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We investigate with high accuracy direct numerical N -body integrations the time-evolution
of dense stellar systems harboring a massive black hole. This is a model for galactic nuclei
in centres of galaxies after they merge in the context of cosmological galaxy formation and
evolution. An important astrophysical question is how fast these black holes come close to each
other due to dynamical friction and superelastic scatterings with field stars. At a certain critical
separation they would spiral-in and merge induced by gravitational radiation. The computer
programmes EUROSTAR and NBODY6++ developped for use with mpi libraries maintain
high accuracy over billions of integration timesteps, allowing a detailed analysis of the orbit of
the black hole(s), its interactions with field stars, and the two-body relaxation in the surrounding
dense stellar system.

1 Binary Black Holes in Galactic Nuclei

Massive black holes are very likely to reside in the centres of galaxies as a fossile of earlier
acticity16, 18. For their formation collisionless dynamical general relativistic collapse or
dissipative processes during galaxy formation have been proposed32, but a complete and
quantitative understanding does not yet exist (compare, however, some related work in
that direction in17, 4). Nowadays there is strong evidence that the formation of central
black holes in galaxies can at least qualitatively be understood in semi-analytical models of
galaxy formation in the framework of hierarchical cosmological build-up of structure12, 15

(see also earlier work of e.g. Eisenstein & Loeb7). These studies are complemented on
the observational side by strong correlations found between the central black hole mass
and global quantities of the surrounding galaxy or galactic bulge (luminosity or mass, and
velocity dispersion8, 9).

Following Begelman, Blandford & Rees5, the central black holes of two galaxies will
ultimately coalesce with strong gravitational radiation emission, after their mother galaxies
have merged. During the early stages of the merger, the stellar component will form a
nearly spherical system within the short timescale of violent relaxation. After that, the two
supermassive black holes move through the stellar component with a velocity similar to
the initial relative motion between the two galaxies. From this moment on, both massive
bodies will feel dynamical friction from the surrounding stars. This friction leads the black
holes to the newly-formed galactic centre, while the frictional force becomes more efficient
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with increasing density. Through this process, the black holes must inevitably ‘find’ each
other and form a binary system21.

After it forms, the bound binary hardens first through dynamical friction. Once the
separation of the binary is too small to be further affected by dynamical friction, there
are still flybys and resonant scatterings with individual field stars, the latter providing a
further hardening source. In an idealized situation, where the binary is at rest, loss-cone
stars on orbits subject to a resonant scattering will be depleted and the hardening of the
black hole binary would stall, hardening time scales. may become very long, as was noted
by5. Close, superelastic three-body scatterings between the black hole binary and single
stars, however, will generate a strong recoil on the binary, which thus starts a stochastic
walk around in the nucleus, and may always find enough interaction partners for further
hardening. Direct N -body simulations with high particle numbers are a veru good tool to
study this effect quantitatively23, 33, 13.

We follow the sinking of two massive black holes in a spherical stellar system. The
massive particles become bound under the regime of dynamical friction. Once bound, the
binary hardens by three body encounters with surrounding stars. Unlike other assumptions
the massive system moves inside the core providing an enhanced supply of reaction part-
ners for the hardening. These are the first results from simulations applying a hybrid “self
consistent field” (SCF) and direct Aarseth N–body integrator (NBODY6), which synthe-
sises the advantages of the direct force calculation with the efficiency of the field method.
The code is aimed for use on parallel architectures and is therefore applicable for collisional
N–body integrations with extraordinarily large particle numbers (> 105). It opens the per-
spective to simulate the dynamics of globular clusters with realistic collisional relaxation,
as well as stellar systems surrounding a supermassive black hole in galactic nuclei.

These problems attract much attention in the astrophysical community11. Work on this
has been done either by solving the perturbed two and three body problem in simplified
models37, 26 or by N -body simulations25, 33, 23, 21. As this shows, the modelling of binary
black hole hardening turns out to be extremely challenging, algorithmically and computa-
tionally. This work introduces some details of the problem of a sinking black hole binary.

2 Results

To give an example of one of our models, we have followed the shrinking of two black
holes of

M• := 1.00015 · 107 M�, (1)

in a galactic nucleus of Mtot = 109 M�, using 65.000 or in some case 128.000 stellar
particles in the simulations. So the mean mass of a particle is M̄ = 1.52588 ·104 M�. This
choice means that every stellar particle with mass M∗ represents a compact star cluster with
the order of 104 particles. The chosen mass for the black hole particle has approximately
the same mass as the central black hole of M3118. In a typical model, the initial distance
between the black holes is 355.39 pc. They become bound after approximately 40 million
years. The total simulated time is approximately 190 million years. At the end of the
simulation the black holes’ distance varies between 1 pc at the apo-center and 0.2 pc at
the peri-center. The semi-major axis of the black hole binary at the time it becomes first
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bound is 21 pc. For dimensional analysis we can identify the time the binary becomes
first bound with the time it has the first critical separation ah ≈ GM/σ230, where σ is the
velocity dispersion of the stellar system outside of the cusp dominated by the black hole,
and M is the total mass of the black hole binary. At this stage the dominant interaction
process with the stellar system changes from dynamical friction to three-body encounters.
The minimum separation of 0.2 pc at the end of our simulation is precise of the order of the
second critical separation acrit ≈ 0.012pc ·M0.8

8 , where M8 is the black hole mass in units
of 108M�. At a semi-major axis of the order of acrit quick gravitational radiation merger
sets in; acrit is approximately 0.01 ah

24, and since the semimajor axis of our black hole
binary at the end of the simulation is still 0.6 pc, we are only a fector of three away from
the gravitational radiation merger. This is closer than any previously published models of
that kind, and similar to the models of Milosavljevic & Merritt30, who use the same code
for the central region than we.

The final eccentricity of the black hole binary in our model varies around 0.7. It de-
pends on the initial eccentricity; we start with more eccentric orbit of the black hole than
Milosavljevic & Merritt’s models30, whose black hole binary starts on a circular orbit, and
they obtain smaller final eccentricities of only 0.3. This depends on the merging history of
the nucleus and its density structure. Eccentricity is of crucial importance for the final fate
of the black hole binary since the gravitational radiation time scale becomes much smaller
for high eccentricities. The evolution of the orbital data of the black hole binary can be
seen in Fig. 1. More details are published in Hemsendorf, Sigurdsson & Spurzem13.

In total we have performed a number of (up to now) ten different runs used to acquire a
small statistical data basis. As one example we show the time evolution of the semi-major
axis of the black hole binary in an ensemble averaged sense (error bars are intrinsic 1-σ
scatter of the data). We also find a smaller than expected decrease of the motion of the
black hole binary’s centre of mass with increasing particle number. Despite of expectation
that Brownian motion of the black hole binary should decrease with increasing N , we
find that our results are consistent with no dependency on particle number. That would
mean this effect is not a classical Brownian motion, but other effects, e.g. induced by the
superelastic scatterings or collective interactions with the stellar system’s core play a role.
Our statistical data (compare Figs. 5 and 6 of Hemsendorf, Sigurdsson & Spurzem13 for
the available data on statistically averaged motion of the black hole binary) are not yet
complete and reliable enough to give further conclusions here.

This motion prevents the binary from easily evacuating surrounding stars, which estab-
lishes an efficient hardening even at the late stages when dynamical friction becomes less
important for this. Movies in MPEG format (1.6MB) of this process are available at

ftp://ftp.ari.uni-heidelberg.de/pub/staff/marc/MPEG/
simulation600.mpeg

This movie (as well as simulations800.mpeg and simulations400.mpeg) il-
lustrates in the first stages the standard shrinking of the binary black hole to the centre by
dynamical friction, then, in the second stages, the feebback effects it has on the core as
it moves through the nucleus, and the sometimes rather chaotic motion of the black hole
binary, which in our interpretation is responsible for the relatively high eccentricity.

How our present results scale to the case of real particle number of galactic nuclei
is the subject of future work. Within the next years and subject to appropriate comput-
ing equipment we will be able to follow the black hole binary into its gravitational radiation
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Figure 1. Development of the or-
bit eccentricity of the black hole
binary as a function of time in
model time units (top panel) and
its binding energy as a function
of time, for a sequence of runs
with different N , as indicated in
the key. Runs denoted with s

start with smaller initial eccentric-
ity. Note, that if the binary is not
yet bound there are formally val-
ues of a > 0 and e > 1. This
means that in that phase the black
holes are still not yet gravitation-
ally bound to each other.

merger phase. We have not examined yet the question what happens if a third black hole
comes in before the first binary merges. Conventional wisdom says (e.g. Valtonen38) that
slingshot ejections would eject single or even binary black holes. Recent huge direct N -
body models performed by Makino (personal communication) using a GRAPE-6 special
purpose computer suggest however, that before that happens, there is a large chance that
two black holes in the resonant three-body interaction come very close to each other (ec-
centricity 0.99) to merge quickly. We have, however, much more carefully than any other
study examined the black hole motion in a self-consistent study with very large particle
number.
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EuroStar proved to be capable of integrating the binary black hole problem in galactic
centres as a point mass system. The simulations introduced in this work are the first fully
collisional simulations in this field, which could only be carried out on the up-to-date paral-
lel computers accessible to the authors. The new code is going to be applied for simulating
collisional dynamics for large N spherical systems including very massive particles.

3 Algorithmic and Computational Aspects

Assume a set of N particles with positions ~ri(t0) and velocities ~vi(t0) (i = 1, . . . , N ) is
given at time t = t0, and let us look at a selected test particle at ~r = ~r0 = ~r(t0) and
~v = ~v0 = ~v(t0). Note that here and in the following the index i for the test particle i and
also occasionally the index 0 indicating the time t0 will be dropped for brevity; sums over
j are to be understood to include all j with j 6= i, since there should be no self-interaction.
Accelerations ~a0 and their time derivatives ȧ0 are calculated explicitly:

~a0 =
∑

j

Gmj

~Rj

R3
j

; ~̇a0 =
∑

j

Gmj

[

~Vj

R3
j

−
3(~Vj · ~Rj)~Rj

R5
j

]

, (2)

where ~Rj := ~r − ~rj , ~Vj := ~v − ~vj , Rj := |~Rj |, Vj := |~Vj |. By low order predictions,

~xp(t) =
1

6
(t − t0)

3~̇a0 +
1

2
(t − t0)

2~a0 + (t − t0)~v + ~x ,

~vp(t) =
1

2
(t − t0)

2~̇a0 + (t − t0)~a0 + ~v , (3)

new positions and velocities for all particles at t > t0 are calculated and used to determine
a new acceleration and its derivative directly according to Eq. 2 at t = t1, denoted by ~a1

and ~̇a1. On the other hand ~a1 and ~̇a1 can also be obtained from a Taylor series using higher
derivatives of ~a at t = t0:

~a1 =
1

6
(t − t0)

3~a
(3)
0 +

1

2
(t − t0)

2~a
(2)
0 + (t − t0)~̇a0 + ~a0 ,

~̇a1 =
1

2
(t − t0)

2~a
(3)
0 + (t − t0)~a

(2)
0 + ~̇a0 . (4)

If ~a1 and ~̇a1 is known from direct summation (from Eq. 2 using the predicted positions
and velocities) one can invert the equations above to determine the unknown higher order
derivatives of the acceleration at t = t0 for the test particle:

1

2
~a(2) = −3

~a0 − ~a1

(t − t0)2
−

2~̇a0 + ~̇a1

(t − t0)

1

6
~a(3) = 2

~a0 − ~a1

(t − t0)3
−

~̇a0 + ~̇a1

(t − t0)2
, (5)

This is the Hermite interpolation, which finally allows to correct positions and velocities at
t1 to high order from

~x(t) = ~xp(t) +
1

24
(t − t0)

4~a
(2)
0 +

1

120
(t − t0)

5~a(3) ,

~v(t) = ~vp(t) +
1

6
(t − t0)

3~a
(2)
0 +

1

24
(t − t0)

4~a
(3)
0 . (6)
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Taking the time derivative of Eq. 6 it turns out that the error in the force calculation
for this method is O(∆t4), as opposed to the widely used leap-frog schemes, which have
a force error of O(∆t2). Additional errors induced by approximate potential calculations
(particle mesh or TREE) create potentially even larger errors than that. However, it can
be shown that the above Hermite method used for a real N -body integration sustains an
error of O(∆t4) for the entire calculation19. Many persons in the world know as Aarseth
scheme (in particular the code version NBODY51) an integrator of the same order as the
Hermite scheme, but using only accelerations on four time points instead of ~a and ~̇a on
two time points. As is shown by Makino19, the Aarseth scheme is O(∆t4) as well, but
for the same number of time steps the absolute value of the energy error (not its slope) is
clearly smaller in the Hermite scheme. This means that for a given energy error the Hermite
scheme allows timesteps which are larger by some factor of order unity depending on the
parameters of the system under study. The Hermite scheme has been commonly adopted
during the past years2, because it needs less memory, and allows slightly larger timesteps.
More importantly, after the addition of a hierarchical (as opposed to individual) time step
scheme it is well suited for parallelization on modern special and general purpose high
performance computers35. The timestep scheme will be discussed now.

4 Choice of Timesteps – Parallelization

Aarseth1 provides an empirical timestep criterion

∆t =

√

η
|~a||~a(2)| + |~̇a|2

|~̇a||~a(3)| + |~a(2)|2
. (7)

The error is governed by the choice of η, which in most practical applications is taken to be
η = 0.01 − 0.04. It is instructive to compare this with the inverse square of the curvature
κ of the curve ~a(t) in coordinate space

1

κ2
=

1 + |~̇a|2

|~a(2)|2
. (8)

Clearly under certain conditions the time step choice Eq. 7 becomes similar to choosing
the timestep according to the curvature of the acceleration curve; since it was determined
just empirically, however, it cannot generally be related to the curvature expression above.
Makino19 suggests a different time step criterion, which appears simpler and more straight-
forwardly defined, and couples the timestep to the difference between predicted and cor-
rected coordinates. The standard Aarseth time step criterion Eq. 7 has been used in most
N -body simulations so far (but compare the discussion by Sweatman36).

Since the position of all field particles can be determined at any time by the low-order
prediction Eq. 3, the time step of each particle (which determines the time at which the
corrector Eq. 6 is applied) can be freely chosen according to the local requirements of the
test particle, practically, however, for the purpose of efficient parallelization (originally:
vectorization) a hierarchical quantized time step scheme is used, where each particle can
only obtain a time step out of a finite set of values20. In practice the timestep is taken from
the set {2i|i = −n, 0} with n ≤ 32.
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Figure 2. CPU time needed for one N -body time unit as a function of particle number N using NBODY6++
on the CRAY T3E. The collection of data points includes runs with varying average neighbour number and
processor/pipeline number, starting from 8 for low N up to 512 for the largest N , which are not individually
discriminated in the figure.

Another refinement of the Hermite or Aarseth “brute force” method is the two-time
step scheme, denoted as neighbour or Ahmad-Cohen scheme3. For each particle a neigh-
bour radius is defined, and ~a and ~̇a are computed due to neighbours and non-neighbours
separately. Similar to the Hermite scheme the higher derivatives are computed separately
for the neighbour force (irregular force) and non-neighbour force (regular force). Comput-
ing two timesteps, an irregular small ∆tirr and a regular large ∆treg, from these two force
components by Eq. 7 yields a timestep ratio of γ := ∆treg/∆tirr being in a typical range
of 5–20 for N of the order 103 to 104. The reason is that the regular force has much less
fluctuations than the irregular force.

If the two-body force between any pair of particles becomes dominant their (perturbed)
relative motion is integrated in special regularized coordinates (taking into account pertur-
bations from field particles), in which the singularity of the two-body motion is transformed
into a slowly varying parameter (the binding energy) and does not occur in the integration
variables. The rest of the N -body simulation generally regards the regularized pair as a
compound particle located at the position and moving with the velocity of its centre of
mass, except in the case when a perturber moves very close to a regularized pair (in such
cases the pair is resolved). An excellent account of regularization, historically and sci-
entifically has been given by Mikkola27. Most recent developments are the slow-down
treatment of tight binaries28 and a new method to gain accuracy and exact solutions in the
unperturbed case using Stumpff functions29.

For the binary black hole models of galactic nuclei described in the previous section a
hybrid code was used, which embeds the direct N -body region in a larger system, where
the potential is approximately computed by a serious evaluation; the latter piece is denoted
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Figure 3. Wall clock time for 200 SCF time steps with varying PE number on the CRAY-T3E, for the indicated
particle numbers. particles, the lower for 16384.

by some authors as SCF (“self-consistent fields”14). In Fig. 3 the speed-up of the combined
code as a function of the number of nodes is displayed. For parallelization we use a hand-
made MPI implementation, parallelizing strategic loops, which need most of the CPU time.
The direct N -body portion of the code (particle-particle interactions) is the most dominant
one still, and it uses a parallel force computation for the long-range and short-range forces
in a loop over those particles which are due for integration in the individually blocked time
step scheme. No domain decomposition is used here yet, all particle data are sent in copy
to all PE’s. Here, a typical integration time needed is about 1 hour wall clock for 128k
particles on 128 processors of the CRAY T3E. A model for the binary black hole problem
requires for each individual run about 60 time units. Models for the globular star clusters
are much more complicated, because they need a few hundred time units in physical time
(long relaxation time). Also regularized binaries are present in a larger number, and there
are physical hints from star formation that we should include in our models thousands of
close binaries from the very beginning10. Future work on improvement of our implemen-
tation is therefore directed in two directions: first an efficient parallel integration of the
regularized pairs (work nearly completed now with S.J. Aarseth), and second, a domain
decomposition and division of the force for the very distant particles, in order not to lose
accuracy but gain efficiency. The recent papers of Makino22 and Dorband, Hemsendorf &
Merritt6 both discuss future prospects regarding the use of hypersystolic algorithms and
non-blocking communication.
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