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Universität Bielefeld, 33615 Bielefeld, Germany
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The basic building blocks of the matter we get in touch with in our daily life are atoms; its
central part, the nucleus, is made up of protons and neutrons. Stable nuclei contain up to a few
hundred of them. This is the form of nuclear matter we have to our disposal in a laboratory.
Nuclear matter in bulk exists in the universe at much higher densities for instance in the form
of neutron stars. We also believe that extremely hot and dense forms of strongly interacting
matter existed in the early universe shortly after the Big Bang. Its properties must have been
qualitatively different, protons and neutrons as well as all the other hadrons known to us must
have dissolved into their constituents - quarks and gluons. It commonly is expected that this
change to the quark-gluon plasma state of strongly interacting matter happened through a phase
transition. The theoretical framework to describe this phase transition, the dense nuclear matter
and its thermodynamic properties is known to us; it is the theory of strong interactions – Quan-
tum Chromo Dynamics. The complexity of this theory, however, prohibits a direct analytic
analysis of most of the interesting phenomena related to complex thermodynamic processes, in
particular the critical behaviour related to phase transitions. To analyze the thermodynamics
of strongly interacting matter we need large scale numerical calculations. We will discuss here
some of the results obtained from such calculations.

1 Introduction

The conjecture that the structure of strongly interacting hadronic matter will undergo a
qualitative change at high temperature and/or densities has been around for a long time.
Two basic properties of hadrons were essential for the development of these ideas. In high
energy experiments it had been observed that strongly interacting particles produce a large
number of new resonance particles. This mechanism, in fact, is so effective that the number
of resonances in a given energy or mass interval rises exponentially (resonance production
⇒ Hagedorn’s bootstrap model1). As the average energy of hadrons increases with tem-
peratures copious production of new particles will take place in a hot hadron gas; a dense
equilibrated system results from this as a mixture of different particle species distributed
according to the exponentially rising mass spectrum. Moreover hadrons are known to be
extended particles with a typical size of about 1 fm' 10−13 cm. At high temperature
extended hadrons thus would start to “overlap” and loose their identity as independent par-
ticles (see Fig. 1). This has been formulated in terms of percolation models2 and led to the
expectation that some form of new physics has to occur under the extreme conditions that
are realized at high temperature and/or densities.

With the formulation of Quantumchromodynamics (QCD) as a theoretical framework
for the strong interaction force among elementary particles it became clear that this “new
physics” indeed meant a phase transition to a new phase of strongly interacting matter –
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Figure 1. The transition from a gas of extended hadrons to the quark gluon plasma.

the quark-gluon plasma (QGP)3. QCD is an asymptotically free theory; the interaction be-
tween the elementary constituents, quarks and gluons, is known to vanish logarithmically
with increasing temperature. It thus is expected that at least at very high temperatures the
dominant degrees of freedom are the constituents of QCD – quarks and gluons – which
behave almost like free particles. Bulk thermodynamics of the high temperature phase
thus asymptotically should look like that of an ideal (free) gas of quarks and gluons. An
interesting question then is to understand how our phenomenological picture of the transi-
tion which has been derived from bootstrap and percolation models is realized within the
framework of QCD. The basis for answering such questions is given by the lattice dis-
cretized version of QCD – lattice QCD. This opens the possibility to study complex non-
perturbative processes like phase transitions in dense matter with the help of numerical
simulation techniques based on more or less standard Monte Carlo or molecular dynamics
algorithms. Results from such calculations will be discussed in the next section.

A further important aspect that makes the study of QCD thermodynamics so attrac-
tive is that quantitative numerical studies can also be confronted with results obtained in
relativistic heavy ion collision experiments. A great challenge, of course, is to directly
verify that basic hadron properties indeed change qualitatively in a thermal environment as
suggested by our discussion given above. In-medium modifications of hadron properties
can be studied in numerical calculations on the lattice either through the analysis of static
screening mechanisms that lead to modifications of the potential (binding) energy between
quarks or directly through the study of thermal modifications of hadron masses and the
width of resonances. These effects lead to experimentally observable modifications of par-
ticle production cross sections for heavy quark bound states and light mesons, respectively.
We will discuss lattice calculations of these quantities in Section 3.
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2 QCD Thermodynamics

Numerical studies of the thermodynamics of strongly interacting matter are performed on
4-dimensional space-time lattices4. These calculations have shown that a transition to the
quark gluon plasma does take place, although this is a true phase transition only in limit-
ing cases, i.e. in the limit where the masses of the quarks either vanish or are infinite. In
nature the masses of two quark species (up and down quarks) are small but finite, whereas
a third species (strange quark) has a mass which is of the order of the transition tempera-
ture itself. The latter thus is expected to play a marginal role in thermodynamic processes
which take place in the vicinity of the transition temperature but should become as impor-
tant as the lighter up and down quarks at higher temperatures. At low temperature only
hadronic bound states can exist. The lightest particles which will dominate the thermody-
namics are pions with a mass of 140 MeV. The pion mass vanishes in the limit of vanishing
quark masses (chiral limit) while all other states remain massive with masses larger than
500 MeV. Their contribution to the thermodynamics is suppressed by the corresponding
Boltzmann weight factor O(exp[−mH/T ]). Approximating the pions by massless par-
ticles the expectation thus is that bulk thermodynamic observables like the pressure or
energy density will change from values corresponding to those of a free pion gas to that of
a free quark-gluon gas. As the number of degrees of freedom is much larger in the latter
case this should lead to a drastic change in the normalized energy density ε/T 4,

ε

T 4
=

{

(n2
f − 1)π2

30
, T → 0

(16 + 21
2

nf )π2

30
, T → ∞

, (1)

where nf denotes the number of light quark species (flavours). In fact, the transition
between these limiting forms occurs in a rather narrow temperature interval as can be
seen in Fig. 2. The numerical calculations performed with different number of light quark
species indeed show that the energy density of the QGP rapidly approaches that of an
(almost) ideal quark-gluon gas. This strongly suggests that our basic picture about the
relevant degrees of freedom in this phase is correct and that hadrons should have dissolved
during the transition to the QGP. Moreover, one finds that the transition temperature shifts
to smaller values as the number of light degrees of freedom increases. This is particularly
drastic, when one compares transition temperatures in the cases nf = 0 and nf > 0. In a
purely gluonic world (nf = 0) the transition temperature is found to be about 270 MeVa

while it drops to 175 MeV for nf = 2 and 155 MeV for nf = 36.
Despite the significant change in the transition temperature it, however, turns out that

the critical energy density is not at all that different. It changes a lot when expressed in
units of T 4

c ; however, this is compensated by a corresponding shift of Tc. For the case of
two and three light quark flavours shown in Fig. 2 one finds,

εc/T 4
c = (6 ± 2) . (2)

This amounts to an energy density εc ' (0.3 − 1.3)GeV/fm3 which is at most three times
larger than the energy density in an ordinary nucleon. An exciting prediction of these
calculations thus is that the transition takes place at an energy density which can be pro-
duced in relativistic heavy ion experiments which currently are performed at the SPS at

a100 MeV ≡ 1.1605 1012 Kelvin
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Figure 2. The energy density for QCD with two and three light quark species. The figure is based on data obtained
in connection with the analysis of the flavour dependence of the pressure5 . The crosses give an estimate for the
temperature dependence of the energy density for QCD with a realistic quark mass spectrum with nearly massless
up and down quarks and a strange quark mass ms ' Tc. It shows that the thermodynamics is dominantly that of
2 light quark flavours in the vicinity of Tc and approaches that of 3-flavour QCD at higher temperatures.

CERN (Geneva) and the RHIC at Brookhaven National Laboratory (New York). At RHIC
as well as at the future Large Hadron Collider (LHC), which will be build at CERN, it
is expected that energy densities corresponding to several times the transition temperature
will be produced so that long lived plasma states will be created.

When decreasing the values of light quark masses numerical calculations become in-
creasingly difficult. This generally prohibits to perform numerical calculations directly at
the physical values of the light, nearly massless up and down quarks; numerical results are
generally extrapolated to the physical values realized in nature. This difficulty, however,
can also be turned into a virtue. In a numerical calculation we can analyze the dependence
of observables, e.g. the transition temperature, on the quark mass. In particular, we can an-
alyze how the transition temperature depends on the values of the lightest hadron mass, the
pseudo-scalar pions mPS . While certain model calculations suggest a strong dependence
of Tc on mPS the general arguments on resonance production and the related resonance
gas models would suggest that such a dependence is only minor and the crucial mechanism
for a phase transition in fact arises from the exponential rise of heavy resonance states. A
systematic analysis of the quark mass dependence of Tc is shown in Fig. 3. The line shown
in this figure is a representative fit to the 3-flavour data, which gave

Tc(mPS) = Tc(0) + 0.04(1) mPS . (3)

It thus seems that the transition temperature does not react strongly to changes of the
lightest hadron masses. Their contribution to the overall energy density, however, rapidly
decreases with increasing mass. The light hadrons thus will not be able to induce any form
of critical behaviour. The weak dependence of Tc on mPS favours the interpretation that
contributions of heavy resonance masses are equally important for the occurrence of the
transition. In fact, this also can explain why the transition still sets in at quite low temper-
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Figure 3. The transition temperature in 2 (filled squares) and 3 (circles) flavour QCD versus mPS using an
improved staggered fermion action (p4-action)6 . Also shown are results for 2-flavour QCD obtained with the
standard staggered fermion action (open squares). The difference between the two data sets for 2-flavour QCD
gives a feeling for the systematic errors still present in current estimates of the transition temperature. The
dashed band indicates the uncertainty on Tc in the pure gauge theory (nf = 0) which corresponds to the limit
mPS → ∞. The straight line is the fit given in Eq. 3.

atures even when all hadron masses, including the pseudo-scalars (pions), attain masses of
the order of 1 GeV or more. Also the observation that the critical energy density is only
weakly dependent on the quark mass suggests that properties of the light hadron sector in
general are not responsible for the transition to the plasma phase. For the quark masses
currently used in lattice calculations a resonance gas model combined with a percolation
criterion thus provides an appropriate description of the thermodynamics close to Tc. From
a theoretical point of view it would, of course, still be interesting to analyze whether the
role of the light meson sector becomes more dominant when calculations closer to the
massless limit are performed, i.e. in a regime where the mass of the lightest hadronic state
would be significantly smaller than the relevant temperatures.

3 Thermal Properties of Hadrons from Lattice QCD

Basic properties of the experimentally known zero temperature hadron spectrum are con-
trolled by symmetries of QCD or, more precisely, by the fact that some of them are spon-
taneously broken in the vacuum. The spontaneous breaking of symmetries leads to non-
vanishing condensates and lifts the degeneracy of mass eigenstates which differ only by a
quantum number related to this condensate. The condensates, however, will be tempera-
ture dependent and eventually they will disappear in the high temperature phase. As the
splitting of mass eigenstates is related to the strength of the condensates, it is natural to
expect that hadron properties will change with temperature.

Lattice calculations of hadronic screening lengths and hadronic susceptibilities7, which
are based on the analysis of hadronic correlation functions did indeed provide evidence
for significant changes of hadron properties in a thermal medium. These observables,
however, provide only indirect information on thermal modifications of hadron masses
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or their widths. If we want to get direct access to thermal changes of these basic hadron
properties we have to understand the propagation of hadrons in a thermal medium and their
interaction with this medium. In fact, all the information we are interested in is contained
in the energy and momentum dependence of the retarded hadron propagator G̃R

H(ω, ~p) in
momentum space. Its imaginary part defines the spectral function, which in particular
provides the information on hadron masses and their width,

σH (ω, ~p, T ) =
1

π
Im G̃R

H (ω, ~p, T )

=
ImΣ(T, ~p)

(ω2 − ~p2 − Re Σ(T, ~p))2 + (ImΣ(T, ~p))2
. (4)

Here Σ(T, ~p) is the self-energy of the hadron. Its imaginary part will receive thermal in-
medium contributions from scattering processes, which in general will lead to a broadening
of the width of hadronic states (collision broadening).

In a lattice calculation we can analyze the Euclidean time correlation functions
GH(τ, ~p) which through a dispersion relation also depend on the spectral functions σH ,

GH(τ, ~p) = T
∑

n

e−iωnτ G̃R
H(iωn, ~p) , ωn = 2nπT

=

∫

∞

0

dω σH (ω, ~p, T )
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (5)

It is this correlation function which is accessible to numerical lattice calculations. The
main problem thus in general is to reconstruct from the correlation functions the spectral
functions from which we can get information on hadron masses and their width. How-
ever, even before doing so we can learn a lot from the correlation functions themselves.
Comparing correlation functions in different quantum number channels, we directly see
the drastic changes that occur when going from the low to the high temperature phase of
QCD. Moreover, we see that correlation functions which are clearly different at low tem-
perature become degenerate in the high temperature phase8, 9. This is, for instance, the case
for correlation functions in the pseudo-scalar and scalar quantum number channels shown
in Fig. 4. Here the splitting of the degeneracy at low temperature is due to the spontaneous
breaking of chiral symmetries which get restored in the plasma phaseb.

Similar results as those obtained for the scalar and pseudo-scalar correlation functions
can be obtained for vector and pseudo-vector correlation functions. The vector correlation
function is of particular interest as it carries the quantum numbers of a photon, which cou-
ples to hadrons as well as leptons. The latter are accessible in heavy ion experiments. Once
they have been formed they can leave the interaction region without any further strong in-
teraction and thus carry important information about the structure of matter formed in at
an early stage in these collisions. For this reason, the analysis of dilepton pair production
is expected to give important information on thermal effects in heavy ion collisions. The
cross section for dilepton (e.g. electron-positron pair) production is directly related to the
vector spectral function. For pairs with vanishing total momentum this is given by,

dW

dωd3p
=

5α2

27π2

1

ω2(eω/T − 1)
σV (ω, T ) , (6)

bThe scalar correlation function shown in Fig. 4 is the so-called connected part of the correlation function.
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Figure 4. Zero momentum projected temporal correlation functions, GH(τT ) ≡ GH(τT, ~p = 0), for scalar
and pseudo-scalar mesons at T = 0.6Tc and 3Tc. The correlation functions have been calculated in the quenched
approximation of QCD using Wilson fermions with a non-perturbatively improved Clover term10 on 323

× 16
and 643

× 16 lattices, respectively9 .

with σV (ω, T ) ≡ σV (ω, ~p = 0, T ). The steps needed to get from the numerical calcu-
lation of the vector correlation functions to the experimentally accessible cross section is
illustrated in Fig. 5. The crucial part is the reconstruction of the spectral function from
the correlation function. The latter is known only at a discrete set of Euclidean times,
τT = k/Nτ , k = 0, 1, ..., Nτ − 1. The inversion of the integral equation Eq. 5 thus is
an ill-posed problem. However, using statistical tools like the maximum entropy method
(MEM)11 it is, nonetheless, possible to determine the most likely form of the spectral func-
tion which is consistent with any given prior knowledge on its structure. In the case of
QCD this in general means that we have information about the behaviour of σH(ω, T )
for large ω, i.e. we can control the short distance structure of the correlation functions
in perturbation theory. This defines an initial guess for the spectral function; the default
model m(ω, T ). The spectral function is then determined by maximizing the function
Q ≡ γS−L with respect to σ and the additional parameter γ > 0. Here S is the Shannon-
Jaynes entropy

S(σ) =

∫

∞

0

dω

[

σ(ω, T ) − m(ω, T ) − σ(ω, T ) ln(σ(ω, T )/m(ω, T ))

]

(7)

and L is the χ2 constructed from the data sample for the correlation function at a discrete
set of Euclidean times, {Di(k) ≡ GH(k/Nτ )|k = 0, 1, ..., Nτ − 1; i = 1, .., #conf.},
and the fitting function Gfit

H (k/Nτ ) constructed from Eq. 5 with the current trial version
for σ(ω, T ),

L(σ) =
1

2

∑

k,l

(Gfit
H (k/Nτ ) − D(k))C−1

kl (Gfit
H (l/Nτ) − D(l)) , (8)

with D(k) = 1
#conf

∑

i Di(k) and Ckl denoting the covariance matrix of the data sample.
First tests of this approach at zero temperature12 and in the infinite temperature limit8

indicated that a MEM analysis of hadron correlation functions is feasible already on lattices
with moderate temporal extent.
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Figure 5. The vector correlation function GV (τT ) and the corresponding free correlation function for massless
quark anti-quark pairs, Gfree

V
(τT ) versus Euclidean time in units of the temperature (a), reconstructed vector

spectral functions σV in units of ω2 at zero momentum (b) and the resulting zero momentum differential dilepton
rate (c) at T/Tc = 1.5 and 3. Also shown with solid lines is the free spectral function in (b) and the resulting
Born rate for thermal dilepton production in (c).
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The vector spectral function reconstructed from lattice calculations on large lattices
of size 643 × 16 at two values of the temperature is shown in Fig. 5b and the resulting
dilepton rate is given in Fig. 5c13. The most exciting aspect of this result is that the rate
stays close to the Born rate calculated in leading order perturbation theory and that the rate
is cut-off at low energies. In particular, the low energy behaviour is difficult to control in
perturbation theory which suffers from infrared singularities. The lattice results, on the
other hand, suggest that the low energy part of the spectral function is cut-off, which can
be understood in terms of a threshold generated by non-vanishing thermal quark masses.
This also is supported by studies of the quark propagators in fixed gauges and its spectral
analysis14.

4 Conclusions

Numerical studies of lattice regularized QCD allow a detailed quantitative analysis of the
thermodynamics of strongly interacting matter. The basic techniques and tools used to
analyze the QCD equation of state and the transition to the quark gluon plasma have been
developed during the last 20 years. However, it is only now that computing facilities with
Teraflops computing power are within reach and will allow us to reach the accuracy needed
to make definite predictions that can be confronted with experimental data. The critical
temperature and critical energy density of the QCD phase transition clearly will be the most
fundamental observables which we are asked to provide. At present the critical temperature
still is known to us only with a statistical and systematic error of about 10%. This alone
leads to a 45% error in the prediction of the critical energy density. There is, however, no
doubt that we will soon be able to improve on this.

Lattice calculations also did provide ample evidence for the modification of hadron
properties in a thermal medium. However, it is only now that a direct investigation of ther-
mal masses and their widths, which are of direct experimental interest, is within reach. To
some extent this also is due to the improved computational resources and the fact that sim-
ulations on large thermal lattices at small values of the lattice cut-off now become possible.
Equally important, however, it was to realize that statistical tools, which previously have
been successfully applied in statistical physics, could also be of use in our studies of corre-
lation functions in quantum field theory12. We only have started to explore the possibilities
the maximum entropy method offers for the analysis of static correlation functions. In the
context of finite temperature field theory it seems to give access to a whole range of open
questions that can be addressed in the future.
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