctions,
φ′

0 and φ′

1:

Φ = d0φ
′

0 + d1φ
′

1 = b0φ0 + b1φ1 , (66)
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where

〈φ′

i|φ′

j〉 = δij (67)

and

bj = ajpj . (68)

Since Φ is normalised, the squares of our new expansion coefficients add up to unity and
thus have the meaning of state populations in the orthogonal basis:

|d0|2 + |d1|2 = 1 . (69)

The orthonormal wavefunctions φ′

0 and φ′

1 can be expressed in terms of φ0 and φ1 as

φ′

0 = c00φ0 + c10φ1 , (70)

φ′

1 = c01φ0 + c11φ1 , (71)

c0 =
(

c00
c10

)

and c1 =
(

c01
c11

)

being solutions of the eigenvalue problem

HC = SCE . (72)

Using the Hamiltonian matrix elements of eqns (58) and (59) and the overlap matrix of eq
(56), one obtains the eigenvalues

e0 = E0 (73)

and

e1 =
E1 − S2E0

1 − S2
(> E1, if E0 < E1) . (74)

The corresponding eigenvectors are

c0 =

(

1

0

)

(75)

and

c1 =

(−S

1

)

(76)

leading to the orthonormal wavefunctions

φ′

0 = φ0 , (77)

φ′

1 =
1√

1 − S2
[−Sφ0 + φ1] . (78)

Inserting (77) and (78) into (66) we determine the expansion coefficients to be

d0 = b0 + b1S (79)

d1 = b1

√

1 − S2 . (80)

The state occupation numbers are thus

|d0|2 = |b0|2 + S2|b1|2 + 2S <(b∗0b1) , (81)
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|d1|2 = (1 − S2)|b1|2 (82)

or alternatively

|d0|2 = |a0|2 + S2|a1|2 + 2S <
(

a∗

0a1
p1

p0

)

(83)

|d1|2 = (1 − S2)|a1|2 . (84)

We are now in a position to apply Tully’s fewest switches criterion (49) using the coeffi-
cients di to construct the density matrix (41).

4.3.3 Example: Photoisomerisation of Formaldimine

Figure 8 shows a schematic view of the photoreaction pathways of formaldimine. The
reactant, R, is excited vertically from the ground state minimum into the S1 state to form
R∗. Subsequently, the system moves along the reaction coordinate, which predominantly
involves an out-of-plane twist of the NH bond, into a conical intersection located at

S1

S0

C

H H

N

H

C

H H

N
H

C

H H

N
H

R P

R*

Figure 8. Schematic view of the photoreaction pathways of formaldimine. S0 and S1 energy curves are plotted
against the reaction coordinate whose main contributor is the NH twist angle. The reactant R is vertically excited
from the ground state into the S1 state to form R∗. The system then falls into a conical intersection where
relaxation to the ground state occurs. The reaction can proceed to either of the equivalent isomers, R and P.
Formation of the photoproduct P corresponds to photoisomerisation.

393



0 100 200
time [fs]

    0.2

    0.4

    0.6

    0.8

po
pu

la
tio

n

S1

S0

   50

   100

   150

an
gl

e 
[d

eg
]

HNC
twist

−17.30

−17.25

−17.20

−17.15

en
er

gy
 [a

.u
.]

S1

S0

nonadiabatic
transition

Figure 9. Top: Time evolution of S0 and S1 energies following photoexcitation in the case of a R → P reaction.
The dashed line indicates the moment of the nonadiabatic transition to the ground state. Middle: Corresponding
time evolution of the HNC and the HN twist angles. The HN bond is seen to flip from 0◦ to 180◦ resulting in
the photoproduct. For HNC angles around 106.5 ◦ at orthogonal twist geometry, the energy gap is seen to be
minimal. Bottom: Corresponding adiabatic state populations, |di(t)|2 , of the orthogonal, auxiliary basis set (see
eqn (66)).

orthogonal twist geometry. In this region of strong nonadiabatic coupling a transition to
the ground state occurs leading either to the photoisomerisation product, P, or back to the
reactant R.
We have picked 10 starting configurations at random from a ground state MD run at 300

K. For each of the two possible outcomes, i.e. R → P and R → R, a typical trajectory is
analysed in figs 9 and 10. The top panel of fig. 9 shows the evolution of the S0 and S1

energies as a function of simulation time for a trajectory leading to the photoproduct P.
After vertical excitation of the molecule at t = 0, the system is seen to quickly move down
into the S1 potential well dramatically reducing the energy gap to the ground state. As
illustrated by the middle panel of fig. 9, the main contribution to the S1 energy reduction
is due to NH twist angle changing from near planarity (0◦) to orthogonality (90◦). Near
the minimum of the S1 energy curve, where the nonadiabatic coupling is strongest, a
nonadiabatic transition to the S0 state occurs leading to rapid widening of the energy gap
accompanied by a change in the twist angle from around 90◦ to near 180◦. It is unclear
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Figure 10. Top: Time evolution of S0 and S1 energies following photoexcitation in the case of a R → R event.
The dashed line indicates the moment of the nonadiabatic transition to the ground state, which occurs shortly
after the two states have actually crossed. Middle: Corresponding time evolution of the HNC and the HN twist
angles. The HN bond is seen to orthogonalise initially and later flip back to 0◦. Bottom: Corresponding adiabatic
state populations, |di(t)|2 , of the orthogonal, auxiliary basis set (see eqn (66)).

what the role of the HNC angle is for this specific trajectory. From static calculations
we know that small HNC angles energetically favour the S1 state over the S0 state at
orthogonal twist geometry50, 53, the surface crossing being located at an HNC angle of
roughly 106.5◦. This observation is nicely confirmed by the fact that the energy gap in
fig. 9 is minimal at simulation times when the molecule has approximately that geometry.
As one would expect these locations also coincide with the peaks in the adiabatic state
population curves, |di(t)|2, shown in the bottom panel of fig. 9. After the surface switch
has occured the state occupations may be regarded as constant if one averages over high
frequency oscillations. On the other hand, this noise can cause classically forbidden
transitions resulting in discrepancy between the actual state distribution of trajectories and
the semiclassical populations, |di(t)|2.

In the case of the R → R event examined in fig 10, the situation is very similar with
the exception of the fact that the nonadiabatic surface hop occurs one HNC vibrational
period later. Furthermore, the NH twist angle relaxes back to near 0◦ after initial
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orthogonalisation signifying an unsuccessful photoisomerisation attempt. It seems to be
a common feature of all trajectories that after a surface hop has taken place, the state
population, |d1(t)|2, of the S1 state continues to fall sharply excluding the possibility of a
transition back into the upper state according to eqn (43). By the time the S1 occupation
begins to increase again, the energy gap has grown significantly making a transition
extremely unlikely before the systems leaves the classically accessible region.

It is possible, in principle, to determine the quantum yield of photoisomerisation by
averaging over an ensemble of surface hopping trajectories. Since this would be beyond
the scope of this article, we can only state here our non-converged result of 70 %.
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