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Research of a Research Group: The Case of the
Elementary Particle Physics Group at NIC

Karl Jansen

NIC/DESY Zeuthen
Platanenallee 6, 15738 Zeuthen, Germany

E-mail: Karl.Jansen@desy.de

We give a short overview of the activities of the NIC research group elementary particle physics.
We then concentrate on two conceptual advances in lattice field theory, the improvement of
discretization errors and the usage of finite size effects. An example, structure functions on the
lattice, will serve to demonstrate how these concepts work in practical applications. We finally
report about the status of the APE machines and the planned installations.

1 Introduction

Elementary particle physics covers a broad range of phenomena like spontaneous sym-
metry breaking, dynamical mass generation, confinement, asymptotic freedom and phase
transitions to name only a few. The physics of these phenomena is often of inherent non-
perturbative nature. In such cases the approach of lattice field theory can help to understand
physical phenomena better and test model predictions. In the lattice approach our usual
space-time is made discrete and a non-vanishing value of a lattice spacing a is introduced.
In this way physics problems can be made understandable in form of a program code to
a computer. This allows for first principle calculations of physical observables having as
only input a theoretical model. Of course, the discreteness of the space-time structure is
only an approximation to the real world and eventually this systematic error has to be re-
moved through a well-controlled continuum limit where the lattice spacing a is sent to
zero.

Lattice field theory has reached a quite mature stage. Many areas of physics are ad-
dressed by this approach ranging from 2-dimensional spin systems, the standard model of
elementary particle interactions and even investigations of quantum gravity (see the pro-
ceedings of the annual lattice symposia1). Still, the main activity of the lattice physicists
community is the understanding of quantum chromodynamics (QCD), i.e. our model for
the strong interactions. This is also reflected in the activities of the NIC research group
elementary particle physics where various aspects of QCD are investigated. Topics are

• determination of fundamental parameters of QCD like the coupling strength and quark
masses2, 3

• the recent development of chiral invariant formulations of QCD4–7

• structure functions and hadron spectrum of QCD8, 9

• confinement, monopoles and topology10

• high precision studies of lower dimensional spin models11
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• finite temperature phase transitions12

• improvement of algorithms for dynamical quark13 and chiral invariant fermion simu-
lation14

• participation in the array processor experiment (APE), leading to the development of
APE computers that are dedicated to QCD applications15

It is clear that in this contribution not all the above topics can be covered. I will rather
concentrate on a particular example that demonstrates how two new concepts in lattice
field theory are incorporated in practical applications. I refer to a few contributions to
this symposium where also other topics of the above list are addressed4, 16–18. Besides
the author himself, at the time of this write-up the team that works in the NIC research
group on the topics above consist of S. Capitani (Postdoc), T. Chiarappa (Ph.D. student),
M. Hasenbusch (Postdoc), C. Hoelbling (Postdoc), R. Horsley (Postdoc), T. Kovacs (EU
fellow) D. Pleiter (Postdoc), G. Schierholz (permanent member), C. Urbach (Diploma
student) and I. Wetzorke (Postdoc).

2 Scary Animals on the Lattice

When working in lattice field theory, two rather scary animals are met: the first is the non-
vanishing lattice spacing, the second is the finite volume. If we keep the physical size of
the box fixed, say L = 1fm, corresponding to the diameter of the proton, then this physical
length is realized by putting N points for a given value of the lattice spacing a such that
L = N · a. If we start with a = 0.1fm, we would have N = 10. Now, if we want to
reach the continuum limit, the value of a has to be decreased while L is to be kept fixed.
Hence, for a = 0.01fm we would need N = 100, for a = 0.001fm, N = 1000 and so
on. Since we are working in four space-time dimensions, the number of lattice points to be
kept in the computer grows like N 4 in this so-called “naive” continuum limit. Clearly, one
runs easily out of computer resources, with respect to available computer power as well as
memory.

What is to do? The idea of keeping the value of the lattice spacing finite is not a
very good one: severe artifacts of the non-vanishing lattice spacing are detected leading
to systematic errors in physical observables that are difficult to control. Also, keeping
the physical length smaller than 1fm gives rise to large finite size effects inducing again
systematic errors that are hard to control. We seem to end up with a real dilemma forcing
us to go the brute force way and just increase the number of lattice points while decreasing
a.

However, modern conceptual advances have paved the way to partly circumvent these
problems. We nowadays have the tool of the improvement programme to at least diminish
the effects of a non-vanishing lattice spacing. In addition, we have learnt to actually make
use of finite size effects to extract physical information of the infinitely large system. For
an example see4. In the following we will discuss these concepts a little more detailed
(more extended reviews can be found in19, 20).
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Figure 1. The continuum limit of a step scaling function.

3 Improvement Programme

When physical observables are computed in lattice QCD it is noticed that the dependence
of these observables may depend rather strongly on the lattice spacing22, rendering any
continuum extrapolation difficult and costly. The reason for this problem is seen directly
from the action of lattice QCD. The standard form is

Sold = SG
︸︷︷︸

O(a2)

+ Swilson
︸ ︷︷ ︸

O(a)

(1)

where SG is the pure gluonic part of the action while Swilson is the fermionic part. As
indicated in eq. (1), in contrast to the pure gluonic part of the action, the fermions induce
a linear dependence on the lattice spacing, resulting in sizable lattice artifacts that are
problematic to extrapolate away.

A (part) solution is to add new terms to the action. If all possible symmetries on the
lattice and the equations of motion are used, it is found that there is only one more term
that can appear at O(a)21. The action then reads

Ssw = a5
∑

x

cswΨ̄(x)
i

4
F̂µν(x)Ψ(x) . (2)

The particular form of the new term is not of interest here. What is important, however,
is the fact that the parameter csw is freely tunable. In particular, csw can be tuned such
that the additional term in eq. (2) exactly cancels the O(a) effects from the original action,
eq. (1), thus leaving only errors of O(a2) behind.

15



Figure 2. A typical collision of two hadrons.

Figure 1 shows, how this procedure works in practice. A particular physical observable
(a step scaling function, see next section) is shown whose physics interpretation is not of
importance here. We only remark that first of all this quantity has a well defined continuum
limit. Second, we see that the evaluation with the standard fermion action, eq. (1) (dashed
line), leads to large lattice artifacts while the use of the improved action (solid line), eq. (2),
seems to eliminate these artifacts almost completely. In this way, an acceleration to the
continuum limit is achieved and the systematic errors coming from discretization errors
are much better controlled.

4 Finite Size Effects and Structure Functions

Let us now come to the second dangerous animal on the lattice, finite size effects. While
in the case of discretization errors we could only achieve an improvement in reaching the
continuum limit, the situation with finite size effects is completely different: here we “turn
around the table” and instead of trying to eliminate finite size effects, we are actually going
to use them to extract physical information.

To illustrate this, we will discuss the important field of structure functions. Let us
consider a typical particle collision as performed at large accelerators, e.g. at DESY, see
figure 2.

Here a hadron A hits a hadron B, a jet is formed and some remnants are left over.
We denote by xA a fraction of the momentum of hadron A (and similar of the hadron B).
Now, what we want to know is the internal structure of the hadron which is believed to
consist of quarks and gluons. Our aim is to know the probability fa(xA) to find a quark
a in the hadron that carries a momentum fraction xA of the hadron A. Similarly, we can
ask for the probability function of the quark b and, of course, of the gluons. The complete
knowledge of the probability functions f(x) –also called structure functions– would give
us the desired information about all the internal constituents of the hadron.

Unfortunately, the structure functions are very complicated to compute on the lattice.
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However, in experiment, not only the structure functions themselves but also their moments
can be determined. The nth moment is defined by

M (n)
a =

∫ 1

0

dxxn−1fa(x) , n = 1, 2, · · · . (3)

For example, the 2nd moment corresponds to the average momentum 〈x〉 that is carried
by the quark. Knowing all the moments, the complete structure function maybe recon-
structed. In practice, it is presumably only possible to compute a few moments on the
lattice. Estimates indicate, however, that even with n ≤ 3 a rather good approximation of
the full structure function can be achieved24. The advantage of considering moments of
structure functions is that these are related to local operators that can be computed with
lattice techniques using standard methods8.

The scattering process of figure 2 is a quantum process. This means that the simple
picture of figure 2 is not what actually occurs in nature. Rather, many quantum fluctuations
disturb the picture and a steady generation and annihilation of virtual quark-antiquark pairs
and gluons take place. This leads to the phenomenon that the moments depend on the
energy scale µ at which the collision process is observed since the probability of generating
virtual quarks and gluons depends on the energy. Therefore,

M (n)
a = M (n)

a (µ) . (4)

In quantum field theory we speak of a scale dependent renormalization of the moment.
In practice this means that we have to evaluate a moment not as a single number but

as a function of the energy scale µ. The energies we have to consider reach from the
inverse W-mass to the confinement scale, while at the same time we should eliminate the
discretization and the finite volume errors:

a � 0.001fm
︸ ︷︷ ︸

1/MW

− 1fm
︸︷︷︸

conf.scale

� L . (5)

Clearly, covering all the distances of eq. (5) in a single lattice would lead to a totally
unrealistic number of lattice points.

The way out of this problem comes in two steps. In the first step we identify the scale
with the inverse box length, µ = 1/L, thus using the finite box length as a probe for the
physics taking place at this scale. In the second step, we break the problem into many
smaller steps each of which can be evaluated with moderate computer resources.

Let us be a bit more concrete and focus on the expectation value of the average momen-
tum, 〈x〉(µ0), assuming that we know this expectation value at a certain energy scale µ0.
This scale will be chosen such that 〈x〉(µ0) is easily accessible for lattice computations.
Then the expectation value at a different scale µ is obtained by applying the so-called step
scaling function σ(µ/µ0), i.e.

〈x〉(µ) = σ(µ/µ0) · 〈x〉(µ0) . (6)

The step scaling function describes the full scale evolution of the a scale dependent quantity
of interest. Note that different observables need a different step scaling function. A very
important property of the step scaling function is that it can be split into several steps.
Identifying the scale µ = 1/L, this means that (choosing steps of size 2)

σ(L0/L) = σ(2L0/L0) · σ(4L0/2L0) · . . . · σ(2L/L) . (7)
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Figure 3. The continuum limit of the lattice step scaling function for two ways of discretizing fermions on the
lattice.

The aim in the end is to have the step scaling function, eq.(7), and the running of 〈x〉(µ)
non-perturbatively. It is exactly at this point that we depart from our continuous space-time
structure and introduce a discrete lattice with non-vanishing lattice spacing a allowing us
to resort to numerical simulations. Of course, in the end the discretization error has to be
removed in a well-controlled continuum limit. As an important side remark we note that
σ(2L/L) has indeed a well-defined continuum limit such that the whole procedure makes
sense.

On the lattice we introduce the lattice step scaling function

Σ(a) = σ(2L/L, a) . (8)

Σ(a) is the quantity that we want to (and can) compute with lattice methods. The contin-
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uum step scaling function is then reached through

σ = lim
a→0

Σ(a)
∣
∣
∣
µ−1=L fixed

. (9)

An important remark is that in the a → 0 limit the physical scale L is kept fixed. This can
be achieved by fixing the value of the renormalized gauge coupling ḡ.

We show in figure 3 the approach to the continuum limit of Σ(a), eq.(8), for two ways
of discretizing fermions on the lattice, once with standard fermions (dashed lines) using
the action of eq.(1) and the non-perturbatively improved action (full lines) of eq. (2). It is
reassuring that both Σ’s extrapolate to the same continuum step scaling function showing
the universality of the continuum limit. The individual graphs are obtained at fixed values
of the running coupling ḡ corresponding to a fixed scale 1/L.

Figure 3 demonstrates that the approach to the continuum limit of the lattice step
scaling function is well controlled. At this point we then have the behaviour of the non-
perturbatively evaluated step scaling function in the continuum and can safely forget that
we ever worked on the lattice. In a very similar fashion, also matrix elements them-
selves, like 〈x〉(µ0) can be computed at a reference scale µ0 in the continuum limit (see
ref.8). What we have achieved then are results in the continuum theory from fully non-
perturbative calculations – which is nothing else but the goal of lattice calculations. The
price we have to pay for such a result is –besides having to use powerful computers– that
we end up with statistical errors and not with an analytical prediction. But, with increas-
ing computer power these errors can eventually be rendered as small as required by the
precision of the experimental data.

Let us discuss shortly, the result of the above described computation for the average
momentum in a pion at a scale of µ = 2.4GeV. One result that is interesting for lattice
physicists is that there can be rather large discretization errors. Changing the lattice spacing
from about a = 0.1fm to zero, we find

〈x〉(a = 0.093fm) = 0.30 → 〈x〉(a = 0) = 0.20 . (10)

This means that discretization errors can lead to about 50% systematic errors and demon-
strates that a controlled continuum limit is mandatory. Another result that is interesting for
the theoretical physicist is that the effects of a non-perturbative renormalization procedure
can be at the order of 10% to 15% as compared to perturbative results.

Finally, the result that interests everybody is the comparison to experiment:

〈x〉experiment(µ = 2.4GeV) = 0.23(2)

〈x〉quenched

MS
(µ = 2.4GeV) = 0.30(3) . (11)

We indicated in eq. (11) that the theoretical values are obtained in the commonly used
MS scheme and in the quenched approximation, where the internal generation of (virtual)
quarks inside the hadron is neglected. The still somewhat large error of both the experi-
mental and the theoretical results saves us from really claiming a discrepancy. Of course,
we do not have a very safe control about the systematic error of using the quenched ap-
proximation and it will be very interesting to repeat the calculation presented here in the
full theory with dynamical quarks. As a final comment we mention that the main result of
a computation outlined above are renormalization group invariant (RGI) quantities. The
reason is that RGI quantities can be used directly in other regularization schemes used e.g.
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in perturbation theory. We give the definition of the RGI matrixelement and the result from
the lattice in appendix A for the interested reader.

5 Machines

Concepts like the improvement of discretization errors or the usage of finite size effects as
described above are certainly very important. Nevertheless, without powerful supercom-
puters such physics projects would not be able to perform. Now, the numerical problem
that is in the heart of applications in QCD is fortunately rather simple: roughly –and some-
what over-simplified– speaking one needs mainly complex normal operations, a + b ∗ c,
and a communication between only nearest neighbours on the lattice. This simple structure
makes it possible to design and develop special purpose machines that are highly efficient
for lattice QCD calculations.

The NIC research group is involved in these developments, in particular in the APE
(Array Processor Experiment) machines. APE computers are custom made and have a
long history already with a first machine installed in Italy around 1985. The first machine
used in the high energy physics community in Germany was the APE100. This machine
appeared to be extremely successful. It is a massively parallel SIMD machine with a fast
interconnecting network. APE100 ran very stable in practice and became the workhorse
for many groups performing lattice gauge theory simulations.

The APEmille computer is the successor of APE100 and hence already the third gen-
eration of APE machines. It is based on a 3-dimensional mesh of nodes connected by a
synchronous communication network, linking nearest neighbours of nodes. We give its
specification in table 1.

Peak performance 528 MFlops/proc
Clock frequency 66 MHz
FP registers 512 (32-bit)
Data memory 32 MByte/proc
Communication BW 66 MByte/s/direction
I/O BW per master 6 MByte/s
Power consumption 28 W/GFlops
Price 2.5 Euro/MFlops peak

Table 1. Key parameters of APEmille:

Power consumption of APEmille systems is very low (less than 30 W/GFlops) and the
footprint of a two-crate rack is about 0.7m2. For these reasons, APEmille machines are
simply air cooled and do not need complex infrastructure.

At present, several APEmille installations exist Europe wide at various places (Rome
I,II, DESY/NIC Zeuthen, Pisa, Milano, Bari, Paris Sud, Bielefeld, Swansea and INFN-
LNGS). In the near future all planned installations will be finished and an integrated peak
performance of about 2 Teraflops will be reached. Typical applications reach an efficiency
of 32% - 47% depending on the distribution of the lattice onto the mesh of nodes. The
stability of the existing APEmille platforms as is experienced today strongly indicates that
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APEmille has the potential to become the workhorse to the lattice physicists in Europe in
the next years – as APE100 was in the past.

But, this is not the end of the story. A follow-up machine, apeNEXT is being envisaged
and actually already quite far in its developing stage. Major differences to earlier APE
machines are that apeNEXT runs in 64-bit precision while its predecessors had only 32-
bit words. It is a SPMD machine and runs asynchronously giving new challenges to the
APE collaboration. Details of the architecture can be found in15 where also the present
status of apeNEXT is described. The final installations (intended for 2003) will achieve
2-3Tflops for a stand alone system with price/performance ratio of 0.5Euro/Mflop (peak).
These parameters will then meet the requirements formulated by an ECFA panel25 for the
performance needs of lattice field theory in the next years.

6 Conclusion

Lattice calculations benefit from

• conceptual theoretical developments like improving discretization errors and using
finite size effects,

• improvements of the algorithms employed,

• further and further increase of available computer power as it is provided by centers
like NIC, housing commercial supercomputers and custom made machines like APE.

It is the interplay between all these three areas that furthers the precision of lattice field
theory computations to a stage where direct contact to experiment will be achieved. If
the progress in lattice field theory we have observed in the last years can be maintained
in the coming years, lattice field theory will certainly be a major player in analyzing and
interpreting experimental data coming from future accelerators. The NIC research group
works in all the three areas of theoretical, algorithmic and machine developments and we
hope that we can contribute to the ambitious aim mentioned above.

Appendix A

Let us discuss here a theoretical point that is meant to be for the experts. The step scaling
function of the main text is –in the perturbative regime– of course nothing else but the
Callen-Symanzik function. This allows to define renormalization group invariant quantities
if the scale µ is sent to large enough values

〈x〉renINV = Oren
SF (µ) · fSF(ḡ2(µ)) (12)

with

fSF(ḡ2(µ)) = (ḡ2(µ))−γ0/2b0 exp

{

−

∫ ḡ(µ)

0

dg

[
γ(g)

β(g)
−

γ0

b0g

]}

(13)

where g is the coupling strength, γ(g) is the anomalous dimension function, β(g) is the
β-function and SF stands for the Schrödinger functional renormalization scheme23 that
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is particularly suitable for lattice calculations. Now, in perturbative computations in the
continuum theory schemes different from the Schrödinger functional one are used. The
renomalization group invariant quantities now help to make contact to these schemes used
in the continuum theory:

〈x〉MS = Oren
INV/fMS(ḡ2(µ))

〈x〉my preferred = Oren
INV/fmy preferred(ḡ2(µ)) (14)

where MS stands for a standard schme, often used in perturbative calculations and my
preferred is self-explanatory. From these considerations it should become clear that the
computation of the RGI quantities are the most important ones to come out from the non-
perturbative lattice calculations.

For completeness, we will give the value of the RGI matrixelement as obtained form
the numerical simulations discussed in the main text, i.e. Oren

INV = 0.222(24).
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lat/0106022; M. Göckeler, R. Horsley, B. Klaus, D. Pleiter, P.E.L. Rakow, S. Schäfer,
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