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The program package UG provides a software platform for discretizing and solving partial
differential equations. It supports high level numerical methods for unstructured grids on mas-
sively parallel computers. Various applications of complex up to real-world problems have
been realized, like Navier-Stokes problem with turbulence modeling, combustion problems,
two-phase flow, density driven flow and multi-component transport in porous media. Here we
report on new developments for a parallel algebraic multigrid solver and applications to an
eigenvalue solver, to flow in porous media and to an simulation of Navier-Stokes equations
with turbulence modeling.

1 Introduction

In many cases the modeling of physical and technical problems leads to a description by
partial differential equations. Due to the complexity of the equations and the geometry
involved often the mathematical problem can be treated only by numerical methods. Ap-
propriate discretizations lead to large systems of (non-linear) equations to be solved. To
make the numerical treatment feasable, advanced numerical methods in conjunction with
High Performance Computing have to be applied. Unstructured grids, adaptivity, multigrid
methods, and parallelism have proven to be an efficient approach. Unstructured grids are
required by the complex geometries. Adaptivity has to be used to reduce the computa-
tional cost especially for three-dimensional simulations. Finally the use of both multigrid
methods and High Performance Computing on massively parallel MIMD machines is in-
dispensable to reduce the computational time.

To bring together the features mentioned above the program package UG1 has been de-
signed during the last decade. It provides a platform for the discretization and the solution
of partial differential equations on parallel computers.

The effort for building up a new application (in lines of code) on top of the UG platform
is illustrated in figure1. The shown example is two-phase flow in porous media. The coding
of the problem specific program part (pm) has only the extend of about 12% of the total
amount. All other parts are problem independent and may be used for other problem class
implementations as well. The used symbols have the following meaning:

• pm: two-phase flow in porous media

• ug: kernel library for (multi)grid management, numerical procedures and graphics,

• ddd: the parallel programming model (dynamic distributed data),
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Figure 1. Effort to implement a parallel adaptive application in percent of lines of code (LOC).

• ppif: small and fast message passing interface (to shared memory on Cray T3E),

• dom: handling of the domain geometry,

• dev: devices drivers for X11, postscript and other devices.

This shows clearly the advantage of code reuse, when proper abstractions are intro-
duced. Especially in the case of parallel adaptive applications a huge amount of work (and
therefore development time) can be saved through the platform design. Furthermore the
scientists involved in the problem class development do not need to treat detailed problems
of parallel implementation, since only few lines of code have to be added to a problem
class to get it running in parallel.

The kernel of UG has now reached a mature state and state-of-the-art numerical meth-
ods can be applied to complex and real-world problems. Applications to the Navier-Stokes
equation with turbulence modeling, to combustion problems, to two-phase flow, density
driven flow and multi-component transport in porous media and to flow in fractured rock
have been realized, see also2, 3.

Nevertheless further work has to be done in various directions, as to mention

• improvement of dynamical load balancing4,

• development of new parallel numerical algorithms,

• implementation of new applications.

• improvement of stability and efficiency

In this paper we report on some of these aspects. Section 2 reports to an porous media
application with special emphasis on parallel performance. In Section 3 recent develop-
ments of the parallel algebraic multigrid solver3 are discussed. Section 4 is devoted to the
parallel solving of eigenvalue and plasticity problems. Finally in Section 5 an application
to the Navier-Stokes equations with turbulence modeling is given.
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Figure 2. Adaptively refined multigrid with hexa/tetrahedra and pyramids; 16 × 16 stripped load balancing in
flow direction; Vertical cutted domain with isolines of concentration.

PROCS 1 2 4 16 32 64 128 256
NLSOLVE [s] 233921 145842 72575 17597 9091 4599 2423 1354
SNLSOLV E 1 1.60 3.22 13.3 25.7 50.9 96.6 173
ADAPT [s] 3413 2426 1541 691 502 347 314 271
SADAPT 1 1.41 2.21 4.94 6.80 9.84 10.9 12.6
TOTAL [s] 237394 148268 74116 18288 9593 4946 2737 1625
STOTAL 1 1.6 3.20 13.0 24.7 48.0 86.7 146

Table 1. Fixed speedup for two-phase flow: NLSOLVE (nonlinear solution in seconds), SNLSOLV E (speedup
for this phase), ADAPT (grid adaption in seconds), SADAPT (speedup for this phase), TOTAL (overall time in
seconds), STOTAL (overall speedup)

2 Two-Phase Flow

This section evaluates the speedup when a fixed sized problem should be computed fast for
productivity reasons. Fast computation of a given problem is for example advantgeous, if
parameter studies are necessary for optimization.

Two phase flow problems with phases consisting of liquids with different viscosity
form fronts which tend to be instable. These instabilities can be seen in real live or phys-
ical experiments as fingers. These fingering results from a statistical behaviour, where
interactions between the two phases on a very small scale influence the structure of the
viscous front on a visible level.

As test scenario we choose a two-phase flow problem, where water displaces oil in a
cubic channel (see figure 2). Interesting are the different fingering patterns evolving from
different viscoscity parameters of the two phases. Since the resolution of the highly non-
linear effects at the front must be quite fine, the combination of parallelism and adaptivity
tends to be an optimal approach. As load balancer a simple Recursive Orthogonal Bisec-
tion Method (RCB) is applied to distribute the coarse grid levels in flow direction. Thus
important coupling information of the problem is kept processor local to avoid degradation
of the solver’s convergence rate. No load balancing need to be done during computation,
since load remains equally distributed between the processors when the front moves.

Table 2 shows the speedup of the displacement example for the first 34 timesteps.
The minimal amount of serial main memory needed is about 2 GB to allow the front to
finger after about 100 timesteps. This corresponds to about 1 million unknowns which
have to treated in each timestep. Results for one to eight processors are computed on
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a IBM SP-256, from 8 to 256 processors on Cray T3E at NIC. Timings are scaled by
a constant factor, which is gained from the comparison of the 8 processor run on both
machines.

The nonlinear solution process scales quite nice, giving a speedup of 173 for 256 pro-
cessors. Speedup losses have two reasons: The first is the introduction of communication
in the linear solver, when going from one to two processors, speedup loss is 20%. Second
the convergence rates becomes with increasing processor count more worse. The cycle
time of one linear iteration step scale good, which shows a stable scaling of the machine
itself.

Grid adaption shows a scaling which is not comparable to that of the nonlinear solution.
A speedup factor of 12.6 could be achieved in the 256 processor configuration. Analyzation
of the losses has shown, that the grid manager itself has a better speedup behaviour, but the
underlying programming modell DDD has a bottleneck when the interfaces for communi-
cation are rebuild after grid adaption. This process can be speeded up by reimplementation
of the DDD interface module.

The total efficiency of the 256 processor run is 0.57, which can be treated as a quite
satisfying overall result for a fixed sized problem.

3 Parallel Algebraic Multigrid FAMG

Besides classical (or geometric) multigrid methods purely algebraic multigrid methods
(AMG) are desirable for many reasons; AMG considers only the stiffness matrix but not
any geometric information such as elements or coordinates. AMG has the potential to solve
complicated problems better than other methods. Even in a geometric multigrid AMG
can be applied namely as the coarse grid solver. A third point of interest is the coupling
of multigrid methods with already existing programs. The smallest possible interface—
the matrix itself—is already feasible for AMG and the solver has no interaction with the
geometry. A major drawback of many existing AMG methods is the missing or even
impossible parallelization.

The starting point for our parallel AMG is the filtering AMG (FAMG) by WAGNER5, 6.
The main idea is to choose for each node good parent pairs of nodes for eventual elimina-
tion which ensures a certain filtering condition and leads to exactness on a given subspace.
The best pairs are selected to eliminate the corresponding nodes; this parent nodes persist
on the next coarser grid level and restriction and prolongation matrix entries with individ-
ually calculated values are installed between the nodes and their parents. The recursive
application of this process yields a grid hierarchy on which standard multigrid algorithms
can be realized.

For parallelizing this FAMG several additional steps have to be done. Since the elim-
ination of a node influences its neighborhood, and thus the following selections for elim-
ination, the cardinal point for the parallel FAMG will be to break up this sequential order
in a suitable way. Due to the locality of the direct influence of a node our approach will
divide the nodes into two classes: those which are influenced directly by nodes on other
processors and the rest. Whereas the latter can be eliminated locally on each processor,
the processing of the first ones needs a partly synchronization. Therefore a parallel graph
coloring method is used7. For further details see3.

Now we present first results of the new parallel FAMG. We examine the Laplace op-
erator on the unit square with a tensor product mesh (called structured case) and on the
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shape of Lake St. Wolfgang (Austria) with an unstructured mesh from a grid generator.
The structured mesh is distributed by a special load balancer to achieve tensor product like
processor configurations, the unstructured mesh is distributed by recursive coordinate bi-
section (RCB). For anisotropic model problems the equation εuxx + uyy = f is solved
with the anisotropy parameter ε.

Tab. 2 shows that the convergence rate is rather independent from the mesh width
respectively the number of nodes. This is essential to solve large problems efficiently.

structured unstructured

isotropic anisotropic 10
−6

unknowns conv. nr. time conv. nr. time unknowns conv. nr. time
rate it. [sec] rate it. [sec] rate it. [sec]

16641 0.053 7 6.6 10
−5 2 4.2 14095 0.057 7 4.6

66049 0.054 7 9.7 0.001 3 6.3 55637 0.123 9 9.4
263169 0.054 7 17.3 0.055 7 13.2 221065 0.206 12 20.7

1050625 0.057 7 38.1 0.044 6 31.8 881297 0.246 14 51.7
4198401 0.064 7 110.1 0.041 6 78.0 3519265 0.256 14 137.2

16785409 0.068 7 295.3 0.036 6 233.9 14065217 0.258 14 391.6

Table 2. The convergence rate depends only weakly upon mesh width (structured grid on a 16x8 processor
configuration, unstructured grid on 128 processors).

Fig. 3 shows that the solver is very robust with respect to the variation of the anisotropy
parameter. The convergence rate is bounded by 0.15 even for 128 processors and the
solution time is quite independent of this parameter; this holds from low load up to full
load examples.

Next we evaluate the quality of the parallelization. We consider the speedup where the
same problem is solved on different number of processors. Tab. 3 indicates a quite constant
convergence rate and the solution time decreases nearly by the factor as the number of
processors increases.

We have seen very promising features of the new parallel FAMG. Nevertheless, further
model problems (e. g. jumping coefficients and convection) should be inspected to explore
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Figure 3. Robustness against anisotropy (128 processors, different loads).
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the benefits and the limitations of the new method. At the end real world problems should
be solved.

structured unstructured

isotropic anisotropic 10
−6

PE conv. nr. time conv. nr. time conv. nr. time
rate it. [sec] rate it. [sec] rate it. [sec]

8 0.058 7 220.6 10
−4 2 140.7 0.237 13 235.8

16 0.067 7 135.8 0.053 7 123.2 0.194 12 179.6
32 0.062 7 81.4 0.046 6 70.7 0.241 13 97.6
64 0.059 7 58.3 0.043 6 43.7 0.240 13 78.4

128 0.057 7 38.1 0.044 6 31.8 0.246 14 51.7

Table 3. Speedup on different processor configurations (structured grid with 1 million unknowns, unstructured
grid with 880000 unknowns)

4 A Flexible Finite Element Library

In UG, a general finite element library is included8 which supports various discretizations,
and which is especially adapted to problems in nonlinear solid mechanics9. Here, the
applicability and flexibility of the finite element module is illustrated on the following
model problem in eigenvalue computations.

Let Ω ⊂ R
d, d = 2, 3 be a domain. We solve the eigenvalue problem:

find (wi, λi) ∈ H1(Ω) ×R such that
∫

Ω

∇wi · ∇v dx = λi

∫

Ω

wiv dx, v ∈ H1(Ω).

This corresponds to the eigenvalue problem

−∆wi = λiwi in Ω, wi · n = 0 on ∂Ω

in the strong formulation; in particular, we impose Neumann boundary conditions. Thus,
we know a priori the first trivial eigenpair w0 ≡ 1 and λ0 = 0. Note that this results
in a singular stiffness matrix (which, of course, has severe consequences for the solution
process).

The eigenmode approximations are computed by a block inverse iteration with a full
Ritz-Galerkin orthogonalization in every step. Starting from initial guesses w̃1, ..., w̃m, we
perform the following algorithm:

a) Ritz-Galerkin step: We form the small matrices

M =

(

∫

Ω

∇w̃i · ∇w̃j dx

)

, N =

(

∫

Ω

w̃iw̃j dx

)

,

and we solve the generalized eigenvalue problem
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Mxi = λiNxi, xi ∈ R
m;

then, we define approximations by

wi =
1

xT
i Nxi

m
∑

j=1

xij w̃j , i = 1, ..., m.

b) Block inverse iteration step: We update the space of test functions by solving
∫

Ω

∇w̃i · ∇v dx = λi

∫

Ω

wiv dx, v ∈ H1(Ω), i = 1, ..., m

and return to a).

For the solution of the linear problems, we use a fixed number of parallel multiplicative
multigrid cycles with Krylov acceleration and Gauß-Seidel smoother, where we project in
every step the solution onto the space which is orthogonal to w0.

As an example, we present the parallel results of the eigenmode computations on a
domain representing the surface of a large lake (Bodensee in Germany). The shape of
the eigenmode w11 is visualized in Fig. 4 (using GRAPE10), the first 4 of 16 computed
eigenvalues are listed in Tab 4.

discretization P1 P2 P2 P2

elements 1620992 101312 405248 1620992
unknowns 816737 205745 816737 3254465

λ0 0.00000e-00 0.00000e-00 0.00000e-00 0.00000e-00
λ1 8.88113e-04 8.88274e-04 8.89473e-04 8.88088e-04
λ2 2.46599e-03 2.46597e-03 2.46582e-03 2.46576e-03
λ3 4.77479e-03 4.77490e-03 4.77461e-03 4.77447e-03

Table 4. Comparison of the numerical solution with different discretizations and different mesh sizes of the 4
lowest eigenvalues of the Bodensee.

Figure 4. The 11th eigenmode w11 of the Bodensee.
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level 2 3 4 5
elements 101312 405248 1620992 6483968
unknowns 205745 816737 3254465 12992897

32 processors 21 min. 49 min.
(21 sec.) (50 sec.) (190 sec.)

64 processors 11 min. 28 min. 93 min.
(13 sec.) (26 sec.) (99 sec.)

128 processors 7 min. 15 min. 47 min.
(9 sec.) (14 sec.) (44 sec.) (169.8 sec.)

Table 5. Parallel performance of the eigenvalue computation (average time for the linear solver in every step)
for P2-elements. Due to the cpu-time-limit, not sufficiently many steps of the block inverse iteration could be
performed on level 4 (32 proc.) and level 5 (128 proc.).

The parallel performance (see Tab. 5) underlines the efficiency of the method, which
is asymptotically of optimal complexity and optimal parallel scalability (due to the large
coarse grid problem with 6332 elements we obtain optimal multigrid efficiency not in the
first refinement step). Since we use a second order discretization and millions of unknowns,
the results are reliable due the monotone asymptotic convergence; by simple extrapolation,
we expect an accuracy of at least 0.1%.

Nevertheless, fully reliable results can be obtained only by the computation of rigorous
eigenvalue inclusions; this is realized using interval arithmetic, and first results (on more
simple geometries) are already documented in11.

A second quite different application is a plasticity experiment on a gear geometry. The
calculation consists of 27 load steps and is performed using 128 Processors of the Cray
T3E-1200 at NIC, see figure 5. In the context of the UG platform this example demon-
strates the full functionality included in the software: multigrid consisting of tetrahedra,
prims and hexahedra, grid adaption, and dynamic load balancing. This features are com-
bined with a nonlinear solver using a multiplicative multigrid scheme and a discretization
based on Prandl-Reuss Plasticity. Since this is a recently performed calculation no detailed
timings have been done yet. Next steps will be the analyzation of speedup and scalability
behaviour.

5 Navier-Stokes Equations and Turbulence Modelling

The Navier-Stokes library in UG uses a Finite Element based Finite Volume Method with
colocated variables. Since a colocated scheme is not stable, a special stabilization scheme
is applied which introduces a physical advection correction scheme to couple the momen-
tum equation and the pressure equation. This results in a Laplacian term for pressure in the
continuity equation scaled with the mesh size squared and therefore tends to zero as the
grid is refined. This physical advection correction scheme called FIELDS was developed
by Raw12. The idea is to solve in each element a Finite Difference approximation of
the linearized momentum equation at all integration points. The resulting integration
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Figure 5. Plastic behaviour of a gear under load. Left picture shows grid adaption, right upper picture shows
plastic zones, right lower visualizes the load balancing of the geometry onto 128 processors

point velocities depend on all corner values of velocity and pressure. After insertion in
the continuity equation a pressure dependence and full coupling of all equations is gained.
This can be done independently at all elements and is therefore very advantageous for
parallelization.

A special problem class in the Navier-Stokes community is turbulence modelling. A
very promising way to simulate turbulent flow characetristics is the so called Large Eddy
Simulation (LES). In contrast to Reynolds averaged turbulence models (RANS), it is not
based on time averages but on local volume averages. This means that large structures have
to be resolved and only the small ones are modelled. In RANS methods all structures are
modelled with the difficulty that a suitable turbulence model is not easy to design. LES
models use the fact that small structures are nearly isotropic and more universal than large
structures and therefore modelling becomes simpler. But to reach the necessary resolution
very fine meshes have to be used and because of this parallel calculations are needed.

The averaged equations for LES are derived by applying filter operators ( for example
a volume-average box filter) to the governing equations. For the momentum equation this
results in:

∂ui

∂t
+

∂

∂xj

(ui uj) +
∂p

∂xi

−
∂

∂xj

(

ν
(∂ui

∂xj

+
∂uj

∂xi

))

+
∂

∂xj

τij = 0

where an overbar denotes an average value. The subgrid scale stress tensor τij is modelled
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by the dynamic model of Germano13. This model, in contrast to the Smagorinsky model14,
for which a constant and universal model parameter is assumed, is truly local and hence it
is able to reflect approximately local flow phenomena. Finally the model has the form:

τij −
1

3
δijτkk = −2C∆2|S|Sij

with Sij = 1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

and |S| =
√

2Sij .
An interesting problem is the flow around an infinite long square cylinder as described

in the workshop of Rodi et al.15. The infinite dimension in axis direction can be numeri-
cally realized using periodic boundary conditions since the flow structures in that direction
can be assumed to be almost periodic. A sketch of the domain is given in Fig. 6. For im-
plementing periodic boundary conditions in UG each element at the periodic boundary and
its partner at the opposite side have to be assigned to the same processor. For this reason
the load balancing strategy RCB of CHACO has been modified to handle periodicity. An
example for 8 processors can be seen in Fig. 6.

The Reynoldsnumber for this problem was 1000. The grid is built of 800000 hexa-
hedrons which correspond to 3 million unknowns. The nonlinear system is linearized by
a Quasi-Newton method and the resulting linear system is solved by the Kryloc subspace
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method BiCGSTAB with multigrid as preconditioner. As smoother the incomplete LU fac-
torization with β modification was employed and the time solver was a diagonally implicit
Runge-Kutta-method of second order. In Fig. 7 the solution of the velocity component in
x-direction on a line through the midpoint of the cylinder in mean flow direction is shown
at 6 successive points of time illustrating the complex behaviour of the flow.

6 Conclusions

With the program package UG we follow the strategy of combining advanced numerical
methods with the advantages of high-performance computers like a Cray T3E. It has been
shown that on the base of the parallel UG platform both the development of new, highly
efficient numerical algorithms and the solution of complex problems is feasable. The ob-
tained results show clearly that

• the computational time can be reduced significantly,

• for some problems parallel computers are neccessary, due the limitations of memory
size on sequential machines,

• High Performance Computing becomes an enourmous factor of productivity, when
treating real world problems.

Therefore the availability of HPC computing power will have a strong impact on the re-
search related to practical applications of scientific and industrial importance.
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