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In 2d solids of fermion particles, such as helium 3 or electrons, the low temperature physics is
governed by spin exchanges, according to the Thouless theory. We present Path Integral Monte
Carlo (PIMC) calculation of ring exchange energies on “clean” 2d crystals of both helium 3
and electrons. We see a remarkable similarity of the results in these two “opposite” systems.
They are both ferromagnetic in the semi-classical limit (strong coupling) antiferro magnetic
near melting transition where the relative exchange energies become equivalent.

1 Introduction

In spin-less 2d solids, the low temperature physics is governed by the low excitations, the
phonons. They provide a specific heat in (T/θD)2 in two dimensions, where the Debye
temperature θD measures typical kinetic energy of a particle in its local potential. When
T/θD � 1, we can consider particles at zero temperature. Helium 3 atoms as well as
electrons have a very large zero point motion. They eventually exchange their position
resulting in a spin exchange that will modify the thermodynamics. Note here that helium
3 has a spin 1/2 nuclear spin whereas its two electrons are in a total spin 0 state. In the
following we will consider helium 3 as atoms with a spin 1/2 interacting through a pair
potential, say the Aziz potential. In the clean 2d Wigner crystal, electrons interact through
the bare Coulomb potential.

The simplest effective model describing spin exchanges is the Heisenberg model:

Hspin =
∑

<i,j>

JPij =
∑

<i,j>

(2JSi.Sj −
1

2
). (1)

where J is the energy associated to the spin permutation P , and the last equality holds
for spin 1/2. Assuming that J � θD, we look at the leading contribution of Hspin to the
specific heat at large temperature (meaning J � T � θD) which behaves as (J/T )2. The
crossover between a 1/T 2 and a T 2 law has been well established in specific heat mea-
surements of helium 3 adsorbed on graphite1(see Fig. 1). We see here a clear difference in
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Figure 1. Specific heat measured by D. Greywall on 2d helium 3 adsorbed on graphite. One can see clearly the
crossover between the spin contribution in 1/T 2 and the phonon contribution in T 2.

energy scale between the degree of freedom associated to the spins and those associated to
the spatial coordinates. In the intermediate regime J � T � θD, particles can be con-
sidered both at zero temperature for their spatial degree of freedom, moving in their zero
point motion, and without spin as they do not contribute anymore to the thermodynamics.
In this intermediate regime we use Path Integral Monte Carlo on a spinless 2d solid system
to evaluate ring exchange energies using a method first introduced by D. Ceperley for the
three dimension solid of helium 32.

The full understanding of such a fermionic problem assume the Thouless theory can
be applied3. In this approach, one consider the spin-less Hamiltonian in spatial coordi-
nates. At low temperature, each particle oscillate with a zero point motion around a lattice
position Z. If the particles are distinguishable, there are N ! possibilities of labeling the
particles corresponding to N ! different points in the 2N dimensional phase space. If the
barriers between those points would have been infinite the ground state would be N ! de-
generate. Finite barriers allow tunneling effects between different points Z and PZ which
differ in a permutation P of their coordinates (labeling). There is an energy JP associated
to such tunnel effect. The main point is that such an event is very rare (JP � θD) so that
different permutations never occur simultaneously. Thus one can study each permutation
separately. With PIMC, one evaluate the energy of the tunnel effect for various permuta-
tions. We find that usually not only the two body exchange is important but also the 3, 4,
5 and 6 exchanges have large contributions, specially near melting. In the semi-classical
limit, WKB calculations provide useful informations13, 12, specially for the Wigner crys-
tal14.

The various ring exchange energies are accounted in the Multi spin Exchange (MSE)
Heisenberg model:

HMSE =
∑

P

JPP. (2)

This Hamiltonian lift the degeneracy of the spin-less Hamiltonian ground state. The eigen-
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spectrum of this Hamiltonian has 2N states that are the fermionic available states among
the previousN ! states. The fermion problem is thus pushed at the level of the MSE model.
Even if solving the MSE Hamiltonian is far from trivial, this is a simpler problem. Thus
we solve this fermion problem in two steps. In the first one, PIMC is used on a spin-less
solid to evaluate the exchange energies. Then those energies are introduced in the effective
MSE Hamiltonian. Finally different techniques may be used to get informations on such
Hamiltonian : exact diagonalizations4, high temperature series expansion5, spin wave or
Schwinger bosons analysis6, Quantum Monte Carlo10, . . . .

The method to calculate exchange energy using PIMC has been already explained in
details8, 9. Results on 2d helium 3 on graphite are in Ref.9. The helium-graphite poten-
tial has a very deep well which leads to up to two solid layers. The helium-helium pair-
potential interaction is short range and has a strong repulsive part and each layer solidifies
on a triangular lattice. The density of each layer can be tuned by changing the total amount
of helium in the system. Helium is the only liquid at very low temperature and the graphite
can be made to have very flat surfaces of a few hundred angstrom wide. Therefore, this is
a very “clean” system where comparisons between experiments and theories should agree.
The semi-classical limit is at high density and the melting occur at density around 6 nm−2.
Results on the Wigner crystal can be found in Ref.11. The Coulomb interaction is smooth
but long range. Therefore, the semi-classical limit (strong coupling) is at low density. The
2d solid is also a triangular lattice. Such system can be found at the surface of helium15 or
at the interface of semi-conductors16. Informations on the phase diagram of the resulting
MSE model has been obtained from exact diagonalizations4.

In the next section we recall the basic idea of how exchange energies can be calculated
by PIMC. In the following section we introduce a reaction coordinate that map the problem
on a one-dimensional system. In section 4, we study in more detail a double well problem.

2 PIMC Method

When the temperature is lowered, the crystal of electron attains its ground state and the
low energy phonons are frozen. Each electron still has a zero point motion with a sub-
stantial kinetic energy. When one continues to decrease the temperature, electrons start to
exchange their positions by tunneling, resulting in a spin exchange.

Because exchanges are very rare, each exchange can be studied independently. Sup-
pose we label the particles. There are N ! such labeling. Starting with a given number-
ing, one chooses a given permutation P . In the phase space, we denote by Z the po-
sition of the original numbering and PZ the position of the permuted system. We are
left here with a two well problem in a multi dimensional space. In this two well sys-
tem the ground state ψ0 of energy E0 is symmetrical and the first excited state ψ1 of
energy E1 is anti symmetrical. Other states have much higher energies. The diagonal
density matrix element< Z| exp(−βH)|Z > and the off-diagonal density matrix element
< Z| exp(−βH)|PZ > can be expanded as :

< Z| exp(−βH)|Z > = ψ2
0(Z)e−βE0 + ψ2

1(Z)e−βE1 + . . . (3)
< Z| exp(−βH)|PZ > = ψ0(Z)ψ0(PZ)e−βE0 + ψ1(Z)ψ1(PZ)e−βE1 + . . . (4)

= ψ2
0(Z)e−βE0 − ψ2

1(Z)e−βE1 + . . . (5)
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Figure 2. 3d plot of the one body density probability during exchanging paths for the Wigner crystal at rs = 40,
each data are represented from the side and from the top. The top 8 figures show 2, 3, 4 and 5 body exchanges,
while the bottom 8 figures show the various 6 body exchanges. The “cones” represent the non exchanging
particles. Notice that the center of mass of first neighbors of the exchanging particles are displaced from lattice
position and their sizes are shrunken, especially in the 2 body exchange case. Note also the low probability
density between electrons in the 6 body exchanges of the last row, indicating that those exchanges will be less
probable.

where we have used the symmetry properties of the first two states. The ratio of these two
density matrix elements is then:

FP (β) =
< Z| exp(−βH)|PZ >

< Z| exp(−βH)|Z >
= tanh(JP (β − β0)), (6)
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where JP is the exchange frequency and β0 = ln[ψ1(Z)/ψ0(Z)]. Because JPβ << 1,
one linearizes the previous equation and the slope of FP (β) gives the exchange energy.
In terms of path integrals, one interprets FP (β) as the free energy necessary to make an
exchange beginning with one arrangement of particles to lattice sites Z and ending on a
permuted arrangement PZ. To evaluate FP (β), we use the method introduced by Bennett
to calculate free energy differences of 2 chemical species A and B. The idea is to try to
transform A in B and to calculate only the probability of success. Bennett7 proposed an
optimized scheme where one does 2 runs. The first one is an equilibrium run of A where
the probability of finding B is calculated. The second run is the reverse. Here run A
will be the non permuting system and run B will be the permuted one. In A, we evaluate
the probability of successful exchanges P and in B the probability of successful identity.
The energy of each type of permutation is evaluated in an independent run. ( More clever
scheme can be certainly tried. More details can be found in refs.8, 2, 9, 11, specially on the
optimized Bennett’s method in ref.9.

Fig. 2 shows the probability of presence of particle in the xy plane during exchanging
paths. The first neighbors of exchanging particles must move away in order to free space to
exchange paths (in particular, see the 2 body exchange). In this pictures are represented the
most important exchanges. Larger cycles as well as exchanges including second neighbor
will have significantly smaller contributions.

3 Reaction Coordinate

As seen in Fig. 2, the exchanging particles are mostly localized around there lattice sites.
During exchanges, only a small part of the path is involved while the main part of the
path stays around Z or PZ. The part of the path that does the exchange uses a “small”
amount of imaginary time β0. Such process is called an instanton. The instanton occurs
at any time between 0 and β. In the WKB calculations, where β goes to infinity, one has
to remove first this degeneracy. In PIMC calculations, we must also find this degeneracy.
We verify this property by calculating the exchange energy at the various imaginary time t.
But, because the beads at times 0 and β are kept fixed in PIMC, there is some effect when
the instanton touch the time 0 or β. For β > β0, we find eventually a plateau. At large β, it
can take a huge amount of CPU before obtaining a nice plateau. It is indeed hard to move
the instanton at different imaginary times.

In order to get insight in this process, we define a reaction coordinate that help to map
this multi dimensional problem onto a one dimensional one. A reaction coordinate allows
to determine which part of the path is close to Z or PZ or exchanging :

z(t) =
(R(t) − Z).(PZ − Z)

|PZ − Z|2 (7)

For z(t) close to 0 (resp. 1), the path is close to Z (resp. PZ). The figure 3-a shows
z(t) for the paths of run B. The exchanges take place at all time 0 < t < β, but most
of the time z(t) is around 0 or 1. A crossing time tc is defined by z(tc) = 1/2. In figure
3-b are represented the same paths as functions of t − tc. We see that the exchanges take
roughly the same time. Because the exchange is localized in imaginary time, they are
called instantons. Fitting these curves with tanh(2t/β0), one defines the time β0 needed
for the path to go from Z to PZ.
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Figure 3. Reaction coordinate with respect to the time obtained in the B run. Only a few paths are used. top :
row data where we see that exchange time arises at all possible time between 0 and β. middle : each path is now
centered at the crossing time tc. In bold solid line is the fit tanh(2t/β0). bottom : probability of finding a value
of z for these paths. The symmetry is due to the low number of paths used here.

The reaction coordinate can be used to map the 3N problem to a one dimensional
one. First we build the probability distribution P (z) from the value of z(t), (see fig. 3-
c). We define φ0(z) =

√

P (z), where φ0 is ground state of the Schrodinger equation
− 1

φ0

d2φ0

dz2 = E0 −U(z). The pseudo potential U(z) is then fully determined assuming the
ground state energy isE0 = 0. The last step is to calculate the anti-symmetric states of this
potential. The exchange energy (as well as the potential) is determined to a multiplicative
constant λ which represent an effective mass associated with this reaction coordinate. The
comparison of this mapping with the direct method fixes this mass λ.

4 A One Dimensional Toy Model: A Particle in a Symmetrical
Double Well

As an example suppose, we have a single particle in a symmetrical double well potential.
The Hamiltonian reads : H = −λ∇2 + V , where V is the potential shown in Fig. 4. The
ground state φ0 of energy E0 is symmetric and the first excited state φ1 of energy E1 is
anti-symmetric. A particle localized in the left well is described by φL = 1√

(2)
(φ0 + φ1)

and in the right well by φR = 1√
(2)

(φ0 − φ1). Such a localized particle will oscillate

between the left and right wells with a period h/(E1 − E0). The time associated with the
motion of the particle inside one of the wells is h/K where K is the kinetic energy of the
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Figure 4. double well potential model. The ground state is a symmetrical function, whereas the first excited state,
if it exists is antisymmetrical.

ground state. Let us suppose that (E1 − E0) � K . This means that the particle has a
large number of zero-point vibrations in the left well before tunneling into the right well.

More generally, any permutation P may be view as a “particle” in two wells. The
particle is the N -body system and the two wells represent the system around Z and PZ.
The system of particles stay in the well around Z and eventually jump into the well PZ.

In order to understand how the exchange energies varies, we study the effects of the
height V , the width 2a and separation 2b of the wells on the energy difference between
the (symmetric) ground state and the first (anti-symmetric) excited state (see fig.4). For
simplicity, we assume periodic boundary conditions.

Because of the periodic conditions and the symmetries of the wave functions, it is
enough to study them in [0, b] (ψ(−x) = ±ψ(x) and ψ(b − x) = ψ(b + x)). The ground
state reads:

ψ0(x) = A cosh(x
√

(V −E0)/λ) x ∈ [0, b− a] (8)

ψ0(x) = B cos((x − b)
√

E0/λ) x ∈ [b− a, b] (9)

The coefficients A, B and E are determined by the continuity of the wave function and its
derivative and the normalization condition. For x = b− a we have:

A cosh((b− a)
√

(V −E0)/λ) = B cos(a
√

E0/λ) (10)

A sinh((b− a)
√

(V −E0)/λ)
√

V −E0 = B sin(a
√

E0/λ)
√

E0 (11)

The energy E0 is the solution of the ratio of Eqs.10-11:

tanh((b− a)
√

(V −E0)/λ)
√

V −E0 =
√

E0 tan(a
√

E0/λ) (12)

Note that E0 is also the ground state energy in a single periodic square well. The normal-
ization condition reads:

A2

(

sinh(2(b− a)
√

(V −E0)/λ)
√

(V −E0)/λ
+ 2(b− a)

)

+B2

(

sin(2a
√

E0/λ)
√

E0/λ
+ 2a

)

= 1.

(13)
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The ground state kinetic energy is given by:

K0 =
1

2

√

(V −E0)/λE0 (V a− (V −E0)bX)

(
√

(V −E0)/λa+
√

(1 −X))V +X
√

(V −E0)/λ(bE0 − aV )
, (14)

where X = 1 − tanh2((b − a)
√

(V −E0)/λ). For small X , one finds K0 =
1
2E0a

√

(V −E0)/λ/(a
√

(V −E0)/λ+ 1).
Similarly, the first excited state is defined by :

ψ1(x) = A sinh(x
√

(V −E1)/λx) x ∈ [0, b− a] (15)

ψ1(x) = B cos((x− b)
√

E1/λ) x ∈ [b− a, b+ a] (16)

E1 is solution of :
√
V −E1

tanh((b− a)
√

(V −E1)/λ)
=
√

E1 tan(a
√

E1/λ) (17)

Let us define the splitting energy by E1 = E0 + δ. Inserting this definition in Eq. (17) and
using Eq. (12), we get to the leading contribution in δ:

δ = 8
(V −E0)E0e

−2(b−a)
√

(V−Em)/λ

V (a
√

(V −E0)/λ+ 1)
. (18)

The ratio δ/K0 reads:

δ

K0
= 16

V −E0e
−2(b−a)

√
(V−E0)/λ

V a
√

(V −E0)/λ
. (19)

Fig. 5 shows the variations of these quantities with respect to the potential height V and
the distance 2(b− a) between the wells (V is measured in units of λ/a2.

When V increases to infinity, E0 approaches λ(π/2a)2, K0 goes to E0/2 and
δ ∼ 8E0e

−2(b−a)
√

V/λ−ln(a
√

V/λ). The main dependence in log(δ) is −2(b − a)
√

V/λ,
where 2(b − a) represents the width of the barrier. The formula of Eq. (18) is accurate
for (b − a)V/λ > 1. The exchange energy is thus exponentially small with the distance
between the wells and with the square root of the potential height.

One can have a large potential barrier, when V is much larger then Em. But one can
also consider a large kinetic barrier when V/Em is or order of unity but the width b− a of
the barrier is large.

5 Results and Magnetic Phase Diagram

At strong coupling (high density for helium and low density for electrons), semi-classical
(WKB) calculations are accurate. For electrons, the exchange energies are given by12, 14:

JP = AP b
1/2
P r−5/4

s e−bP r1/2

s . (20)

where bP r
1/2
s is the minimum value of the action integral along the exchanging path. This

suggests to to plot Jp versus r1/2
s as it is shown in Fig. 6. At large rs, the 3-body exchange

is dominant leading to a ferro magnetic ground state.
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Figure 5. Top : Energies E0 and E1 versus V in units of λ/a2 for (b − a)/a = 1/2, 125. Bottom : δ =
(E1 − E0) and 10−3 times the kinetic energy.

Figure 6. Exchange energies versus r
1/2

s . For rs ≥ 50 non exchanging electrons are distinguishable, and for
rs ≤ 50, there are polarized (preliminary results). One can see that near melting, exchange energies become
comparable with the kinetic energy.
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Figure 7. Helium 3 adsorbed on graphite: first layer exchange frequencies versus the density.

For helium 3 adsorbed on graphite, we find also strong variations with the density as
shown in Fig. 7. The 3-body exchange is dominant for all densities and its exponent is also
the smallest. This imply a ferromagnetic ground state at high density.

For both cases, at intermediate coupling the other 2, 4, 5 and 6 body exchanges are
more and more important as the system approaches the melting transition. We put all these
exchanges in the Hamiltonian defined in Eq. (2). The ferromagnetic 3 and 5 body ex-
changes are in competition with the antiferromagnetic 2, 4 and 6 ones. The nature of the
ground state is sensitive to there relative values. The phase diagram of this Hamiltonian,
obtained from exact diagonalization, is shown Fig. 84. For spin 1/2, the 3 body permuta-
tions can be written in terms of pair permutations defining an effective pair permutation
Jeff

2 = J2 − 2J3 which can be positive or negative. Thus we choose J4 to scale energies
and we are left with 3 parameters : J eff

2 /J4, J5/J4 and J6/J4. The straight lines in Fig. 8
separates the ferromagnetic (F) region from the antiferromagnetic (AF) one. The “trajec-
tories” of the Wigner crystal and the second solid layer of helium 3 adsorbed on graphite
crosses the F-AF transition line. In the AF region, no long range order has been found but
on the contrary they are in a spin liquid state with a gap in all excitations4, 6.

A remarkable feature is the similarity of the relative exchanges (the trajectories are
closed to each other), in particular when approaching the melting transition. Yet the in-
teractions of these two systems are very different from a short range strongly repulsive
potential for helium to a long range smooth potential for electrons. The search of an un-
derlying universal mechanism is thus highly desirable (possibly virtual vacancy-interstitial
(VI) mechanism13).
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Figure 8. Zero temperature magnetic phase diagram of the MSE hamiltonian4 .

6 Conclusion

For fermionic solids, PIMC allows to evaluate exchange energies. These energies are then
introduced in a MSE hamiltonian which in turn can be studied by different techniques. It is
found that various two dimensional systems have a dominant 3 body exchange in the semi-
classical limit (strong coupling) leading to a ferromagnetic ground state. As the quantum
kinetic contributions increase, all exchanges become comparable with competitive ferro
and antiferro interactions. Near melting it is found that the relative exchanges in the Wigner
crystal are very similar with those obtained for a solid layer of helium 3 adsorbed on
graphite, suggesting a possible universal behavior of the exchange mechanism near the
melting transition.
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