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Static and Time-Dependent Many-Body Effects via
Density-Functional Theory

Heiko Appel and Eberhard K. U. Gross

Institut für Theoretische Physik, Freie Universität Berlin
Arnimallee 14, 14195 Berlin, Germany

E-mail: {appel, hardy}@physik.fu-berlin.de

After introducing the basic concepts of static and time-dependent density-functional theory we
focus on numerical algorithms for the propagation of the time-dependent Kohn-Sham equa-
tions. Two different methods, based on modifications of the Crank-Nicholson and the split-
operator propagation schemes, respectively, are presented. We discuss some strategies for the
parallelization of the Kohn-Sham propagation using state-of-the-art message-passing protocols.
Finally, some results for atoms in strong laser fields are presented.

1 Introduction

The non-relativistic treatment of quantum-mechanical problems in solid-state physics or
quantum chemistry requires, in principle, the solution of the full many-body Schrödinger
equation for the combined system of electrons and nuclei

(

Ĥ −E
)

|Ψ〉 = 0 . (1)

Here the Hamiltonian is given by

Ĥ = T̂n + Ŵnn + V̂ext,n + T̂e + Ŵee + V̂ext,e + Ŵen, (2)

where T̂n, T̂e denote the kinetic-energy operators of the nuclei and electrons, respectively,
Ŵnn, Ŵee and Ŵen contain the interparticle Coulomb interactions, and V̂ext,n, V̂ext,e re-
present the external potentials acting on the system. Using the solution of eq. (1) all
observables of interest are readily evaluated from the corresponding expectation value

A = 〈 Ψ | Â | Ψ 〉. (3)

While eq. (1) provides the correct starting point for the quantum mechanical treatment of
any many-body system, its numerical solution becomes exceedingly difficult with increas-
ing particle number. To see how this comes about even for relatively small finite systems
consider, as an example, the nitrogen atom. Suppose that we want to store the values of
the electronic ground-state wave function in a rough table containing only 10 entries for
each Cartesian coordinate of the 7 electrons. This results in 10(7×3) entries for the table.
Furthermore, reserving only one byte of memory per entry the data of the table will require
1011 DVD’s for storage. Here we have assumed an ample capacity of 1010 bytes per DVD.
Turning from finite to extended systems the situation becomes even worse. In the case of
solids with particle numbers of the order of 1023 the task of solving eq. (1) becomes com-
pletely non-feasible. This simple example illustrates that, for sufficiently large systems,
the direct numerical determination of the many-body wave function is neither possible nor
desirable.
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In the last decades density-functional theory (DFT) has become a very popular approach
for the quantum-mechanical treatment of many-particle systems. Instead of using the com-
plicated many-body wave function, traditional DFT deals with the electronic ground-state
density

ρ(r) = N

∫

d3r2

∫

d3r3 · · ·

∫

d3rN |ψ(r, r2, · · · , rN) |2 (4)

as the basic variable. Within the framework of DFT it can be shown that all observables
are functionals of the density only. The next section introduces briefly the basic notions
of static and time-dependent DFT (TDDFT). Having provided the formal background for
the discussion we then turn to numerical aspects of the propagation in section 3. We first
review the well known Crank-Nicholson1, 2 and split-operator spectral method3 and then
introduce the modifications necessary for the propagation of the time-dependent Kohn-
Sham equations. Section 3.3 is devoted to a discussion on the parallelization of the time-
dependent Kohn-Sham equations. Finally, in section 4, we present some results for atoms
in strong laser pulses.

2 Basic Concepts of DFT

2.1 Static Density Functional Theory

Traditional ground-state DFT4, 5 assumes the Born-Oppenheimer approximation, i.e., the
nuclear motion is frozen and the nuclear centers are kept at fixed positions. The Coulomb
interaction between the fixed nuclei and the electrons is described by an external potential v̂
acting on the electrons only. Assuming this framework, the fundamental Hohenberg-Kohn
theorem of density-functional theory can be summarized by the following three statements

(i) The external potential v̂ (usually due to the nuclei) is uniquely determined by the elec-
tronic ground-state density. With the knowledge of v̂ the complete electronic Hamil-
tonian, including the kinetic energy T̂e and the Coulomb repulsion of the electrons
Ŵee, is known

Ĥ = T̂e + Ŵee + v̂ . (5)

A formal solution of the many-body Schrödinger equation can then be used in princi-
ple to evaluate expectation values of any observable of interest. Hence, any observable
of a static many-body system is a functional of its ground-state density.

(ii) Consider now a given system with a given (fixed) external potential v̂0. Then the
total-energy functional

Ev0
[ρ] = 〈ψ[ρ] | T̂e + Ŵee + v̂0 |ψ[ρ] 〉 (6)

obeys the Hohenberg-Kohnvariational principle: The exact ground-state energy of the
interacting electronic system is obtained if and only if the exact ground-state density
ρ0 is inserted in eq. (6). For densities ρ differing from ρ0 the following inequality
holds

E0 = Ev0
[ρ0] < Ev0

[ρ] . (7)
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Therefore, the ground-state energy E0 and density ρ0 can be determined by mini-
mizing the functional Ev0

[ρ]. In practice this can be achieved by solving the Euler
equation

δEv0
[ρ]

δ ρ(r)
= 0 . (8)

(iii) The density dependence of the functional F [ρ]

F [ρ] = 〈ψ[ρ] | T̂e + Ŵee |ψ[ρ] 〉 (9)

is universal, i.e. it is the same for all systems with a fixed particle-particle interaction
Ŵee.

For a proof of these statements the interested reader is referred to the literature4, 6. Since
the statements of the Hohenberg-Kohn theorem are independent of the specific form of the
particle-particle interaction they hold in particular for the special case of noninteracting
particles, where Ŵee = 0. This leads directly to the Kohn-Sham theorem:

Given the ground-state density ρ(r) of an interacting system, the local, i.e., mul-
tiplicative single-particle potential vs[ρ] reproducing ρ(r) as ground-state den-
sity of a non-interacting system is uniquely determined. Hence, ρ(r) can be
calculated from the effective single-particle equations (atomic units are used
throughout)

(

−
∇2

2
+ vs[ρ](r) − εj

)

ϕj(r) = 0, j = 1, .., N , (10)

where the ground-state density ρ is obtained from the Kohn-Sham orbitals

ρ(r) =

N
∑

j=1

|ϕj(r)|
2 . (11)

The Kohn-Sham eqns. (10) together with statement (i) of the Hohenberg-Kohn theorem
provide an efficient practical scheme for the calculation of observables of static interacting-
electron systems. In this way the solution of the full many-body Schrödinger equation can
be circumvented: The Kohn-Sham equations are solved with some approximation for the
functional vs[ρ], the density is calculated from the Kohn-Sham orbitals and finally the
density is inserted in the corresponding functionals for the observables of interest.
Conventionally, the effective single-particle potential is decomposed in the following way

vs[ρ](r) = v0(r) +

∫

ρ(r′)

|r − r′|
d3r′ +

δExc[ρ]

δρ(r)
. (12)

Here v0 is the external potential, the second term describes the classical electrostatic
interaction between the electrons and vxc(r) = δExc[ρ]/δρ(r) contains all exchange-
correlation effects. Viewed historically, the most popular approximation for Exc is the
local-density approximation

Exc[ρ] =

∫

ρ(r) eunif
xc (ρ(r)) d3r . (13)
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Here eunif
xc (ρ) is the exchange-correlation energy per particle of the uniform electron gas

with density ρ. The solution of the Kohn-Sham equations (10) involves a self-consistency
cycle. From an initial guess for the orbitals, the density is calculated using (11). Inserting
the density in (12) yields an approximation for the effective single-particle potential. In the
next step the Kohn-Sham equations (10) are solved, resulting in a new set of orbitals. This
cycle is repeated until self-consistency is reached.
Practical implementations of the Kohn-Sham equations follow different strategies. In quan-
tum chemistry the Kohn-Sham orbitals are usually expanded in a basis set. This turns the
effective single-particle equation into a simple eigenvalue problem. Typical choices for
basis functions are Gaussian-type orbitals (GTO’s) as implemented in GAUSSIAN 987 or
Slater-type orbitals (STO’s) as implemented in the Amsterdam density-functional program
ADF8. For infinite periodic solids, the Kohn-Sham orbitals are Bloch functions. The latter
can be expanded in plane waves (usually combined with a pseudopotential treatment of the
core regions) as, e.g., in the FHI9 code, in linearized augmented plane-waves (LAPW’s)
as in the WIEN2k10 or the FLEUR11 codes, in linear muffin-tin orbitals (LMTO’s)12 or in
local orbitals as in the SIESTA13 code.

2.2 Time-Dependent Density-Functional Theory

To describe interacting many-electron systems in time-dependent external fields an exten-
sion of the traditional ground-state theory is required. Recall that the ground-state the-
ory establishes a one-to-one correspondence between ground-state densities and external
potentials. In a time-dependent theory the question arises if there is also a one-to-one
correspondence between time-dependent densities and time-dependent external potentials.
The answer is positive and given by the Runge-Gross theorem14, 15, the time-dependent
analogue of the Hohenberg-Kohn theorem:

Two densities ρ(r, t) and ρ′(r, t) evolving from a common initial state
Ψ0 = Ψ(t0) under the influence of two potentials v(r, t) and v′(r, t) are always
different provided that the potentials differ by more than a purely time-dependent
function

v(r, t) 6= v′(r, t) + c(t). (14)

The proof of this theorem assumes that the potentials v(r, t) and v′(r, t) are both Taylor
expandable in the time coordinate around the initial time t0.
Similar to the static case the one-to-one correspondence between time-dependent densi-
ties and time-dependent potentials can be established for arbitrary particle-particle inter-
action, in particular for a vanishing interaction. This ensures the uniqueness of a density-
dependent single-particle potential vs(r, t) which reproduces a given time-dependent den-
sity of an interacting system of interest. The time-dependent single-particle equations con-
taining the effective potential vs(r, t) are called the time-dependent Kohn-Sham (TDKS)
equations

−i∂t ϕj(r, t) =

(

−
∇2

2
+ vs(r, t)

)

ϕj(r), j = 1, .., N . (15)
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Again the density is obtained from the orbitals

ρ(r, t) =

N
∑

j=1

|ϕj(r, t)|
2 . (16)

It is customary to partition the effective time-dependent potential as

vs[ρ](r, t) = v0(r, t) +

∫

ρ(r′, t)

|r − r′|
d3r′ + vxc[ρ](r, t) . (17)

The second term on the right is the time-dependent Hartree potential and vxc[ρ](r, t) is the
time-dependent exchange-correlation potential. The simplest approximation possible for
vxc[ρ](r, t) is the adiabatic local-density approximation

vxc[ρ](r, t)
ALDA =

d

dn
eunif

xc (ρ)

∣

∣

∣

∣

ρ=ρ(r,t)

. (18)

From the way of its construction it can be seen directly that this approximation is local,
both in space and time. More sophisticated approximations such as the optimized-effective
potential have been suggested16 which are non-local in space and time.

3 Propagation Methods for the TDKS Equations

Mathematically the solution of the time-dependent Kohn-Sham equations is an initial value
problem. A given set of initial orbitals ϕj(t0) is propagated forward in time. No self-
consistent iterations are required as in the static case. In terms of the time-evolution oper-
ator the orbitals at t > t0 can be expressed as

ϕj(t) = Û(t, t0)ϕj(t0) j = 1, .., N , (19)

where

Û(t, t0) = T̂ exp

(

−i

∫ t

t0

ĤKS(τ)dτ

)

. (20)

Note that due to the Hartree and exchange-correlation contributions the Kohn-Sham Hamil-
tonian is explicitely time-dependent even in the absence of a time-dependent external field.
Because of this explicit dependence we have to keep the time-ordered exponential in the
time-evolution operator.
The numerical task is now to find a discretized form of eq. (19). First of all let us consider
the spatial representation of the orbitals. There are several discretizations possible:

• The values of the orbital are sampled on a 3D uniform Cartesian grid

ϕj(r, t) = ϕj(x, y, z, t)

→ ϕj(xk , yl, zm, tn) , (21)

where

xk = x0 + k∆x, kmin < k < kmax , (22)

yl and zm are treated similarly and

tn = n∆t, n = 0, .., nmax . (23)

This is the most flexible but also the computationally most expensive approach.
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• If the applied external field has certain symmetries, such as a laser field linearly polar-
ized along the z-direction, a representation in cylindrical coordinates can be advanta-
geous. In the case of linearly polarized lasers the angular quantum number m of the
orbitals is preserved so that a possible representation of the orbitals is

ϕj(r, t) = ξ(ρ, z, t) eimφ . (24)

In this case the variables ρ, z and t are discretized.

• Another frequently used approach employs spherical coordinates. Here the orbital is
expanded in spherical harmonics and only the radial functions are treated on a uniform
grid

ϕj(r, t) =

L
∑

l=0

l
∑

m=−l

Rlm(r, t)Y m
l (θ, φ) . (25)

Adaptative grids are also possible, require however a better bookkeeping than uniform
grids.
Having chosen a discretized representation for the orbitals ϕj(t0) we have to approximate
the time-ordered exponential in eq. (20). As a first simplification we drop the time-ordering
over the time step ∆t

ϕj(t+ ∆t) = exp
(

−iĤKS(t+ ∆t/2)∆t
)

ϕj(t), j = 1, .., N . (26)

Although this seems to be an ad hoc approximation it can be shown rigorously17 that the
discretization error introduced by this step is of the same order in ∆t as the error intro-
duced by the propagation schemes considered in this article. Only this fact justifies the
omission of the time-ordering.
In the next two sections we review the Crank-Nicholson and split-operator schemes re-
spectively and show how they have to be modified for the propagation of the Kohn-Sham
equations.

3.1 Crank-Nicholson Propagator

Assuming a time-independent Hamiltonian the Crank-Nicholson (CN) scheme utilizes the
so called Caley approximation to the time-evolution operator

exp
(

−iĤ∆t
)

=
1 − iĤ∆t/2

1 + iĤ∆t/2
+ O(∆t3) . (27)

This approximation is accurate up to second order in ∆t, unconditionally stable and uni-
tary. Inserting (27) in (26) results in an implicit approximation for the unknown orbital at
t+ ∆t. In other words a set of linear equations has to be solved in each time step

[1 + iĤ∆t/2]ϕj(t+ ∆t) = [1 − iĤ∆t/2]ϕj(t) . (28)

So far we have just considered the standard CN propagation. However, in a Kohn-Sham
propagation the Hamiltonian is time-dependent. To account for this we can evaluate the
Hamiltonian midway between two time steps as in (26)

[1 + iĤKS(t+ ∆t/2)∆t/2]ϕj(t+ ∆t) = [1 − iĤKS(t+ ∆t/2)∆t/2]ϕj(t) . (29)
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Now a further complication appears18. The Kohn-Sham Hamiltonian ĤKS(t + ∆t/2)
depends via the Hartree and exchange-correlation potentials on the still unknown solutions
ϕj(t+ ∆t/2). To obtain an approximation for the Hamiltonian ĤKS(t+ ∆t/2) we have
to propagate with a two-step predictor-corrector approach. In the predictor step we use in
(29) instead of ĤKS(t+ ∆t/2) the retarded Hamiltonian ĤKS(t)

[1 + iĤKS(t)∆t/2]ϕ′

j(t+ ∆t) = [1 − iĤKS(t)∆t/2]ϕj(t) . (30)

From the solution ϕ′

j(t + ∆t) the corresponding Hartree and exchange-correlation poten-
tials are constructed, leading to the Hamiltonian Ĥ ′

KS(t + ∆t). In the corrector step we
use the average

ĤKS(t+ ∆t/2) =
Ĥ ′

KS(t+ ∆t) + ĤKS(t)

2
(31)

as approximation to ĤKS(t + ∆t/2). The numerical effort introduced by this predictor-
corrector scheme is doubled compared to the ordinary CN propagation. Two linear sys-
tems have to be solved in each time step. This extra effort cannot be avoided since the
approximation ĤKS(t + ∆t/2) ≈ ĤKS(t) would cause a continuous decrease in en-
ergy due to the use of a somewhat retarded potential. In contrast the propagation with
ĤKS(t + ∆t/2) ≈ Ĥ ′

KS(t + ∆t) causes an increase in energy due to the use of an ad-
vanced potential.

3.2 Split-Operator Scheme

The split-operator (SPO) technique exploits the fact that the total Hamiltonian can be split
into two parts such that each part is diagonal in either configuration or momentum space.
In general one finds for two non-commuting operators Â and B̂ the following splittings

exp
(

(Â+ B̂)λ
)

= exp
(

Âλ
)

exp
(

B̂λ
)

+ O(λ2) (32)

exp
(

(Â+ B̂)λ
)

= exp

(

Â
λ

2

)

exp
(

B̂λ
)

exp

(

Â
λ

2

)

+ O(λ3) . (33)

This suggests the following approximations for the short-time propagator

exp
(

−iĤ∆t
)

= exp
(

−iV̂∆t
)

exp
(

−iT̂∆t
)

+ O(∆t2) (34)

and

exp
(

−iĤ∆t
)

= exp

(

−iT̂
∆t

2

)

exp
(

−iV̂∆t
)

exp

(

−iT̂
∆t

2

)

+ O(∆t3) . (35)

The propagation is now performed with the following steps

ϕ(r, t)
FT
−→ ϕ(q, t)

exp (−iT̂ ∆t

2 )
−→ ϕ′(q, t)

FT
−→ ϕ′(r, t)

exp (−iV̂ ∆t)
−→ ϕ′′(r, t)

FT
−→ ϕ′′(q, t)

exp (−iT̂ ∆t

2 )
−→ ϕ′′′(q, t)

FT
−→ ϕ(r, t + ∆t) .

By switching between momentum and configuration space each of the exponentials can
be evaluated in its diagonal representation causing only multiplications with phase factors.
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The propagation with the SPO can be efficiently implemented by using Fast-Fourier Trans-
forms. As in the case of the CN the SPO is unconditionally stable and unitary.
Let us now turn to a modification of the SPO scheme which allows for the propagation of
the TDKS equations. Similar as in the last section we face the same problem. The time-
dependent Hamiltonian has to be evaluated midway between two time steps and depends
on the unknown solutions ϕj(t + ∆t/2). There is an elegant way to account for this lack
of information in a SPO propagation. Consider again the short-time propagator

exp

�
−iĤKS(t+

∆t

2
)∆t � = exp

�
−iT̂

∆t

2
� exp

�
−iV̂s(t+

∆t

2
)∆t � exp

�
−iT̂

∆t

2
�� ��� �

1.

+O(∆t3) (36)

and think of the exponential (1.) in (36) as the first part of the low order splitting in (34)
for half the time step

exp

�
−iĤKS(t+

∆t

4
)
∆t

2
� = exp

�
−iV̂s(t+

∆t

4
)
∆t

2
�� ��� �

2.

exp

�
−iT̂

∆t

2
�� ��� �

1.

+O(∆t2) . (37)

Since we only need the orbital densities to construct the Hartree and exchange-correlation
potentials we have to evaluate the absolute value squared of the orbitals in configuration
space

ϕj(r, t)
FT
−→ ϕj(q, t)

exp (−iT̂ ∆t

2 )
−→ ϕ

′

j(q, t)
FT
−→ ϕ

′

j(r, t)
exp (−iV̂s

∆t

2 )
−→ ϕ

′′

j (r, t) −→ |ϕ′′

j (r, t)|2

ϕ
′

j(r, t) −→ |ϕ′

j(r, t)|
2 = |ϕ′′

j (r, t)|2 .

Because the second exponential in (37) constitutes just a phase in configuration space
it cancels when evaluating the absolute value. Therefore, it is sufficient to apply only
the first exponential in (37). Also note that due to this cancellation the time argument of
the Hamiltonian in (37) has no effect. Going back to (36) this is exactly what we have
reached after the evaluation of the first exponential. Thus, we can construct a low-order
approximation to ϕj(t + ∆t/2) or similarly to V̂ (t + ∆t/2) by calculating the orbital
densities after the first exponential in (36). This approximation is then used in the second
exponential in (36) for the unknown V̂ (t+ ∆t/2).
Although we are reducing the order of the propagation error from O(∆t3) to O(∆t2)
there is no extra effort required to obtain the Kohn-Sham potential midway between two
time steps. The operator splitting generates the required information on the fly. This is
in contrast to the adapted CN scheme of the last section where we have to double the
numerical effort to be consistent in the time step. As a drawback of the SPO approach
remains only the reduced order in the propagation error.

3.3 Strategies for Parallelization

One can think of several starting points for a parallelization of the Kohn-Sham time prop-
agation using standard message-passing protocols such as the MPI standard. Depending
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on the time-evolution algorithm this could be parallel FFT’s in the case of the SPO or a
distribution of the numerical grid over the available nodes in the case of a CN propagation.
However, in both cases the implementation has to be done with great care. Grid bound-
aries have to be communicated between the nodes and a high information traffic is caused
automatically. In contrast, the simplest and at the same time most efficient parallelization
can be achieved by a distribution of the orbitals. Each node is assigned a fixed number of
orbitals. The node is then computing the time evolution of the orbitals and is evaluating
the partial orbital densities. In each time step the total density has to be evaluated only
once from the partial densities and sent back to the nodes in order to calculate the effec-
tive single-particle potential. This approach reduces the communication traffic between the
nodes to a minimum. Running such a parallelization on a cluster of modern workstations
or PC’s elapses on the order of 5 min per node for a time step of a single orbital. The traffic
caused by the evaluation and forwarding of the total density requires on the other hand only
a fraction of a second. Considering this ratio of traffic and computational load it is already
sufficient to connect the nodes with a cheap 100 Mbit LAN. A further argument for this
approach is the simplicity of the implementation. It took only 12 MPI commands in a code
with more than 10.000 lines. This simplifies the debugging of such a code considerably.

4 Examples for the Solution of the TDKS Equations

For a given initial state the Runge-Gross theorem ensures a one-to-one mapping between
time-dependent densities and time-dependent potentials. Hence, any observable of a time-
dependent electronic system is a functional of the time-dependent density and the corre-
sponding initial state. For most observables it is difficult to write down explicit approxi-
mations for the functional dependence on the time-dependent density and the initial state.
However, in some cases the exact functional is known.
From a practical point of view any calculation within TDDFT is performed in two succes-
sive steps

(i) First the TDKS equations are solved for a given initial state and the time-dependent
density is evaluated from the orbitals via eq (16).

(ii) Using the time-dependent density from step (i) and the initial state, the functional for
the observable is evaluated.

Usually both steps involve approximations. To solve the TDKS equations some approxi-
mation for the exchange-correlation part of the effective single-particle potential has to be
employed. Unless the exact functional for the observable is known, the second approxima-
tion enters in step (ii), where some approximate functional form for the density dependence
of the observable of interest has to be assumed.
To illustrate the steps we review in the following sections two prototypical examples. First
we discuss a density-functional treatment of high-harmonic generation (HHG). This con-
stitutes a case where the exact functional is known, i.e. only approximations to vxc[ρ](r, t)
are required. The second example is the double-ionization of the Helium atom. In this
case it is difficult to find explicit density functionals for the ion yield of singly and doubly
ionized Helium, so that approximations in both steps (i),(ii) are involved.
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4.1 High-Harmonic Generation

Even 35 years after the discovery of third-harmonic generation in a rare gas medium by
New and Ward19 the subject of high-harmonic generation is still a field of active research.
The interest in HHG originates mainly from the perspectives for possible applications. The
process is considered as a possible candidate for the generation of coherent VUV or soft
X-ray pulsed sources.
For a density-functional treatment of HHG we follow the two-step procedure described
above. Taking the optimized effective potential16 as approximation for vxc[ρ](r, t) the
TDKS equations are solved for the Helium atom in a strong laser pulse

i
∂

∂t
ψ(r, t) =

�
−
∇2

2
−

2

r
+ 2 � |ψ(r′, t)|2

|r − r′|
d
3
r + v

OEP
xc (r, t) +E0f(t)z sin(ω0t) � ψ(r, t).

(38)

Here the laser field is treated in dipole approximation, has a frequency ω0, a peak intensity
E0 and is taken to be linearly polarized in z-direction. The envelope f(t) of the laser pulse
describes a linear ramp over the first three cycles and is then held constant for the following
15 cycles.
In the second step of the calculation we have to evaluate the functionals for the observables
of interest. In the case of harmonic spectra this can be done without any further approxi-
mation. Considering only the response of a single atom and neglecting propagation effects
of the generated radiation in the medium, it can be shown20 that the Fourier transform of
the induced dipole moment

d(t) =

∫

z ρ(r, t) d3r (39)

is proportional to the experimentally observed harmonic distribution. Thus, the density
functional for the harmonic spectra can be written down exactly

S[ρ](ω) = |d(ω)|2 =

∣

∣

∣

∣

∫

exp(iωt)

(
∫

z ρ(r, t)d3r

)

dt

∣

∣

∣

∣

2

. (40)

Note that the functional for harmonic spectra depends only on the density. Since the calcu-
lation is started in the ground state, the dependence on the initial state drops out. For this
particular choice of initial state the initial Kohn-Sham orbitals can be obtained uniquely
from the ground-state density by virtue of the traditional static Hohenberg-Kohn theorem.
Together with the Kohn-Sham equation in (38) the functional S[ρ](ω) in (40) provides an
efficient practical scheme for the systematic exploration of harmonic spectra. Repeating
the computational procedure for different laser parametersω0 andE0 or different envelopes
f(t) optimal conditions for the generation of high harmonics can be found. For example,
by running different simulations, it turned out that two-color laser fields

E(t) = f(t)[E0 sin(ω0t) +E1 sin(ω1t+ δ)] (41)
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increase the efficiency of high-harmonic generation considerably. Typically the field
strengths E0 and E1 are chosen to be of the same order and ω1 is taken to be an inte-
ger multiple of ω0. Possible phase shifts between the two fields are taken into account by
the constant δ. In Fig. 1 we show the harmonic spectra for intensitiesE0 = E1 = 0.01 a.u.,
where the laser frequency ω1 was adjusted to the second or third harmonic of the funda-
mental frequency ω0 = 0.0740 a.u. which corresponds to a wavelength of λ = 616 nm.
The calculation shows that the harmonics from a two-color laser pulse can be more intense
up to two orders of magnitude compared to a single color pulse21. Such results may be
used to guide the experimental work in the search for coherent soft X-ray sources.

ω1 = 3ω0

ω1 = 2ω0

ω0 only

Harmonic order

|d
(ω

)|
2

4035302520151050
10−11

10−9

10−7
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Figure 1. Harmonic spectra of helium calculated for one-color and two-color laser pulses with a total intensity of
I = 7.0 · 10

14 W/cm2 respectively. The frequency of the second color has been adjusted to the second or third
harmonic of the fundamental frequency ω0 = 0.0740 a.u. (λ = 616 nm).

4.2 Helium Double Ionization

When atoms or molecules are exposed to strong laser pulses there are three basic routes to
analyze the laser-matter interaction. The first way is the observation of emitted harmonic
light as discussed in the last section. The second route is to measure the kinetic energy and
the angular distribution of the ionized electrons (photoelectrons) leaving the laser focus
and the last possibility is to count the produced ions or to measure their momentum distri-
bution. In this section we discuss a density-functional calculation of ion-yields for singly
and doubly ionized atoms or molecules.

265



Considering laser pulses with a relatively long rise time it is well known22 that the ion-
ization dynamics is dominated by a “sequential” emission of electrons. With growing
intensity the ionization yield of the singly ionized species grows according to the power
law of the lowest non-vanishing order of perturbation theory. Only when a depletion of
the neutral species starts to arise, an appreciable yield of doubly-ionized species can be
detected. These properties of the ion yields can be described successfully with the single-
active electron approximation23, 24: a stepwise scenario is assumed where the ionization
occurs by a sequential emission of the electrons. The situation is different in the regime of
ultra-short laser pulses. Experimentally it has been demonstrated in high-precision mea-
surements25 that double-ionization yields are up to six orders of magnitude larger than the
rates expected in a sequential process. This is a clear manifestation of electron-electron
correlation. Single-active electron calculations, by construction, will fail to describe the
correlations involved in the ionization process. Time-dependent density-functional theory
on the other hand is in principle capable to give the exact ionization yields, provided the
exact functionals in the two-step procedure from above are known. For step (i) the familiar
ALDA or TDOEP functionals can be used, so that only approximations for the ion-yields
of singly P+1 and doubly P+2 ionized species have to be found. Using a geometrical
concept that relies on the spatial partitioning of the wave function it is possible26, 27 to find
approximations for P+1 and P+2 in terms of the time-dependent density

P [ρ]+1(t) = �
A

d
3
r ρ(r, t) − �

A

d
3
r1 �

A

d
3
r2 ρ(r1, t) ρ(r2, t) g[ρ](r1, r2, t)

P [ρ]+2(t) = 1 − �
A

d
3
r ρ(r, t) +

1

2
�

A

d
3
r1 �

A

d
3
r2 ρ(r1, t) ρ(r2, t) g[ρ](r1, r2, t). (42)

Here it was assumed that the Kohn-Sham propagation starts in the ground-state so that the
dependence on the initial state drops out, similar to the case of harmonic spectra. In eq.
(42), g[ρ] denotes the pair-correlation function. This quantity is a density functional which,
in practice, needs to be approximated. Following the same procedure as in section 4.1, the
TDKS equation (38) is solved for the Helium atom in a strong laser pulse. From the re-
sulting time-dependent density the functionals (42) are evaluated. Although this scheme
provides a considerable improvement over sequential ionization yields it shows still a dis-
crepancy of about two orders of magnitude when the results of the calculation are compared
directly to experiment26.
To test the relative importance of the two approximations involved in steps (i) and (ii),
Lappas and van Leeuwen28 have performed numerically exact time-propagations for a 1D
soft core model of the Helium atom. Using the correlated Helium wave function, obtained
in their simulation, exact reference values have been obtained for the ionization yields P +1

and P+2 of this model system. Since it is also possible to obtain the exact time-dependent
density from the correlated Helium wave function, approximations involved in the first step
(i) of the computational procedure can be circumvented. By evaluating the functionals for
P+1 and P+2 (42) with the exact density the resulting approximate yields can be com-
pared with the exact reference values and the performance of the functionals P+1 and P+2

can be tested directly. Lappas and van Leeuwen find that, although the double-ionization
yields obtained in this way still show discrepancies, they reproduce the well known knee
structure25, 29 known from experiment. Since the knee cannot be obtained from the same
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functional P+2 when approximate densities from TDOEP calculations are inserted, the
approximations employed for the effective single particle potential vs[ρ] appear to have a
bigger impact on the results.
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