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Quantum-kinetic theory of steady-state photocurrent generation in thin films:
Coherent versus incoherent coupling
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(Dated: February 26, 2014)

The generation of photocurrents due to coupling of electrons to both classical and quantized
electromagnetic fields in thin semiconductor films is described within the framework of the nonequi-
librium Green’s function formalism. For the coherent coupling to classical fields corresponding to
single field operator averages, an effective two-time intraband self-energy is derived from a band
decoupling procedure. The evaluation of coherent photogeneration is performed self-consistently
with the propagation of the fields by using for the latter a transfer matrix formalism with an ex-
tinction coefficient derived from the electronic Green’s functions. For the “incoherent” coupling to
fluctuations of the quantized fields, which need to be considered for the inclusion of spontaneous
emission, the first self-consistent Born self-energy is used, with full spatial resolution in the photon
Green’s functions. These are obtained from the numerical solution of Dyson and Keldysh equations
including a nonlocal photon self-energy based on the same interband polarization function as used
for the coherent case. A comparison of the spectral and integral photocurrent generation pattern
reveals a close agreement between coherent and incoherent coupling for the case of an ultra-thin,
selectively contacted absorber layer at short circuit conditions.

PACS numbers: 72.20.Jv, 72.40.+w, 78.20.-e, 78.20.Bh, 78.56.-a

I. INTRODUCTION cesses within the NEGF formalism. The second type of
electron-photon self-energy relates to the non-local pho-
ton Green’s function (GF) on the level of quantum sta-
tistical mechanics and includes the coupling to incoher-
ent field fluctuations. It enables a consistent description
of optical generation and radiative recombination by in-
cluding the coupling to any available photon modes of
the device, from the leaky modes occupied by incident
solar photons to the guided modes populated by spon-
taneous emission. This is an essential prerequisite for
the assessment of the radiative efficiency limit in novel
nanostructure-based solar cell devices.

The paper is organized as follows. After the formula-
tion of the general NEGF theory of optoelectronic pro-
cesses for a two-band semiconductor model in Sec. [T} the
effective self-energy for coherent coupling is derived in
Sec. [T} The main body of the paper is formed by Sec. [[V]
on the application of the NEGF theory to the simulation
of charge carrier photogeneration in thin semiconductor
films for coupling to classical, average fields and to the
non-equilibrium statistical ensemble average of field op-
erator pairs. For both classical and quantized fields, ex-
pressions for the local photogeneration rate, the local ab-
sorption coefficient and the absorptance, as well as the
resulting photocurrent, are formulated in the microscopic
NEGF picture and evaluated via numerical simulation for
a prototypical thin-film solar cell architecture.

Among the state-of-the-art theories used to describe
the operation of complex nanostructure-based optoelec-
tronic devices, e.g., quantum well and quantum dot lasers
and light-emitting diodes, quantum-kinetic formalisms
are most powerful in terms of both physical insight and
predictive power provided”. However, the simulation of
devices such as nanostructure-based solar cells requires
the development of a unified picture of quantum optics
and quantum transport?, since an accurate description
of both optics and charge transport is crucial to capture
the impact of complex dielectric and electronic nanos-
tructure potentials on the device performances. There,
one is faced with the problem of different representations
of the quantum-kinetic theory conventionally used. In
quantum optics, the focus is on transient or ultrafast
phenomena, with standard descriptions based on density
matrix theory corresponding to the equal time Green’s
function formalism®. In quantum transport, the oper-
ating regime of interest is the steady state, which on the
quantum-kinetic level is described by using the Fourier
transform to the energy domain of the relative time in
the two-time Green’s function®.

In this paper, two different approaches to the solution
of the problem are presented. Both are concerned with
the formulation of an electron-photon self-energy com-
patible with the steady-state non-equilibrium Green’s
function (NEGF) formalism of quantum transport. In

the first case, the self-energy describes the coupling of II. QUANTUM-KINETIC THEORY OF
the electronic system to coherent fields as obtained from ELECTRON-PHOTON INTERACTION IN A

classical solutions of Maxwell’s equations. It establishes TWO BAND MODEL

the connection to conventional description of light at-
tenuation in solar cells and provides a computationally The electronic model system under investigation is a
efficient treatment of stimulated electron-photon pro- simple two band model of a direct gap semiconductor


https://core.ac.uk/display/35009288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

film furnished with ohmic contacts and coupled to an ex-
ternal photon field®, which is treated either classically
or quantum mechanically. The Hamiltonian of the elec-
tronic system thus reads

H=Hy+ Hey + He + Haiss. (1)
H, is the Hamiltonian of the noninteracting isolated
mesoscopic absorber plus the Hartree term U(r) from
the solution of the macroscopic Poisson equation, corre-
sponding to a mean-field treatment of carrier-carrier in-
teraction. H.. describes the light-matter interaction and
He the (selective) coupling to contacts. At this level, the
theory is able to cover the operation of an ideal solar cell.
The generic term H ;s encodes dissipative processes such
as electron-phonon interaction as well as non-radiative
recombination processes and is not considered here. The
carriers in conduction (c¢) and valence (v) bands are de-
scribed by field operators \i/b(r,t), b = ¢, v, defining the
charge carrier Green’s functions via

Gupl(L,1) = — 5 (T (D) (1)e 2)
for band indices {a,b} € {¢,v} and 1 = (r1,t; € C),
where C denotes the Keldysh contour?. The electromag-
netic field is described in terms of the vector potential
operator, A = Acoh + Amc which is decomposed into
a coherent contribution Acoh corresponding to coherent
light sources and a contribution A;,. from incoherent
light sources and from spontaneous emission. The coher-
ent vector potential is related to the time-dependent part
of the classical electric field £ via the standard relation

—g <Acoh (I', £)>C = S(I‘, t)

ot ®)

The photon Green’s function D, on the other hand, in-
cludes the incoherent field ﬂuctua‘clons10

D, (1,2) = (A1) (AL (2)c

(4)

o A A @) -

where o is the magnetic vacuum permeability.

In terms of the above field operators, the electron-
photon coupling component in the Hamiltonian for the
electronic system is expressed as follows:

e 4 R
He(r,t) =— m—OA(r,t) )

(6)

In the NEGF picture of photogeneration, the effect of
irradiation on the electronic system is considered in the
form of a self-energy that renormalizes the carrier Green’s
function in the solution of the Dyson equations. For weak
coupling, the self-energy can be derived within many-
body perturbation theory using the Hamiltonian ,

)

from the expansion of the perturbed (photon assisted)
carrier Green’s function

7 i . R .
Glr,tix',¢) = — (e ke RO, B, 1))
c
(7)
To first order in the vector potential, perturbation theory
results in the singular self-energy term

23 (1) = fmiO<A<1>>c p(1) = —m—OAcoh< ) p(1),
(8)

which corresponds to the interband term in the effec-
tive Hamiltonian originating in the coupling to transverse
photons. To second order in the vector potential, the self-
energy corresponds to the random phase approximation
(RPA) expression+12

DRPA(1, 2) —zh,uo( ) Zp (1,1)G(L,2)

X 13”(2)D,w(2,l =1, (9)

where p is the momentum operator and pH(1,1') =
[p*(1) — pH(1")]/2. This self-energy can also be derived
via functional derivative techniques™®™2. The photon
Green’s functions in @ are obtained from the corre-
sponding Dyson equationg®16:

/C 03 [D5 L, (1,3) — T,5(1,3)] Dpu(3,2) = 6 (1,2),
(10)
where Dy ,,,, is the free propagator defined by

1 02
028152:| 6#1/6(172)7 (11)

and 0., (1,2) = 0(t; — t2)5“ uv(r1 —12) is the transverse
0 function. In Eq. ., IT is the photon self-energy de-
scribing the renormalization of the photon Green’s func-
tion due to interaction with the electronic system. The
RPA photon self energy due to interband transitions’
is given in terms of electronic Green’s functions and mo-
mentum operator elements as follows 12

Dyl (1,2) = [Al -

2
IEA(L2) = = ihpo (- ) (1. 1)G(L2)
x p"(2)G(2,1)]1=1.

For the comparison of the two types of electron-photon
self-energies, the effects of the singular interband term
needs to be transferred to an effective two-time intraband
self-energy, which can be achieved via a band decoupling
procedure, as shown below.

(12)

III. EFFECTIVE INTERBAND SELF-ENERGY

FOR COHERENT COUPLING

In the following, a band decoupling scheme similar to
that introduced in Ref. [I8 will be applied to the two



band model. The procedure was given in the appendix
of Ref. [19! for a general singular self-energy term, but for
the sake of clarity and completeness will be repeated here
for the specific case of the electron-photon interaction 2%
Starting point are the Kadanoff-Baym equations for
contour-ordered non-equilibrium Green’s functions®Y,

2,1,

Gy (L DG(L,1) =6(1,1") + / d23(1,2)G(
C

Gy (L) = (mjtl—[Hom)] )6(1,1’>6ab, (15)

and G, is defined in . Real-time decomposition
rules?? applied to (3] provide the coupled equations
for the retarded components of the intra- and interband
Green’s functions,

C:0 cc(l 1)GR(1 1 ) 6( /) + 26 ( )GRC(L 1/)
/d2ER (1,2)GE(2,1), (16)

" / 23R (1,2)GR (2, 1), (17)
Introducing the new quantity

GE =[Gy, - 2R (18)

0,vv

in , the retarded interband GF can be written as
GhO.1) = [(@Gh02E.@GCE2).  (9)

Inserting the above expression in yields a closed
equation for the intraband GF,

GE(L1) =[Gy L(1,1) = ZE(1,1)
- —1
= 2L, (GE (1,1)25,(1)] (20)

= [égga, 1)~ SR, 1')} - (1)

where the effective band-coupling self-energy ¥ was de-
fined,

See(1,1) = 30, (1)G,(1,1)55,(1). (22)

Similarly, the lesser and greater components of the
Green’s functions can be decoupled: starting from

Goeo(1L,DGL(1,1) =

+ [estaoesen+ [esieie)
(23)

Sen(DGr(1,1)

Goa(1,1)G(1,1') = 3. (1GL(1,1)

+/d2EvRv(172)jS(2, 1’)+/d22§v(1,2)G;‘C(271’)7
(24)

the interband correlation or coherent polarization func-
tion is written as

G:.(1,1) /d2 GR 1,2)22 (2)G5(2,1)

+ G5, (1,2)20.(2)GA(2,1)|,  (25)
where

G, (1,1) /d2 /d3GR 1,2)85(2,3)GA,(3,1')
(26)

was introduced. Replacing the interband term in
then yields the intraband correlation function

GS(1,1) /d2/d3GR12

+3502,3)]GAB ) @)

e(2,3)

with

Ee(11) =22, (DG5, (1,1)2.(1). (28)
The expressions for the valence band self-energy correc-
tions are obtained from analogous derivations as

25 (L,

1) =%2,(1)GL(L,1)2,(1), a=RAS.

(29)

We can now evaluate the effective band-coupling self-
energy expression using the singular interband self-
energies due to the coupling to coherent radiation or
classical fields given in the previous section [Eq. (8]
and compare it to the self-energy for the coupling to in-
coherent radiation [Eq@] In steady-state conditions,
the dependence on microscopic time vanishes and the
relative time dependence is Fourier transformed to the
energy domain. As shown in Ref. [14, using the rotat-
ing wave approximation, the coherently driven interband
self-energies have a combined time-dependence ox e™7,
where the sign depends on the band index and 7 = t; —to
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FIG. 1. (color online) Schematic band diagram representation
of a flat band solar cell architecture with finite photocurrent
flow enabled by carrier selective contacts: electrons (e™) are
blocked in the conduction band at z = zo via an infinite bar-
rier potential in the conduction band energy Ec, while holes
(h*) are reflected at z = zmae due to a similar barrier poten-
tial in Ev. For closer resemblance to actual thin-film solar cell
configurations, an additional back reflector layer is considered
in the optical simulations.

is the relative time, which provides the Fourier transform
SS (11,10, E) = / dhw [zﬁv(rl,im;)
X /dT@%(rl,rg,T)e%(E_hw)Tch(rz, hw)} (30)
— [ e )G (01,70, = )2, ),
(31)
and
>S5 (ry,19, F) = / dhw¥? (r1, hw)
x G (r1, 19, E + hw)¥l, (ra, hw). (32)
Inserting the explicit form of the coherent singular self-

energies and integrating over photon energies F, =
hw yields the general polychromatic expression

_ e \2
Yo (r1,re, E) = (%) %V:/dE’YA#(rlaE’Y)pgb(rl)
x Giy(r1,10, EF ) A} (ra, E,)pls (r2), (33)

where the negative sign is for a = ¢ and the electromag-
netic vector potentiallis normalized to the total intensity,
i.e., it has units (eV)z /(Am).

IV. PHOTOGENERATION IN THIN FILMS

A large variety of advanced optoelectronic devices with
nanoscale active region are based on ultra-thin semicon-

ductor films. Here, as a simple model system for the
evaluation of electron-photon coupling, an intrinsic GaAs
slab at short circuit conditions is used. Photocurrent rec-
tification is achieved via the imposition of carrier selective
contacts, which is sufficient for photovoltaic operation?,
and has already been applied in the NEGF simulation
of nanostructured solar cells*®, The architecture shown
in Fig. [1) deviates minimally from the standard flat band
bulk situation in terms of electronic structure, but pro-
vides at the same time complete charge separation. For
the system to show more resemblance to the situation
encountered in actual thin-film solar cell devices, a silver
back reflector contact layer is added to the right of the
slab for the optical simulation.

Before comparing the optoelectronic response of a
given structure to classical and quantized fields, the
representation of the NEGF formalism is adjusted to the
slab system at hand.

A. Electronic and optical states in thin
semiconductor films

In the layer structure with homogeneous transverse di-
mensions, the description of the optoelectronic properties
can be simplified by using a plane wave expansion of the
field operators for electrons and photons with respect to
transverse coordinates, i.e.,

U(r,t) =A"? Z Bk, 2, t)e™iIm, (34)
k

A(I’,t) A% ZA(QH,Z,t)eiq”'r'“ (35)
q

where A denotes the cross section area of the film. The
corresponding slab representation for the steady-state
Green’s functions is obtained from

G(r,x' E) =AY G(ky, 2,2 E)e™ ™17 (36)
kj

Dy (0,0, B) =A™ S Dy (2,2, B)ei 1),
q

(37)

For each energy and transverse momentum vector, a sep-
arate set of equations for the Green’s functions needs
to be solved. For the charge carriers, the steady-state
integro-differential equations derived from and
read



GR(kH,z,z’,E) :Géz(k”,z,z’,E) —|—/dz1/dz'2 G(If(kn,z,zl,E)ER(kH,zl,zg,E)GR(k”,zz,z’,E), (38)

Gg(k\|7zazl7E) :/dzl/dZQ GR(k”?Z?ZlvE)Eg(k”v213227E)GA(kH5227Z/7E)7 (39)

with
[E—'}'Alo(ku,z)] GOR(k”,Z7ZI,E) == 5(2: —Z/). (40)
The numerical evaluation of the above equations em-

ploys a real-space basis in the dimension perpendicular to

J

(

the film, and a plane-wave expansion in the in-plane di-
mensions in combination with a two-band effective mass
Hamiltonian for the electronic structure?”,

The Dyson and Keldysh equations for the dyadic pho-
ton Green’s functions are found in analogy to their elec-
tronic counterparts in the following form (assuming again

summation over repeated polarization indices):

Dfu(qu,z,z/,E) :Dé%w(qu,z,z/,E)Jr/dzl/dZQD(ia(q”,z,zl,E)Hfﬁ(qu,zl,ZQ,E)Dgy(qH,zQ,z',E), (41)

< <
ny(qu,z,z’,E) :/d21/d22pfa(q“72,217E) [Hﬁaﬁ(q”,zl,z%E) +Hzﬁ(q‘l,Zl,ZQ,E)}D?V(qH,ZQ,Z/,E), (42)

where the self-energy component related to the solution
of the homogeneous problem, i.e., incident fluctuations
that are independent from the state of the absorber, is
given bylU:26

15, (qy. 2. 2", E) =/dZ1/dZQ[Dé%Mi(qHJ,ZuE)
< —
X 'D0>a5(q”,2’17ZQ,E)[ID(?]gl}(CI“yZQ,Z/,E) (43)

in terms of the Green’s functions of the unperturbed sys-
tem. These equations are solved in real space using a
numerical quadrature method?”.

The classical fields for the evaluation of the coherent
self-energy are computed using a conventional trans-
fer matrix method (TMM), with extinction coefficient ob-
tained from the absorption coefficient computed within
the NEGF formalism, i.e., in complete consistency with
the transport properties, such as the photocurrent gen-
erated via coupling to the EM field, as shown in the fol-
lowing.

B. Absorption and photogeneration

The local absorption coefficient at a fixed energy
(~ E,), polarization (~ ) and angle of incidence (~
q), E,) is related to the corresponding local and spec-
tral photogeneration rate g (per unit volume) and local
photon flux ® (per unit photon energy) via

g (qy, z, Ey) = u(q), 2, By )au(qy, 2, Ey). (44)

(

The spectral photogeneration rate can be obtained from
the expression for the local integral radiative interband
volume generation rate G in terms of electronic Green’s
functions and self-energies!?, which for charge carriers in
the CB reads

dE
Go(2) :A_lZ/dz’/%Efc(k”,z,z’,E)

kj
X G;(k‘|,z’7z,E) (45)
=A""! ZZ/dEA, gt (qy, 2, E5). (46)
Beooqy

In principle, the self-energy term contains all the scat-
tering mechanisms present in the interaction part of
the Hamiltonian . While the direct contribution of
intraband scattering vanishes upon energy integration
over the band, dissipative intraband processes, such as
electron-phonon interaction, still affect the rate via the
dressing of the full GF in . At the radiative limit, the
photocurrent at zero bias voltage, i.e., the short circuit
current density Js., is directly obtained from the incident
photon flux and the total absorptance of the slab,

e
Jse = A Z/dE'y'I)(CIHaZOa E’y) : a(qH;Zmavaw)a (47)
q

where the absorptance corresponds to the external quan-
tum efficiency EQE(qy, E;) in this limit. On the other
hand, the short circuit current derives from the quantities



computed within the NEGF formalism as follows™2:

Jsc :jc(zmam) - jc(ZO) = / dz 82](2)

EE/ o dz G.(z),

20

(48)
(49)

where j. denotes electron current in the conduction band,
which is given terms of the charge carrier Green’s func-

tions via
. . eh 1 dE
Je(2) = zl’lglz m—o(az —0y) Z/ ek, 2,2 E).

kj
(50)

Together, Egs. @ and yield the following expres-
sion of the absorptance in terms of the local generation
spectrum:

au(qnazmaxa E’y) :(I);Ll(qﬂ » 205 E’y) / dz gu(qﬂazv E’y)-

20

(51)

1. Coupling to classical fields

For classical fields, the local photon flux is given in
terms of the modal components of the Poynting vector s
and the electromagnetic vector potential in the following
way:

q)#(q\lvzaE’Y) :Su(quZ?E’Y)/E’Y (52)
:an(qﬂ ) %) E’Y)60€0h72E’Y|AIt(qH y %5 E’Y) |23
(53)

where n,. is the local refractive index. Using the electron-
photon self-energy (33)) in slab representation, i.e.,

Yok, 2,2, E) ( ) ZPCU 2)pey (=
x A~ 12/ [ q”,z E )A;(qH,Z/,E,Y)
q

X é;v(k” — q“,Z7 Z’, E — E,Y):| y (54)

in expression for G, the local spectral photogenera-
tion rate acquires the following form:

i *
g"(qy, 2z, Ey) :h—quu(qH,z’Eﬂy)/dz'AH(qH,z',EA,)

I, (qy, 2, 2, Ey),

where II is the photon self-energy related to the non-
equilibrium polarization function of the semiconductor
slab and the momentum matrix elements,

(55)

. € 2 * v
a2 ) = = ihpo (o) ph () (<)

X P;(ql\azvzlvE’Y)’ (56)
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FIG. 2. (Color online) Local electron generation rate as given
by the energy integrand of for the two band effective
mass model of a homogeneous (bulk-like) GaAs slab under
monochromatic illumination with E, = 1.48 eV. The rate
is normalized to the local photon flux and to the maximum
value. Both the kj = 0 component (a) and the momentum
integrated rate (b) show a good agreement between the simu-
lation based on the numerical solution of the NEGF transport
problem at zero bias and the analytlcal evaluation of (46 . us-
ing the exact GF expressions ) and .

with the RPA interband polarization function given in
terms of the charge carrier GF as follows:

oy [

kj
X va(k”

PCU(q”7Z 2 E kH,Z,ZI,E)

- q”azl7 2, E— E’Y) (57)
The absorptance of the slab of thickness d = zj40 —
zp required for the optical estimate of the short circuit
current via is thus given by
au(q|\7zma17Ev) =@, (qy, 20, E, )
; Zmax Zmaz
— dz /
hﬂo

X Au(q”,z B, (qy, 2 ,Z,Ev)}

(58)

To verify the accuracy of the numerical approach cho-
sen to compute the microscopic non-local response of a
thin semiconductor slab, the numerical generation rate
is compared to the analytical result for the integrand of
based on the exact Green’s functions of homoge-
neous bulk material given in the Appendix. The mate-
rial parameters used are m. = 0.067 mg, m, = 0.25 my,
E,=142eV = E., E,o = 0eV and [pe,|> = 25 eV- my.
Flg I(a ) shows the k| = 0 component of the local elec-
tron generation rate spectrum for monochromatic illumi-
naton normalized to the local photon flux, which then

generation rate (norm.)



basically amounts to the evaluation of the energy inte-
grand of the polarization function at photon energy
E, = 1.48 eV. The spectral and spatial pattern are in
excellent agreement with the analytical high-resolution
result. The same holds for the kj-integration of the spec-
tral rate, as inferred from Fig. [2(b).

In most cases relevant for optoelectronic devices, the
electronic spatial correlations, i.e., the off-diagonal ele-
ments of the interband polarization function, decay much
faster than the amplitude of the vector potential inside
the absorber, and A(z") ~ A(z) can be assumed in (55).
In this case, the local absorption coefficient acquires the
simple form

o FLCO
2n,.(qy, 2, E5) E,

- / d/Re[ilL;, (). 2.2, B,)| - (59)
K2 e\ 2
2n7"(q\|727EW)C()E()EV (m0> e[pcv(z)

< [ dn Pz 2 B (60)

which is given solely in terms of the electronic structure
and does not include any information on the propaga-
tion of the light. However, the inclusion of off-diagonal
elements in the electronic Green’s functions is crucial
to account for the non-local nature of electron-photon
interaction®. Figure [3|a) shows the spatially averaged
local absorption coefficient of a homogeneous GaAs slab
of 40 nm thickness for different numbers of off-diagonals
considered in the electronic Green’s functions: more than
20% of the off-diagonals need to be included for an ac-
ceptable reproduction of the full rank result. For the slab
thickness chosen, the full matrix yields already an ab-
sorption coeflicient in close agreement with the analytical
bulk result for the two-band model, as seen in Fig. b).
The spatial resolution of the local absorption coefficient
is given in Fig. [Bc) for the bulk-like system (“open”)
and the slab with carrier selective contacts (“selective”).
The minimum of the absorption of the open system close
to the contacts is due to the assumption of vanishing
off-diagonal contributions to the polarization function in
from outside the slab, i.e., it assumed that there is
no coherence between the carrier wave functions inside
the slab absorber and in the contact, respectively. In
the system with selective contacts, either electron or hole
Green’s functions vanish at the contacts, causing nodes
in the local absorption coefficient.

The absorptance can also be computed directly from
the Poynting vector based on the fields obtained from the
TMM,

au(q|\7'zv E’Y)

au(qH y maz s E'y) =1- Su(qH s Zmax E’y)/sﬂ(qu » 205 E’y)a
(61)

for flux incident at z = z. Figure [3(c) shows the
close agreement between the monochromatic photocur-
rent from the absorptance as given by the integrand of

Ha) full o
1%
10% .....
r 20%
50% —

bulk analyt. o |
40 nm NEGF — |
r NEGF sel. cont. -

average absorption coef. o (103 cm'l)

13514145151551.61.65 141.45151551.61.651.7
photon energy Ey (eV)

3 -1
c abs. coef. o (10" cm™)
© 0 1 2 3 4 5 6 7 8 @
1] 10|
—
<
S E 8¢
L )
8
uj” ) L
> gz 7 Jabs MM E-
2 g ¢en,NEGF ~®~
5 selective 3 6 1
g 16 g
g g 57 1
o
15 . |
14 144 146 148 1.5 152
0 5 10 15 20 25 30 35
position z (nm) photon energy Ey (eV)
FIG. 3. (Color online) (a) Spatially averaged absorption

coefficient of an electronically open 40-nm-thick GaAs slab,
for consideration of different fractions of off-diagonals in the
charge carrier Green’s functions. (b) The absorption coef-
ficient from the full matrix is in excellent agreement with
the analytical result for bulk, while it is slightly reduced and
shows additional oscillatory features for selective contacts.
(c¢) Local absorption coefficient for open and selectively con-
tacted slab systems, with interferences from reflections and
zero magnitude minima from wave function nodes at closed
contacts. (d) Comparison of the photocurrent as obtained
from the absorptance with the terminal current from the full
NEGF transport simulation based on the same illumination
and extinction coeflicient.

(47) and the terminal current obtained from the NEGF
for the same monochromatic illumination, using in the
TMM an extinction coefficient computed from the elec-
tronic structure in consistence with a via
hCO

sulay, 2, By) =au(q), z, Ey) -

_ (heo)®
4nr(q|| s 2y E’Y)E’%

x / d2'Re[il17, (ay. 2,2 B-)| - (63)

and for a 100 nm Ag back reflector (n, = 0.16, k = 5.85).
The proper generation rate under consideration of the
spatial variation of the electromagnetic field inside the
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FIG. 4. (Color online) (a) Local generation rate spectrum
for open and selectively contacted 40 nm GaAs slab with 100
nm Ag reflector and under monochromatic, normally incident
light of 1 kW/m? at E, = 1.48 eV; (b) Integrated local car-
rier generation rate, which is identical for electrons and holes,
with closed contacts resulting in reflection-induced interfer-
ence effects and boundary nodes.

slab is shown in Fig. [d]for both the bulk-like slab and the
system with carrier-selective contacts under monochro-
matic illumination at £, = 1.48 eV, 1 kW/m? and nor-
mal incidence. The spectral generation patterns shown
in Fig. @(a) are identical for electrons and holes, and
show weak negative features away from the resonance.
However, the energy-integrated local generation rate, dis-
played in Fig. (b) is strictly positive. Again, the impo-
sition of carrier-selective contacts modifies the local ab-
sorption due to additional interferences from reflections
and magnitude zeros from wave function nodes at closed
contacts.

The local photocurrent spectrum induced in the open
bulk-like slab system by the local carrier generation rate
is displayed in Fig. a). In the absence of carrier se-
lective contacts, carriers diffuse symmetrically in both
directions, with the result of vanishing net integral cur-
rent [Fig. b)] For the selectively contacted system, the
negative contributions in the generation rate give rise to
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FIG. 5. (Color online) (a) Spatially resolved photocurrent
spectrum for the open slab under monochromatic illumina-
tion of 1 kW/m? with E, = 1.48 eV; in the absence of car-
rier selective contacts, diffusion leads to inverse current flow
towards the minority contacts, with the result of vanishing
net current upon energy integration as displayed in (b). (c)
For carrier selective contacts, reverse current components are
small, and the net integral current (d) is strictly positive and
perfectly conserved.

reverse flow at certain energies (this was also observed for
purely 1D systems in Ref. 29), as revealed in Fig. [5{c),
however, like in the case of the generation rate, the ob-
servable integral current is always positive and the sum of
electron and hole current contributions is perfectly con-
served, as shown in Fig. [5}d).

2. Coupling to the photon GF

Using the slab-expression for the steady-state RPA
electron-photon self-energy,

m

, € N\ Ay s
2k, 2 B) = ihyao () D00 ()5 ()
%

- dE.
A 12/?%[G§(ku —q),2%,E—E,)

el

X Dl%,(qﬂ,z, 2, EW)], (64)
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FIG. 6. (Color online) Photon energy flux in the selectively
contacted slab as computed via TMM and NEGF methods,
showing the close agreement of the two approaches for coher-
ent light propagation, i.e., in absence of spontaneous emission.

in Eq. (46]), the local modal generation rate acquires the
following form:
/ dz

x H;M(q”,z’,z, EW)}. (65)

g“(qy, 2, E,) = — (2wh)~ L(ay, 2,2, Ey)

In terms of the photon slab Green’s functions defined
in (37)), the contribution of the p-polarization to the z-
component of the spectral Poynting vector reads

st(qy. 2z, Ey) = ~ 5 Zhinz('“)z/Re[ (q”,z,z’,Ev)
+ Dy, 2,2 B (66)

Figure 6] shows the close agreement of the optical energy
flux as computed via TMM and the photon NEGF for-
malism with fully non-local photon self-energy 127, From
the modal terms of local rate and photon flux, the lo-
cal absorption coefficient at given angle of incidence and
polarization is then given b with ®,(qy,2, Ey) =
st(qy, 2z, Ey)/E,, and from (51)), the absorptance follows

as
au Qs Zmazs By) = —[27h @, (qy, 20, E4)]
/zm” dz /zm” dz lel,(qu,z, 2 E.)
I3, (a7, 2 Er)|. (67)

It should be noted that the above expression for the ab-
sorptance does not consider any increase in the photon
flux due to emission processes; to that end, the self-
energy component I needs to be replaced by II =
1> — 1<% which for the present case of short circuit
conditions is virtually identical to II”. If reabsorption
is neglected, the GF component D< is directly propor-
tional to the photon flux via D5 = Dy - ®g, where Dy is
independent from the excitation due to the photon flux
dq incident at z = zO. With that, the absorptance
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FIG. 7. (color online) (a) Local charge carrier generation

rate spectrum, (b) local carrier generation rate and optical
rate, (c) local charge carrier current spectrum and (d) integral
current for the selectively contacted slab system, as provided
by the NEGF formalism using the coupling to the photon
GF. The results are in close agreement with those from the
coherent coupling approximation. The local charge carrier
generation rate concides exactly with the optical rate from
photon self-energy and GF.

acquires the form

(qH s Zmac, B ) (27Th)
Zmazx Zmawx
/ dz/ dz Duu(ql\ 2,2 Ey)
x Ty (ay, 2, 2, Eﬁ,)], (68)
where D = DR’D(})%’A’IA)ODS"ADA. This corresponds to

the result found in Ref.

The numerical results for local generation rate and
charge carrier flow in the selectively contacted slab for
coupling to the photon GF are displayed in Fig. As
can be inferred from Figs. a) and b) in comparison
with Fig.[d] the values of spectral and integral charge car-
rier generation rates agree closely with those provided by
the coherent coupling. The same holds for the spectral
and integral currents displayed in Figs. [[c) and [f}(d), if
compared to the results in Fig. |5l Furthermore, as also
shown in Fig. m(b), the charge carrier generation rate co-
incides exactly with the optical rate as computed using
, i.e., in terms of the photon GF and self-energy.



The coincidence with the coherent coupling approxi-
mation originates in the absence of (optical) coherence
breaking mechanisms in the situation under considera-
tion, direct photogeneration being a stimulated process.
The photon GF can thus be directly related to the av-
erage fields!" 8 This may be compared to the case of
electron transport in mesoscopic systems, where in ab-
sence of phase breaking, i.e., incoherent scattering mech-
anisms, the Landauer formalism based on a transmission
function obtained from an electronic version of the TMM
is equivalent to the NEGF picture of electron transportt.

V. CONCLUSIONS

In this paper, a description of charge carrier photo-
generation in thin semiconductor films within the NEGF
formalism was established. An effective electron-photon
self-energy was derived for coherent coupling to classical
fields. Numerical simulations were performed for a thin,
selectively contacted semiconductor slab with a back re-
flector. The results for charge carrier generation rate and
photocurrent computed using the NEGF formalism of
carrier transport coupled to the TMM for the electromag-
netic fields are in close agreement with the predictions
of both the optical estimate via the average absorption
coefficient and the full coupled NEGF solution for the
propagation of interacting charge carriers and photons.
Thus, the NEGF framework presented here is consistent
with the classical picture of light-matter coupling in the
limit of optically coherent processes, and, at the same
time, enables the consideration of both extraction and
radiative recombination of charge carriers in the pres-
ence of complex nanostructure potentials. This unique
capability turns the present approach into a powerful in-
strument for the investigation of the radiative efficiency
limit in nanostructure-based solar cell devices.

For a quantitative analysis of photocurrent generation
in realistic device structures, in addition to the use of an

10

accurate description of the electronic structure, extension
of the formalism to radiative intraband mechanisms (e.g.,
free carrier absorption) and non-radiative intra- and in-
terband scattering processes (e.g., electron-phonon and
Auger) will be required. The inclusion of such processes,
however, while it modifies the GF and self-energies of
charge carriers and photons, it does not affect the validity
of the general expressions derived here for absorptance,
generation rate and photocurrent in terms of the GF.
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Appendix A: Electronic Green’s functions for
homogeneous slab

For a homogeneous bulk-like system, the effective mass
approximation of the slab representation of the steady-
state Green’s function components for non-interacting
charge carriers in quasi-equilibrium conditions character-
ized by a quasi-Fermi level p takes the following form:

G;O(kH,Z,Z/,E) :’L'fub(E)Abo(k”,Z,Z/,E), (Al)
Gb>0(k\|7 zZ, Zl, E) = — i[l — fu(E)]AbO(kHy z, ZI, E), (A?)
2m; cos[kl(ky, E)(z — 2')]

Avo (k| 2,7, B) == ¥, ) , (A3)

where
(k) E) = /2m;E — W2ki/h, b= c,v, (A4)
Fu(E) ={ expl(E — p)/kpT] +1} . (A5)
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