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The determination of the masses of the light quarks requires solving the hadronic binding prob-
lem of quantum chromodynamics (QCD), the fundamental theory describing the strong inter-
actions between the quarks. Due to asymptotic freedom, the high-momentum sector of QCD
can be treated by perturbative methods, however, on the low energy hadronic scale the running
coupling of QCD becomes large. As a consequence, perturbative methods are not adequate for
the hadronic binding problem, the scenario of which is dominated by the QCD vacuum state.
The only known way to solve rather than model the problem is through ab-initio numerical sim-
ulations by high-end computers on a finite discrete space-time lattice. In this paper, which is
intended for a non-expert audience, we give an illustrated introduction to the hadronic binding
problem and its treatment by computer simulation on Tera-scale computers. We focus on the
finite-size approach as pursued by the GRAL project to Go to more Realistic And Lighter quark
masses, the main obstacle to current simulations.

1 The Hadronic Binding Problem

Half a century of experimental research in elementary particle physics has revealed a
plethora of information on the properties of sub-nuclear matter. Symmetry, the primary
building principle of twentieth century physics, allowed Gell-Mann and Ne’eman to ar-
range the complicated empirical patterns of the particle states in terms of higher repre-
sentations of a special unitary group—the so-called flavor SU(3), SU(3)f . At this time,
the three unknown entities associated with the fundamental representation of SU(3)f , ac-
cording to Gell-Mann named up (u), down (d) and strange (s) quarks, were considered as
purely mathematical objects. According to the first naive quark model, nucleons like the
proton and the neutron are composed of three constituent quarks as depicted in Fig. 1a,
while mesons are built up from a quark joined by its anti-quark, see Fig. 1b. At the time
the simple quark model was quite an un-orthodox proposal as quarks carry only a fraction
of the electron’s charge1.

It then took physicists nearly ten years to formulate a dynamical description of the in-
teraction which binds quarks into hadrons. The key step was to generalize the principle of
local gauge invariance, based on the abelian group U(1), that has been so successful for the
description of electrodynamics, to a non-abelian form, the so-called color SU(3), SU(3)c:
In addition to the electric charge as carried by the electron, quarks come with three new
charges conventionally labeled by colors. And the electromagnetic force between elec-
trons, mediated by the uncharged photon, is generalized to the strong force between the
quarks, resulting from the exchange of gluons basically coming in eight different color
charge combinations. The number eight is reflected in the dimension of the adjoint repre-
sentation of SU(3)c. Fig. 2 shows a cartoon of a gluon exchanging the colors between two
of the three constituent quarks within the proton.

Actually, the picture in Fig. 2 is not at all the entire story as it does not capture the
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Figure 1. Simple constituent quark model of (a) a nucleon (proton) with two u quarks and one d quark, (b) a π+

meson with u quark and d̄ anti-quark.

phenomenon of quantum fluctuations. In fact, it was one of the great triumphs of relativis-
tic quantum field theory to provide a very accurate explanation for the tiny Lamb-shift,
which is—according to quantum electrodynamics (QED)—due to quantum fluctuations
that lift the degeneracy of the 2s 1

2

− 2p 1

2

levels of hydrogen1 contrary to the previous pre-
dictions of Dirac’s equation. In QED, a photon, for instance, can virtually fluctuate into an
electron-positron pair that exists for a short time in accordance with Heisenberg’s uncer-
tainty principle ∆E∆T ≈

�
, as schematically depicted as Feynman diagram in Fig. 3a.

In QCD one would expect quantum fluctuations to be all the more important since
due to the strong coupling, αs, which is by about two orders of magnitude larger than
the electromagnetic coupling α = e2�

c
, the probability for pair creation is much larger.

Therefore, the proton is not just made up of constituent quarks and gluons but is a “soup”
of quarks, anti-quarks and gluons. From the outside the proton looks like a particle carrying
an effective quark number of 3, an electric charge 1 and color charge 0. Theoretically, it
often is a good approximation to distinguish between “valence” quarks and a sea of virtual
quark-anti-quark pairs and gluons, in order to explicitly express the appearance of a net
quark number. An artist’s impression of the sea of quarks, anti-quarks and gluons is given
in Fig. 4.

All our experimental evidence shows that quarks cannot be isolated but always form
bound hadronic states with color charge zero, a phenomenon denoted as confinement of
quarks. Confinement prevents us from direct experiments with quarks. In particular, we are
not able to determine the masses of quarks as for instance the masses of isolated electrons.

Why then bother about the masses of quarks, if such objects cannot be isolated any-
way? Well, the clue to further progress in elementary particle physics is an understanding
of the violation of quark flavor symmetry in weak interactions, as for instance evident in the
decay K → ππ. Within the Glashow-Salam-Weinberg (GSW) theory, weak interactions
between quarks are readily formulated as the exchange of the massive gauge bosons W +,
W− and Z. A quantitative understanding of flavor dynamics therefore requires knowl-
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Figure 2. Visualization of the interaction between two quarks within the nucleon by color exchange via a gluon.
The sequence corresponds to the Feynman diagram as drawn in the lower part of the picture.

edge of the properties of the quarks. In fact their masses are important input parameters
of the current standard model (SM) of elementary particles, a combination of QCD and
GSW. Accessing the quark masses thus implies solving the problem of how quarks, the
fundamental objects, bind into hadrons, the “elementary” particles of the pre-quark-era.

Let us discuss the binding problem as a Gedanken-experiment by considering the sim-
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Figure 3. Virtual pair creation process in QED (a) and QCD (b).

ple case of the hydrogen atom. Suppose that electrons occur only confined within atoms.
How could we still determine the mass me of such elusive electrons? The answer is to
solve Schrödingers equation, which predicts the energy levels

En(me) = −
1

2
mec

2α
2

n2
(1)

and charge radii

rn(me) =
n2

α

�

mec
. (2)

From the measurements of the transition energyE2 −E1 and Bohr’s radius one can deter-
mine the mass of the “confined” electron using the ratio (E2−E1)(me)

rn(me) .
Quite analogously, if in QCD the theoretician could determine hadron masses

Mhi
(mqj

) as functions of the quark masses mqj
(the indices i, j numbering hadrons and

quarks, respectively), it would be possible to infer the quark masses from ratios of the ex-
perimental values of Mhi

. This finally brings us to the hadronic binding problem, which
is considerably more complex than the atomic one. While the electron carries a mass of
511 keV and the hydrogen binding energy is of the order of 10 eV only, we are faced here
with very heavy bound states (with a nucleon of 931 MeV) composed of very light quarks
(u and d carry masses of 1 to 10 MeV). Thus, contrary to atomic scale physics, the femto-
world of hadrons is a relativistic world par excellence, where in accordance with Einstein’s
equation E = mc2 the nucleon mass mostly consists of binding energy.

Given this situation, the obvious way to tackle the binding problem of the strong in-
teraction is to start out from the ubiquitous sea of strongly interacting virtual gluons and
quark-antiquark pairs as the basic entity. The state of lowest energy of this medium is
denoted as the QCD “vacuum” state. Knowledge about the vacuum state would enable us
to determine the propagation of quarks through the quark-gluon sea and subsequently to
determine the properties of hadrons composed of quarks interacting through the medium.
Note that this scenario is quite different from the above-mentioned situation of the Lamb-
shift: there, the quantum fluctuations are computed as a perturbation of eigenstates of the
hydrogen atom, which are a simple solution of Dirac’s equation. On the other hand, in
QCD, hadrons themselves can be considered as small distortions of the vacuum. The de-
termination of the QCD vacuum, however, as might already be clear from Fig. 4a, is an
extremely complicated computational task.

It is well known that the propagation of electrons and photons through the vacuum of
QED can be treated to high accuracy by low-order power expansion in α, as α � 1. At
the hadronic energy scale, however, the running coupling of QCD becomes large (O(1)),
and consequently the QCD vacuum state turns out to be a non-perturbative problem.
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Figure 4. (a) Artist’s snapshot of the fluctuating quark-antiquark-gluon sea. (b) Same situation on the lattice. The
quark fields are restricted to the lattice sites, the gluonic fields are exchanged only along the links of the lattice.
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2 QCD Vacuum States from Lattice Simulations

Currently, the only known way to solve the hadronic binding problem beyond modeling
is through ab-initio numerical simulations on high-end computers using a finite discrete
space-time lattice2. The lattice essentially serves two purposes, namely (a) to provide a
suitable regularization scheme for the quantum field theory and (b) to make the problem
computationally tractable by shifting it from real-space into a finite box.

(a) The need for regularization is well known in the context of the perturbative analysis
of quantum field theories. In that case infinities arise in the computation of higher-order
Feynman diagrams which have to be compensated for by adding infinite counter terms.
The integration process itself must of course avoid infinities. The regularization prescrip-
tion renders the integrals finite by means of a regularization parameter (corresponding to a
high-momentum cut-off), which is subsequently taken to infinity. Analogously we cannot
implement a non-countable, infinite number of space-time points on a computer. A lattice
with regularization parameter a, the lattice spacing, renders the space-time points count-
able, and by Fourier transform we recognize that the inverse lattice spacing a−1 is just a
cut-off at large momentum. Of course one has to send the cut-off to zero, a→ 0, perform-
ing a sequence of simulations, in order to be able to extrapolate eventually to continuum
results—the so-called continuum limit.

(b) It is evident that we cannot handle an infinite number of lattice sites on a computer,
even if it is countable. This fact is a fundamental problem for interactions with infinite
range like, for instance, gravity. Fortunately, strong interactions are short ranged, i. e., they
fall off rapidly enough outside the proton, a feature already described by the early effective
Yukawa theory of pion exchange between nucleons. Thus, we are allowed to restrict our
lattice laboratory to a finite box containing the hadron to be investigated. A finite box size
L essentially serves as a low-momentum cut-off. Below, we shall demonstrate how to take
advantage from the finite size L of the lattice by provoking finite-size-effects.

The analogous picture to Fig. 4a for the lattice world is presented in Fig. 4b. The quark
fields are restricted to the sites of the lattice, gluons are restricted to the links.

We describe quantum fluctuations of this lattice system by considering the superposi-
tion of all its conceivable wave mechanical time evolutions (“paths”). In analogy to the
famous Huygens principle of light propagation, the underlying wave mechanics is char-
acterized by a phase factor, exp(−iS/

�
), where the functional S[ψ̄, ψ, A] is nothing but

the QCD action. This leads to the “path integral” which is a functional integral in the
configuration space [ψ̄, ψ, A]:

Z =

∫

DAµ(x)Dψ̄xDψx e
−

i� [ψ̄,ψ,A]. (3)

Actual lattice calculations use the Euclidean form of quantum field theory, which renders
the path integral a real-valued partition function, as known from statistical mechanics. The
Euclidean form of Eq. (3) is achieved by the analytic continuation of the time variable
t→ −iτ . The ensuing effect is a transformation of the Minkowski metric into a Euclidean
metric, while a positive definite Boltzmann weight exp(−βS) emerges. This form of the
path-integral is well suited for statistical evaluation,

Z =

∫

(

∏

n,µ

[dUµ(n)][dψ̄n][dψn]

)

e−βSg[U ]−Sf [ψ̄,ψ,U ]. (4)
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Sg is the action due to the gluon fields, Sf is the part of the action due to the quarks.
The gluonic field is described by SU(3) matrices Uµ(n) extending from lattice point n =
(n1, n2, n3, n4) to n = (n1, n2, n3, n4) + eµ, ψn denotes the quark fields located at the
sites n. As the latter are Grassmann variables, and Sf is a bilinear form, the fermionic
variables can be integrated out, leaving us with

Z =

∫

∏

n,µ

[dUµ(n)] det(M [U ])e−βSg . (5)

The Euclidean path-integral Eq. (5) is evaluated by means of stochastic Monte Carlo algo-
rithms. It suffices to generate a representative ensemble of fluctuating vacuum gauge fields
{Ui}, i = 1, . . . , N which incorporate the effects of virtual fermion-anti-fermion pairs via
the determinant of M , the lattice Dirac matrix. The ensemble of such vacuum states con-
tains the complete physical information as pictured in Fig. 4. Given the ensemble of say
N vacuum configurations, any observable, like operators which describe valence quarks
propagating in the vacuum or even objects built from sea quarks loops, can be “measured”
as ensemble average together with their statistical error,

〈O〉 =
1

N

N
∑

i=1

Oi[Ui] and σ2
O =

2τint

N

(

1

N

N
∑

i=1

|Oi[Ui]|
2 − 〈O〉2

)

. (6)

Let us for the moment set det(M) equal to 1 in Eq. (5). In this case, the vacuum state
is of purely gluonic nature. Lattice QCD based on such a kind of vacuum states is called
“quenched approximation” because sea quarks are decoupled. Often this approximation
describes the physics situation accurately enough. The advantage is that such a quenched
simulation is substantially cheaper than the full one, because one can make use of a simple
Markov transition by applying stochastic modifications link-wise to the variablesUµ(n) →
U ′

µ(n) with a local Metropolis decision.
However, using Metropolis for full QCD, the Metropolis decision

P (U → U ′) = min

[

1, exp(−∆Sg)
det(M [U ′])

det(M [U ])

]

(7)

requires the computation of the fermionic determinant for each link Uµ(n) separately,
which is prohibitively expensive. A better way to proceed is to compute a global up-
date of the links as achieved by the ingenious hybrid Monte Carlo algorithm3, the standard
method for simulations of full QCD. Nevertheless realistic full QCD simulations require
computers of the class of hundreds of teraflops, as we shall see next.

Let us illustrate these statements by presenting a picture of a typical lattice QCD exper-
iment in Fig. 5, the determination of the flux tube between two heavy quarks that are being
drawn apart. The underlying gauge configurations have been generated in the quenched ap-
proximation. Subsequently, the potential was computed on these configurations by means
of a simple operator, the Wilson loop. The color encodes the result for the action density.
Note the fluctuations due to the stochastic method. As the problem has a cylindric symme-
try, it can be plotted in two dimensions. The sequence of sheets corresponds to increasing
quark-antiquark separations.

The energy between the quarks grows linearly with their distance—confinement at
work! As we did not include sea-quark loops, one expects the flux tube not to break up
into two mesons.
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Figure 5. Flux between a pair of very heavy quark and antiquark. The sheets correspond to increasing distances
(Bali, Schlichter, Schilling 1997).

3 The Multi-Scale Problem of QCD

Our previous considerations already have shown how lattice gauge theory merges quantum
field theory with the techniques of statistical physics. The approach to the continuum limit
(a→ 0) is carried out on a sequence of lattices with decreasing spacings a. In order to vary
a, we have to tune the parameter β ∝ 1

g2
suitably—with g being the bare strong coupling

constant. For a → 0 lattice physics would become insensitive to the spacing of the lattice.
Such behavior typically occurs near a second-order phase transition, where the correlation
length diverges. In practice, one never can achieve a = 0. Hence, results from different
finite lattice spacings are extrapolated to a = 0.

In lattice QCD, a correlation length is associated to an inverse physical mass, ξ = 1/m.
Our box size L must fulfill ξ � L, so that ξ can be accommodated in the finite box. The
lightest particle of the strong spectrum with the largest correlation length is the π meson.
Therefore, L must be larger than ξπ, because otherwise finite size effects will spoil the
results.

On the other hand, the lattice spacing a has to be chosen small enough to resolve the
objects to be investigated. However, decreasing the lattice spacing decreases the finite box
size unless we compensate for this effect by increasing the number of lattice sites. The
crucial point is that we are limited in L/a by the available computer power. Presently, we
can only choose between too coarse a lattice spacing a or too large a pion mass. We see
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that lattice QCD is a typical multi-scale problem.
Future realistic QCD simulations with dynamical fermions would require to operate

beyond the ρ → ππ decay threshold and closer to the continuum limit than achieved
so far. In order to estimate the simulation efforts we have determined the costs of full
QCD simulations from the results of our large scale simulation projects SESAM and TχL.
In these lattice experiments we have used the hybrid Monte Carlo algorithm with two
degenerate flavors of Wilson fermions.

SESAM/TχL has generated 10 ensembles of full QCD vacuum configurations with
O(5000) HMC trajectories each, at β = 5.6 and 5.5 in the region 0.57 < mπ

mρ
< 0.85.

The lattice sizes are 163 × 32 (SESAM) and 243 × 40 (TχL), corresponding to physical
sizes of 1.372(36) fm (SESAM) and of 1.902(34) fm (TχL) after chiral extrapolation.
Running primarily on APE100 systems of the NIC at DESY/Zeuthen, DFG/Bielefeld and
INFN/Rome, the total costs of the simulations sum up to about 0.06 Tflops-yrs. The config-
urations which have been generated on APE100 systems are stored at the ZAM/FZ-Jülich
storage facilities for detailed physics evaluation on the Cray T3E systems.

In table 3 we try to convey to the reader an idea about the characteristics of full QCD
lattice simulations by presenting some key quantities from SESAM/TχL. mπ

mρ
is the value

of the π mass divided by the ρ mass as obtained in the simulation (the experimental value
being 0.1724). The third row shows the so-called integrated autocorrelation time τint

that determines the actual statistical significance of a Markov chain based simulation, see
Eq. (6). These numbers tell us that we have about 200 stochastically independent configu-
rations per ensemble.

β 163 × 32 243 × 40
5.6 mπ

mρ
0.83 0.81 0.76 0.68 0.70 0.57

Tequi 5200 5400 5250 4950 4700 4000
τint 19(4) 25(6) 33(4) 36(4) 50(5)

5.5 mπ

mρ
0.85 0.80 0.75 0.68

Tequi 3500 4000 5000 5000
τint 19(2) 24(3) 38(2) 47(3)

Table 1. Some characteristic quantities from SESAM/TχL simulations.

From our determination of autocorrelation times and the CPU time measurements we
are in the position to estimate the costs of full QCD simulations. Suppose we aim for an
accuracy comparable to state-of-the-art quenched simulations. The standard has been set
by the CP-PACS group at Tsukuba/Japan. They have carried out quenched simulations4 in
1997 on the 600 Gflops CP-PACS/Hitachi SR2001 parallel system built at Tsukuba univer-
sity. They achieved finite a results for light hadrons with errors < 1% and subsequently
could extrapolate to continuum results with errors between 1 and 3%. Using their setting,
we find the upper bounds to the CPU time (see table 3) needed to carry out an analogous
simulation with nf = 2 Wilson fermions. We conclude that such a full QCD simulation
will be a task for a 100 Teraflops system.
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a[fm]\mπ

mρ
0.75 0.70 0.60 0.50 0.40

∑

[Tflops-yrs] z2 L/a # of confs
0.102 0.46 0.79 0.21 0.58 18 25(8) 4.3 32 800
0.076 1.2 1.8 3.5 7.0 15 28(9) 2.8 40 600
0.064 3.7 6.7 12 23 50 95(35) 2.8 (!) 48 400
0.050 17 28 60 120 260 485(150) 2.8 (!) 64 200

Table 2. Extrapolation of costs for the determination of light hadron masses with 2 flavors of Wilson fermions in
analogy to the quenched setting of the CP-PACS group.

4 Going Realistic And Light–The GRAL Project

What ways are there at present to extend the range of full QCD simulations towards smaller
quark masses? A crucial parameter for the costs of QCD simulations is the number of
lattice sites, (L/a)4. In previous simulations L/a has in general been chosen such that
finite-size-effects were largely suppressed at given quark mass.

The idea of our new project called GRAL (Going Realistic And Light) is to reverse the
strategy and to perform a comprehensive study of finite-size-effects. Deliberately accepting
finite-size-effects allows one in principle to extend full QCD simulations into the regime
of lighter quark masses. For given bare coupling and quark mass, QCD vacua will be
generated on a sequence of box sizes that will allow for an extrapolation in L/a. For such
a finite-size-scaling analysis we expect a formula like that of Fukugita, Parisi et al.5 to be
applicable: m(L) = m∞ + cL−ν .

0.5 1.0 1.5 2.0 2.5 3.0
La(fm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
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)
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 mqa=0.01

N

ρ

π

Fukugita et al.

Figure 6. Infinite volume extrapolation.

Before embarking on a large-scale production, however, this program requires an ex-
tensive scanning of parameter space (spanned by the bare coupling β, the bare quark mass
and the number of lattice sites) in order to locate the physically interesting and computa-
tionally feasible operating region.
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To this end we specify, for a start, L/a = 16 as the maximal spatial extent of a se-
ries of lattices employed. Furthermore we require the simulation on this lattice to yield
meson masses with mπ

mρ
= 0.4 (i. e. below the decay threshold at 0.5) and a finite-size-

parameter of ξπ/L = 0.2. This particular value for ξπ/L has been chosen in view of
a recent SESAM/TχL quark mass analysis6, where 0.2 was found to mark the onset of
significant finite-size-effects in the hadronic spectrum.

In summary, the envisaged properties of our target point on a 163 × 32-lattice are as
follows:

mπ

mρ

ξπ

L
ξπ amπ amρ a[fm] L [fm]

0.4 0.2 3.2 0.31 0.78 0.116 1.86

The lattice spacing a has been estimated on the basis of the SESAM and TχL data at
β = 5.6 and 5.5. As can be seen from the table, the price for sticking to L/a = 16
is a fairly coarse lattice. According to our scaling cost extrapolations, we expect a total
cost of approximately 0.2 TFlop/s · h to produce 100 statistically independent gauge field
configurations at the target point. For more details see Ref. 7.

With shrinking box size local fluctuations in the vacuum field configurations will even-
tually destabilize the global updating process of the Hybrid Monte Carlo Algorithm. The
crucial issue regarding the feasibility of our strategy is the question of when this break-
down occurs. Thus, our first task will be to establish a suitable “window” of lattice volumes
were our sampling algorithm remains stable.

5 Summary

With this contribution we aimed at illustrating the lattice approach to the determination of
hadronic properties for a non-expert audience. We argued that the hadronic binding is a
highly relativistic problem, where quarks with small masses form nucleons which are about
a factor of 100 heavier. We have emphasized the important role of the QCD vacuum fields.
Such fields can be generated by lattice gauge simulations. Given an ensemble of vacuum
gauge fields we can compute the propagation of quarks that combine to hadrons through the
fluctuating quark-gluon sea. We have estimated the huge costs of future simulations of the
full theory, assuming accuracies similar to those of state-of-the-art quenched simulations.
These considerations demonstrate that new ideas are required to approach the regime of
small realistic quark masses. One promising idea is pursued by our GRAL project, which
means to Go Realistic And Light using finite-size techniques. In this manner we will
attempt to go beyond the previous milestones of SESAM/TχL.
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