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‘We propose a Landau theory for phase change materials (PCMs), which describes stress-induced amorphization
in vacancy-free, ordered PCMs as a condensation of defects in analogy to equilibrium gas-liquid transitions.
Three dimensionless parameters suffice to deduce a highly accurate equation of state for both phases from it. The
reference data for our model alloy Ge, Sb;_, are produced from molecular dynamics simulations and synchrotron
x-ray diffraction. Raman spectroscopy is used to estimate the density of tetrahedrally coordinated germanium
atoms, which we relate to the order parameter. All methods provide consistent support for the reversibility of the

transition.
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I. INTRODUCTION

Optoelectronic phase change materials (PCMs) have
markedly different optical reflectivity and electrical con-
ductivity in their disordered and ordered phases [1]. They
can be switched rapidly and reversibly between their better
conducting crystalline and the more insulating amorphous
phases. Short intense and long low-intensity heat or laser
pulses induce the amorphous and the crystalline phase,
respectively [2—4]. Owing to their properties, PCMs are used
as nonvolatile memory materials and bear promise as materials
for programmable logic circuits [5].

Recently, the response of PCMs to pressure has re-
ceived increased attention, mainly for the commercially used
Ge,Sb,Tes [6-10] but also for Ge,Sby_, [11,12]. These
studies were motivated predominantly by the desire to unravel
the interplay between atomic and electronic structure. The
understanding of PCMs under pressure might prove especially
useful in the debate if the peculiar properties of PCMs arise
either due to a difference of local order between crystalline
and disordered phases or because the absence of long-range
order in the glass suppresses resonance bonding [13].

In the mentioned PCMs and related compounds, the
crystalline structures can be derived from simple cubic crystals
by introducing a Peierls deformation and/or by (partially [14])
ordering the Ge, Sb, and Te atoms, as well as vacancies, onto
sublattices. In these structures, the coordination shell of atoms
can be described as ideal, distorted, or defective octahedra.
According to various groups, the local arrangement of atoms
can differ in the glass [11,15-22]: a significant fraction of
germanium atoms have four short bonds with predominantly
tetrahedral coordination.

The application of pressure allows one to alter local coor-
dination without changing composition or temperature. This,
in turn, can elucidate the relaxation dynamics in the glass. For
example, one could use pressure to squeeze some germanium
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atoms from a small, e.g., tetrahedral, shell (possible in the
glass) into a larger, octahedral shell (only allowed coordination
in the crystal). Once the pressure is released, one can determine
if they remain at their new positions or if they move back to a
“glasslike” coordination. If the latter happens, a well-defined
number of germanium atoms with local glassy coordination
might exist, which could make it possible to describe the
disordered phase with an equilibrium theory.

Support for the idea that local order plays the predom-
inant role in some disordered PCMs can be deduced from
density-functional theory (DFT)-based molecular dynamics
simulations: [23] after sudden changes in either volume or
temperature, the stress in glassy PCMs quickly approached
that observed experimentally—already after times too short
for atoms to move much more than one or two angstroms.
Moreover, the relaxation occurred such that several parame-
ters, including the mean coordination number of Ge atoms,
moved away from the crystalline reference values as the glass
aged. This is consistent with the later observation [24] that the
resistivity of the glassy Ge;sSbgs slowly increases with time
rather than approach the conducting, crystalline state. This
could imply that a well-defined metastable glassy state exists,
whose vicinity is approached rather quickly even if long-time
relaxation may be necessary to fully reach it.

In this work, we explore possibilities to construct a Landau
theory for PCMs. Since the transition between crystal and glass
can be invoked by stress without passing an intermediate liquid
phase [9-11], we use pressure rather than temperature as the
driving force. The equation of state (EOS) that is deduced from
the theory is compared to new experimental and numerical
data. To isolate the effect of local coordination from that of the
squeeze-out of vacancies, we restrict our attention to PCMs
with a negligible number of vacancies in the crystal. We thus
disregard any GeTe-Sb,Tes pseudobinary alloys, also because
these alloys lie close to the flexible part of a Maxwell-rigidity
contour map [22] where glassy relaxation is non-negligible.

An additional incentive to focus on Ge, Sb;_, is that stress-
induced amorphization and crystallization in these alloys
occur at more moderate pressures than in Ge,Sb,Tes, i.e.,
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at estimated pressures of p, = —4 GPa for x = 0.15 (tensile
pressure for amorphization) and p. = 2 GPa (crystallization)
versus p, . = O0(20 GPa). Moreover, a Maxwell-rigidity anal-
ysis of Ge;Sbg indicated that this alloy has a large number
of constraints, implying a large connectedness reducing
second-neighbor motion [22], whereby relaxation in the glass
should be small. Lastly, the transitions in our alloys occur
between the technologically relevant phases, which are both
(meta)stable at ambient conditions. Thus, if the transition turns
out reversible, it could become possible to switch our alloys
through small-scale piezoelectric actuators. If the technical
challenges could be solved [5], stress switching should be
faster and less energy demanding than thermal switching,
which excites many “irrelevant” modes and is furthermore
limited by thermal conductivity rather than by the speed of
sound.

II. METHODS
A. Experimental methods

The Landau theory presented in this work is compared
to experimental and numerical results on Ge,Sb;_,. In our
experiments, we used the same diamond anvil cell (DAC) and
followed the same protocol as that described in Ref. [12],
except that this time, additional experiments were conducted
at the PDIFF Beam line (at 19.0 keV; A = 0.06525 nm) of the
ANKA synchrotron at the Karlsruhe Institut fiir Technologie
(KIT). Densities of the amorphous phase were deduced from
the broad peaks, which were gauged by using the well-known
8% density difference for the amorphous and crystalline
phase, which coincided with the density difference seen in our
simulations. We refer the reader to Refs. [11] and [24] to justify
the comparison between the sputtered experimental samples
and the samples that are temperature- or pressure-quenched in
silico.

X-ray diffraction (XRD) spectra, representative of those
from which we deduced equations of state, are shown in
Fig. 1. The load and relieve cycle begins at the bottom and
ends at the top. Broad peaks at ambient pressure are indicative
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FIG. 1. (Color online) Representative  x-ray  spectra  of
Gey.15Sbg g5 during compression and subsequent decompression. The
bottom spectrum represents the initial sample.

PHYSICAL REVIEW B 89, 054101 (2014)

of the amorphous state. With increasing pressure, a phase
transformation occurs. Coexistence of both phases is observed
at 1.7 GPa, where sharp but low-intensity Bragg peaks can be
seen in addition to the broad features. After crystallization,
a Peierls distorted structure emerges. As observed previously,
the distortion is reduced with increasing pressure, as evidenced
by the convergence of the (104) and (110) peaks. At 12.8 GPa,
the Peierls distortion is entirely squeezed out and a simple
cubic structure results. After decompression, the Peierls
distorted structure is restored and the peaks are separated
again. A transformation back to the amorphous state from
high pressures does not occur in this example.

Raman spectroscopy was performed using a WiTec alpha
300R Raman system with 532 nm excitation emerging from a
frequency-doubled Nd:YAG laser. The spectra were detected
by a cooled CCD. The power density at the sample was kept
at a low level to avoid crystallization. The laser power was
0.3 mW at a focus spot of ~7um diameter with a Mitutoyo M
Plan Apo 20 x (long working distance) objective. The pressure
was determined in the ruby fluorescence method [25].

In more detail, Raman images (50 x 50 pixels, 80 x
80 um?) were recorded using a 1800 grid. Each pixel con-
tained a full Raman spectrum between approximately 0 and
1200 cm~!. The raw Raman spectra in each pixel represent a
set of potential mixtures of different chemical stoichiometries
or structural phases—depending on the displayed sample
position. The Raman spectra are represented by a matrix M,
where spectral intensities are given by the matrix rows and
spectral frequencies are found in the matrix columns. For a
Raman scan of N pixels with K frequencies, Misa N x K
matrix. The resulting intensity matrix was analyzed using
principal component analysis (PCA) [26,27], a mathematical
procedure based on orthogonal transformations to convert
(experimental, possibly linearly dependent) observations into
linear-independent (orthogonal) observations, i.e., the prin-
cipal components (PCs). PCA is frequently used to analyze
spectroscopy data [28-34]. The PCs are sorted with respect
to descending variance along their principal axes. The PCA
expresses the matrix M as the product of two new matrices
S (scores) and L (loadings), M = SL”. The scores are the
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FIG. 2. (Color online) Typical Raman spectra of Geg 5Sbg s
at different pressures. The bottom spectrum represents the initial
sample.
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FIG. 3. (Color online) Raman spectra of (a) an amorphous sample at 1.0 GPa and (b) a crystalline sample at 2.0 GPa. Dashed blue lines
are individual Gaussians fitted to the spectra. Solid red lines represent the sum of the blue lines.

coordinates of the original raw spectra in the new coordinate
system of the principal components. Raman spectra of different
chemical components or different phases are then generally
recovered as different principal components.

We used the standard algorithms for PCA as implemented
in the MATLAB statistics toolbox (version 7.11.0 R2010b,
Mathworks Inc.). The raw data was preprocessed using a
MATLAB-based cosmic-ray removal filter. Additional prepro-
cessing, such as background subtraction, was not necessary
and therefore not applied. A homogeneous background signal
is automatically accounted for in the PCA.

Figure 2 shows representative Raman spectra of initially
amorphous Geg 5Sbggs obtained from the PCA analysis.
At 1.5 GPa, the first signs of the crystalline phase can be
observed. The transition appears nearly complete at 2.0 GPa.
Further compression is followed by peak shiftings due to mode
stiffening.

To obtain information about the microscopic order, Raman
spectra were fitted to a superposition of Gaussians. Represen-
tative fits are shown in Fig. 3 for spectra obtained from (a) an
amorphous and (b) a crystalline Geg 15Sby g5 alloy. Differences
are revealed in white-light images of the sample inside the
DAC, as evidenced in Fig. 4.

B. Numerical methods

For the simulations, we used the same DFT-based molecular
dynamics (MD) method as in Ref. [11] and in Ref. [35],
Chap. 5. The system was composed of 28 Ge and 164 Sb
atoms. The nuclear and electronic degrees of freedom were
propagated within the Car-Parrinello molecular dynamics

(a)1.0 GPa, amorphous

(b)2.0 GPa, crystalline

FIG. 4. (Color online) Optical images of the sample giving rise
to the spectra shown in Fig. 3.

(CPMD) framework [36] using a plane-wave basis with an
energy cutoff of 35 Ry and the Becke—Lee-Yang-Parr (B-LYP)
density functional to approximate electronic exchange and
correlation effects [37,38]. Nosé-Hoover chain thermostats
[39] were used to ensure constant temperature and adiabatic
separation of the electronic and nuclear degrees of freedom.
Pseudopotentials were of the Martins-Troullier type [40].
Amorphous samples were generated by two means: (1) thermal
quench of the liquid from 973 to 300 K at different rates, and (2)
application of a tensile load at a rate of —0.25 GPa/ps. In both
protocols, four-coordinated Ge defects appeared in the glass.
These were all tetrahedral as already found in simulations of
the related GeSbg alloy [22].

The liquid configuration was generated by first melting
the initial crystalline GeSb configuration for 10 ps at 973 K.
Amorphous glass configurations were then generated by
thermal quenching from the last frame of this liquid configu-
ration. Three different quenching rates were used to cool the
material. First, a fast quench, in which the temperature was
instantly reduced from 973 to 300 K and the trajectory was
equilibrated for another 2 ps, essentially yielded a frozen-in
liquid configuration with little change in structure from the
liquid reference state. Second, a medium quench with a cooling
rate of approximately 70 K/ps was simulated for 9 ps, yielding
a more significant rehybridization of both Ge and Sb local
configurations. Third, a slow quench with a cooling rate of
approximately 40 K/ps was conducted for 16 ps, yielding
structural changes similar to the medium cooling rate, but
with larger drops in conductivity (see Ref. [11]).

For the pressure anneal, the initial crystalline structure
was placed under increasing tensile load at the rate of
—0.25 GPa/ps, until the material amorphized at approximately
—4.0 GPa (the volume of the box was incrementally increased
and the resulting tensile load was determined by measuring
the resulting stress tensor). Whether or not this seemingly
large tensile load was an overestimation of the true yield
strength of the material is not known at the moment. It seems
likely, however, that the material would have yielded earlier
if simulation times and the box size had been larger. After
the material yielded, it was allowed to equilibrate for a further
4 ps under the large tensile load. Finally, the load was removed
(the material was returned to its original volume), and the
recompressed PCM was further allowed to equilibrate for
another 2 ps. If the material was not given enough time to

054101-3



MATTHIAS THIELEN et al.

disorder at the transition tensile load, it recrystallized again
when recompressed. This should not impact the metastability
of the amorphous state in a real device, as the time scales
in a technical application would at least be an order of
magnitude larger than those accessed by the simulation, giving
the material ample time to fully disorder.

Compressibilities (for the EOS curves) were computed
[41] by varying the volume of selected frames from the
dynamics trajectories, using an increased cutoff of 60 Ry. The
coordinates of each configuration were relaxed via damped
dynamics until the largest atomic force on the atoms was less
than 0.001 Ry/bohr. Energies were converged to 107° Ry,
with tighter convergence criteria on a few test systems
(1071° Ry) yielding indistinguishable results. To estimate
adiabatic compressibilities, the volume of the glass was
changed isotropically from a reference point without relaxing
any structural degree of freedom.

Statistical uncertainties for the simulation data were gen-
erated by averaging over several separate configurations from
the liquid/amorphous trajectories. The uncertainties for the
“liquid/solid” data were generated by averaging over five
initial frames separated by 2 ps from the liquid simulation.
The uncertainties for the “glass/solid” amorphous data were
generated by averaging over the structures from the last frame
from each thermal quenching protocol. Each point in the EOS
curves was structurally minimized at the given volume. The
pressure and number of four-coordinated Ge atoms were
obtained after convergence of these structural minimizations.

III. THEORY

It is usually possible to interpret the order parameter ® of a
Landau theory microscopically. While & generally quantifies
the amount of symmetry breaking, it can also relate to
densities. For example, the gas-liquid transition can be cast as
a Landau theory, although both phases are perfectly isotropic.
A transition can only occur if there is a feedback mechanism,
e.g., aspinin the ferromagnetic Ising model tends to align spins
on adjacent sites, which then stabilize the original spin. If the
feedback is strong compared to thermal fluctuations, symmetry
breaking can occur even without external field. It was argued
that such a feedback must exist between different Ge atoms
with glassy disorder because otherwise one can explain neither
why disordered Ge-Sb alloys “relax away” from the crystal nor
why the crystallization pressure p. increases rapidly with the
concentration of Ge or Si dopants in Sb [12]. This observation
motivates us to associate the order parameter with the number
density of atoms with local order not occurring in the crystal,
e.g., that of nonoctahedrally coordinated Ge atoms.

Since the amorphous-crystalline transformation is discon-
tinuous, we propose to use the regular expression for the free
energy of the lattice-gas model,

Fg = %(Va —V)d? — ?@3 + %cp“,
where the three coefficients A, B, C are positive, V is the
volume, and V,, is the volume above which the reference crystal
is unstable against amorphization (normalized, for instance, on
the unit cell of the reference crystal). We neglect the tempera-
ture dependence of all parameters because our experiments are

ey

PHYSICAL REVIEW B 89, 054101 (2014)

conducted at room temperature and thermal effects in related
stress-induced transformations were found to be weak [42].
We note that the third-order term is symmetry allowed if the
order parameter relates to a density (of defects), since the
density remains invariant under a symmetry transformation. If,
however, the order parameter related to a displacive mode from
a crystal with inversion symmetry, then the third-order term
would no longer be symmetry allowed because it would change
sign under a mirror reflection. Moreover, we cannot replace the
term A(V, — V)®?/2 with A(p — p,)®?/2 because we want
to ascertain the nonanalytical behavior of the density near the
phase change point.

An alternative free-energy expression Fyp, can be motivated
from systems in which displacive modes break inversion
symmetry [43]. The simplest dependence of Fy, on &
producing such a discontinuous transition reads

Fam = (v = vyo? = St 4 D 2

dm — D) ( a ) 4 + 6 5 ( )
where the coefficients A’, C’, and D’ are again positive. In the
specific case, one could argue that the motion of Ge atoms from
quasioctahedral to tetrahedral sites reflects such a displacive
mode. Alternatively, collective modes such as they occur in the
phase transformation between the (resonant-bonding) simple
cubic phase of antimony and its (symmetry-broken) «-arsenic
structure (A7) would obey Eq. (2). The identification of the
correct interpretation necessitates additional information about
the microscopic order, which is discussed further below.

The values of ® minimizing the free energy satisfy
dF/9® = 01in all phases, ® = 0 in the crystal, and

Z{+ 1+ 8EWV -V,

o &)
\/%{14_\/14_%(‘/—‘/‘4)}7

as well as 3°F/9®> > 0. When 9%F/d®? approaches 0",
small thermal fluctuations can induce the phase change.

To introduce coupling to external pressure, we need an
expression for the Gibbs free energy of the crystal. For the
semiquantitative analysis pursued here, we restrict ourselves
to a scalar theory and thus use the volume V rather than the
strain as the second state variable of our material. Because
we are interested in the EOS over a large pressure range,
an expression that is only quadratic in volume would be too
inaccurate. We therefore resort to a Gibbs free energy of the
crystal, which includes stiffening with pressure [44],

BoV Vo/ V)5
G — 0, {1 (0,/ )0}
B, B)—1

Fy glass

Fyn glass,

BoyVo
B, —1

+ pV. “)

Here Vy and By denote the specific volume and the bulk
modulus at zero pressure, respectively, while B, = dB/dpisa
measure for pressure-induced stiffening. Many simple crystals
take values in between 3.5 and 4, irrespective of the nature of
the chemical bonds. This is why we use B; = 3.75 as a generic
value.

Depending on the model used, the total Gibbs free energy
per atomreads either Gg = G + Fy for the lattice-gas model
of Ggm = G + Fgn for the displacive-mode approach. In
either case, minimizing G with respect to V results in the
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following EOS:

_ By Vo) A2
B

which reduces to the Murnaghan equation of state [44] for a
perfect crystal. To yield the EOS of the glass, we insert the
appropriate solutions for ®(V') from Eq. (3).

The bulk modulus is defined as B = —dp/d1nV. The
derivative can be taken with two different side constraints.
If the system is given enough time to relax to the (poten-
tially metastable) equilibrium, i.e., assuming 0G /9P = 0, we
obtain the isothermal bulk modulus By. Alternatively, when
compression is too fast to allow structural relaxation within
the bulk, i.e., for ® = const, the adiabatic bulk modulus Bg
is obtained. Since the ideal-gas contribution to elasticity is
negligibly small for solids, we disregard it in the calculation
of By and Bg.

IV. RESULTS

A. Equation of state

We determined the EOS for two different Ge,Sb;_,
compositions and adjusted the free parameters of the Gibbs
free energy to match the data. Results are shown for x = 0.15
in Fig. 5 and for x = 0.25 in Fig. 6. By, V), and one parameter
in F(®) can be used to gauge the units of p, V, and &. For
the latter, we chose C = ByV,y and D’ = ByV,, in the case
of the gas-liquid and displacive-mode picture, respectively.
By =3.75 is a quasiuniversal value, which leaves us with
three free dimensionless adjustable parameters, i.e., V,/Vj,
and either A/C, B/C or A’/D’, B'/D'. The three adjustable
dimensionless parameters can be gauged to match exactly three
observables. We chose them to be p., the latent density at
the crystallization transition, and the glass density at ambient
pressure. Latent density and p. could be determined with
relatively high accuracy because amorphous and crystalline
spectra coexisted at p.. Once the dimensionless parameters

02 — liquid-gas approach 4
8 --- displacive mode approach
experiment amorphous
experiment crystalline
simulation amorphous
simulation crystalline

> 0o » e

0.1 &

/B,

0.0

RO Y S E R S B B

FIG. 5. The equation of state of Geg;55bygs as measured ex-
perimentally (closed symbols) and determined numerically (open
symbols). Full (black) and dotted (gray) lines represent the lattice-gas
and displacive-mode Landau approach, respectively. Arrows indicate
the instability points. V; and B, represent experimental volume per
unit cell and bulk modulus at ambient conditions, respectively.
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FIG. 6. The equation of state of Ge,5Sbg 75. Symbols as in Fig. 5.

are fixed, we no longer have the possibility to “fudge” the
curves.

InFig. 5, we find almost perfect agreement for the x = 0.15
alloy when calculations are based on the Gibbs free energy
of the liquid-gas model. We interpret the almost perfect
agreement for the x = 0.15 curve between Landau theory and
simulation as a fortuitous cancellation of two small errors:
As mentioned above, we estimated the isothermal EOS for
the glass with high-temperature simulations. This leads to an
overestimation of the density of <1%. At the same time, our
DFT simulations underestimate density by <1%, as can be
seen from the crystalline reference data. The displacive-mode
picture is less satisfactory, except for the crystalline phase,
where both models coincide. In particular, the small hysteresis
is flawed because it indicates that the glass (in the displacive
mode model) has smaller enthalpy than the crystal at ambient
conditions. Similar trends are observed for the x = 0.25 alloy,
as shown in Fig. 6. The parameters used to produce the Landau
theory are summarized in Table I.

Two more results support the lattice-gas ansatz: First, the
termination point of the crystalline EOS, as determined from
experimental data, coincides with a theoretical prediction [11]
of the (negative) amorphization pressure of p = —4 GPa. For
x = 0.25, the predicted instability point of the displacive-mode
model lies within the experimentally observed stability regime,
while the lattice-gas model correctly predicts the material
to remain stable at non-negative pressures. Second, we find
that the EOS of the quenched glass (isotropic compression of
the DFT glass not allowing structural relaxations) are almost
identical with those of the crystal, except that they are shifted

TABLE I. Summary of the dimensionless parameters used for
the fitting of the EOS of Ge,Sb,_,. The variables a, b, v, refer to
the lattice-gas model, while a’, b', v} relate to the displacive-mode
picture.

Gey.155by s Gey.258by.7s
a b V, a b Va
24.88 24.19 1.10 20.89 20.38 1.08
a b’ v, a v v,
18.93 10.73 1.01 16.52 6.99 0.97
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dé\compressed /
fromp=2.95 GPa. /

FIG. 7. XRD spectra of amorphous Ge,5Sby 75 compressed to
p =2.95 GPa (left) and decompressed back to ambient pressure
(right). The partial crystallinity is reversed. The Bragg peaks are
related to the NaCl reference crystal included in the DAC. Peak
intensities are shown in Fig. 8.

4.

by 3 GPa (not shown explicitly). This last value coincides with
the numerical value we obtain for the term —A®2/2 in Eq. (5)
for the gas-liquid (gl)-Landau approach. As a consequence,
we find almost identical values for B?FT - BTDFT = 14.7 GPa

and B — B = 15.1 GPa, while the dm result BI™ — Bd™ =
10.6 GPa is not as good.

B. Reversibility

The Landau approach is based on the idea that structural
changes are reversible. As it is currently not feasible to
attain negative pressures in DACs, we cannot produce direct
experimental evidence that the full transition from the glass to
the crystal can be reversed through tensile loads. However, as
demonstrated in Fig. 7, we reversed most of the partial crys-
tallinity when decompressing from a pressure just a little below
Pc. Only when crystallinity exceeded 25% did we no longer
recuperate the amorphous phase after decompression. Partial
crystallinity can be rationalized theoretically by considering
the small but experimentally unavoidable pressure anisotropies
in the DAC. Its quantitative modeling would require the use
of (direction-dependent) square-gradient corrections to the
enthalpy, which is beyond the scope of this work.

The compression-decompression cycle, from which the
snapshots in Fig. 7 are deduced, is presented in more detail
in Fig. 8. The maximum pressure was chosen to be just at
the onset of crystallization. At that point, two phases can
coexist due to small pressure heterogeneities in the DAC
chamber. After decompression back to ambient pressures, the
crystallinity decreases to some few percents and remains below
1%. A small densification of O(1%) remains of the initially
sputtered sample after decompression from 3.0 GPa.

C. Microscopic interpretation of the order parameter

The microscopic interpretation of the order parameter still
needs to be substantiated. To this end, we exploit the obser-
vation by Mazzarello et al. [20], who identified weak features
in Raman spectra for frequencies 190 < w < 250 cm~!. They
could be related to modes involving tetrahedrally coordinated
germanium atoms. We were able to fit the Raman data with 3
(4) peaks in the amorphous (crystalline) phase of Geg 15Sbg gs.
Assuming that the intensity of each peak is proportional to the
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XRD intensity (arb. units)
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FIG. 8. (Color online) Compression-decompression cycle of
Gep25Sbg75. The partial crystallinity attained at p = 3.0 GPa is
essentially lost.

density of the corresponding atoms, it is possible to deduce the
order parameter from Raman experiments as the ratio of the
peak intensities related to the vibrations of tetrahedrally and
six-coordinated Ge atoms.

Figure 9 demonstrates the consistency of the number of
tetrahedral Ge atoms as deduced from the lattice-gas-based
Landau theory, the Raman experiments, and the simulations.
As can be deduced from the scan indices in Fig. 9, the number
of tetrahedral Ge atoms recuperates after decompression in the
amorphous phase, e.g., after scan 6, but no more at p > 0 after
crystallization, e.g., after scan 8. Note also that the Landau
theory predicts the glass to become unstable at a similar
negative pressure where simulations no longer find octahe-
dral Ge atoms (acting as “predetermined breaking points”).
Simulations providing the order parameter are discussed in
the remainder of this section.

0.8 | L B B
F _4,_ — Landau (lg)
~. -— Landau (dm)
0.6F "=+ ® Raman
- x liquid/solid
Ja o glass/solid
0 0.4 X | -
& o
s
0.2 .
(9] (s
% o ®
0.0F -
PP B TN S PR
-0.05 0 0.05 0.1 0.15 0.2

FIG. 9. (Color online) Relative number of tetrahedrally coordi-
nated Ge atoms in Gey ;5Sby g5 obtained after constant-volume energy
minimizations of the 7 =973 K liquid (green crosses) and the
T =300 K glass (red circles). For clarity, representative error bars
are given for one data point only. Full lines reflect Landau theory.
Landau theory and Raman data (blue circles) have been normalized
to match simulation results near zero pressure. Numbers on the Raman
symbols index the scans.
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FIG. 10. (Color online) Comparison between local structures for liquid Gey 15Sbg g5 at (a) 973 K and (b) the quenched amorphous samples
at 300 K. (c) Coordination probability for Ge and Sb in each of the simulations. (d) Average-angle distributions around four-coordinated Ge
and three-coordinated Sb. The majority of four-coordinated Ge atoms are in tetrahedral configurations, with bond angle distributions centered

around 109°.

Figure 10 compares the liquid structure of Ge;sSbygs
at 973 K with that resulting from the slow temperature
quench at 300 K. Both structures are highly disordered,
as can be seen in Figs. 10(a) and 10(b). However, there
are subtle and nevertheless important differences in the two
structures. This is made evident in Fig. 10(c), which shows
the coordination probabilities of both Ge and Sb measured
in the simulation leading to the shown structures. In the
liquid, germanium is approximately 50% four coordinated
and only 40% three coordinated. Once cooled, the number of

four-coordinated germanium increases to approximately 70%,
with the remainder being three coordinated. This increase in
tetrahedral germanium coordination can also be seen from
the average-angle distribution functions shown in Fig. 10(d).
These distributions measure the average angle around a given
atom type with a particular coordination. The distributions
show that the signal of tetrahedrally bonded germaniums (there
are sharp peaks centered at 109°) increases by a factor of 3
after the quenching protocol. There is also a change in the
antimony average structure, although not as pronounced as in
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FIG. 11. (Color online) Comparison between local structures for (a) crystalline Gey5Sbgss and (b) a pressure-annealed “amorphous”
samples at 300 K. (c) Coordination probability for Ge and Sb in each of the simulations. (d) Average-angle distributions around four-coordinated
Ge and three-coordinated Sb. The majority of four-coordinated Ge atoms are in tetrahedral configurations, with bond angle distributions centered

around 109°.

the germanium case. After the thermal quench, 86% of the
antimony end up in their preferred three-coordinated state, as
can be seen in Fig. 10(c).

V. CONCLUSIONS

The pressure anneal shows a similar propensity to generate
tetrahedral germanium as the temperature anneal. This can

be seen in the comparison between the structure of a 4 ps
equilibrated crystal (0 GPa) and that of system equilibrated for
4 ps at —4.0 GPa (tensile) load in Fig. 11. While the lamellar
(“long-range”) structure of the A7 parent antimony lattice
remains visible in the stretched sample, the local environment
of many germanium atoms has changed. Specifically, in the A7
crystal structure, each atom has three short bonds to neighbors
within their lamella and three long bonds to the next-nearest
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neighbors located in the adjoining layer. Under sufficiently
large tensile load, a few of the germaniums break one of
their short bonds and create a tetrahedral complex by forming
two short bonds with the adjoining layer. This process is akin
to the so-called “umbrella” flip [15] in the 225 material.
In the current situation, it can be seen as a self-healing
process, in which the onset of delamination is impeded
by germanium atoms adjoining two departing lamella back
together. This structural rearrangement is quantified in the
coordination data presented in Fig. 11(c). In the crystal, only
20% of the germaniums are four coordinated. This number
doubles in the annealed configuration and is expected to
grow further if the system is given more time to relax.
The tetrahedral rehybridization is also evident in the average
angular distribution function in Fig. 11(d), with a clear increase
in the number of four-coordinated tetrahedral Ge (average
bond angle around the element about 109°).

In summary, we propose that the amorphous phase of
optoelectronic PCMs should not be regarded as regular glasses
produced by quenching a fluid. Instead, amorphization in
these systems can be interpreted as a condensation of defects
with characteristic local order. A Landau theory with three
dimensionless parameters, which is based on this picture, not
only produces a highly accurate equation of state for the glass,
but it also predicts similar results as DFT-based simulations for
the amorphization stress and the difference between adiabatic
and isothermal bulk modulus. Moreover, the integrated Raman

PHYSICAL REVIEW B 89, 054101 (2014)

signal related to tetrahedrally coordinated germanium atoms
(which are not present in the crystal) correlates with the order
parameter. We also provide direct experimental evidence that
stress-induced partial crystallinity is indeed reversible when
stress is released.

The presented results support the idea that differences
in the (mechanical) properties between our amorphous and
disordered PCMs stem predominantly from changes in the
local structure, even if the detailed intermediate- or long-range
structure certainly affect response function as well. However,
as already found previously [14], ordering of species onto
sublattices in the crystal is not necessary to explain the strong
contrast between amorphous and crystalline PCMs. Local
(athermal) dynamics suffice to invoke the phase change by
stress, which explains why PCMs can be switched so rapidly.
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