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Abstract—The introduction of novel imaging technologies
always carries new challenges regarding the processing of the
captured images. Polarized Light Imaging (PLI) is such a new
technique. It enables the mapping of single nerve fibers in
postmortem human brains in unprecedented detail. Due to the
very high resolution at sub-millimeter scale, an immense amount
of image data has to be reconstructed three-dimensionally before
it can be analyzed. Some of the steps in the reconstruction pipeline
require a previous segmentation of the large images. This task
of image processing creates black-and-white masks indicating the
object and background pixels of the original images. It has turned
out that a seeded region growing approach achieves segmentation
masks of the desired quality. To be able to process the immense
number of images acquired with PLI, the region growing has to
be parallelized for a supercomputer. However, the choice of the
seeds has to be automated in order to enable a parallel execution.
A hybrid parallelization has been applied to the automated seeded
region growing to exploit the architecture of a GPU cluster. The
hybridity consists of an MPI parallelization and the execution of
some well-chosen, data-parallel subtasks on GPUs. This approach
achieves a linear speedup behavior so that the runtime can be
reduced to a reasonable amount.

I. INTRODUCTION

To understand the function of the human brain, it is
necessary to study also its structure. An evolving imaging
technique is Polarized Light Imaging [1], [2], [3]. It is applied
to sections (slices) of postmortem human brain tissue and
allows to analyze the course of nerve fibers between different
brain regions at sub-millimeter scale.

Before the PLI data can be analyzed, some image pro-
cessing steps have to be applied beforehand. The major step
is a three-dimensional reconstruction of the stack of sections.
An important prerequisite of this task is a prior segmentation
of the images identifying the brain and non-brain regions. The
main challenge of segmenting the PLI images is their immense
number and the size of each image as there are terabytes
of data per human brain which makes a parallel approach
indispensable.

Since segmentation is a task of image processing which is
required by a lot of use cases, a bunch of different approaches
already exists such as thresholding, (seeded) region growing,

neural networks, level sets, classification based methods or
graph cuts. Although some parallelizations of segmentation
approaches have been published, e.g. [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], they cannot be adopted without
modifications for the PLI data because all algorithms are
optimized for the present image characteristics like color mode,
contrast or textures. A large variety of algorithm classes is
also observable from region growing and level sets to neural
networks, graph based algorithms and random walks. Some of
them suffer from over- or under-segmentation in these cases
where it is a typical problem of the algorithms.

The authors use different parallelization approaches based
on shared or distributed memory, some also use GPU(s). Most
approaches distribute parts of an image between the calculation
units, so the threads or tasks. In the publications [12] and [13],
the solver is parallelized instead, i.e. the algorithm as such.
Depending on the chosen type of parallelization, the achieved
speedups vary from a weak improvement compared to the
sequential implementation up to a linear speedup behavior.

Since none of the mentioned approaches can be used for the
PLI data without further enhancements and the variety on all
levels of yet parallelized algorithms seems to be large, another
procedure has been chosen to find an appropriate, parallelizable
segmentation algorithm. Existing sequential segmentation tools
have been applied to a representative small subset of the PLI
images. The one achieving the best results, thus the best black-
and-white masks, has then been adopted and parallelized.

This paper focuses on the hybrid parallelization of a seg-
mentation in form of a seeded region growing. It describes the
parallelization for the GPU cluster JUDGE (Juelich Dedicated
GPU Environment) hosted by Jülich Supercomputing Centre
(JSC), Forschungszentrum Jülich. Since a parallelization does
not make sense without a previous automation of the choice
of seeds, this aspect is also briefly discussed.

II. MATERIAL & METHODS

A. Human Brain Data

The human brain tissue measured with PLI is from body
donor programs of German universities. The measurement is



Fig. 1. These PLI image tiles demonstrate the overlapping of neighboring
tiles. About 30% of the image information of a tile is also contained in the
neighboring ones.

done according to [3] using a Polarizing Microscope developed
by Taorad GmbH, Aachen, Germany. This technique takes
advantage of the myelin sheaths that envelope the axons of
nerve fibers. Myelin exhibits the optical property referred to
as birefringence. This reaction to the incident polarized light
is used to extract the nerve fiber orientations.

To image a post-mortem brain with PLI, it is cut into
sections with a thickness of 70µm. A section is imaged 18
times under linearly polarized light whereby the orientation
of the polarized light is rotated by ten degree for every shot.
In order to reach a high resolution, a section is not captured
once for each light configuration but several times. This way
a mosaic of image tiles is captured for each section. The tiles
have a resolution of 1.6µm × 1.6µm per pixel and an image
size of 2048× 2048 pixel. Neighboring tiles are imaged with
a large overlapping as it is illustrated in figure 1. The outer
edges of a section are only included in one tile but these edges
do not show brain tissue. In total, there are at minimum 1500
sections per human brain, each consisting of about 25 × 30
tiles. This results in at minimum 1500 · 25 · 30 = 1, 125, 000
images per human brain that have to be segmented.

B. Basic Seeded Region Growing Algorithm

The seeded region growing algorithm presented in [14]
produces good and reasonable masks if applied to PLI images.
The quality of this algorithm can also be guessed since it
has been re-used in several other cases like [15], [16]. The
algorithm is known as the first published region growing using
seeds which has a significant effect concerning the quality of
the segmentation mask because the number of classes in the
mask can be directly controlled. In this way over- and under-
segmentation can be avoided.

The algorithm is originally designed for intensity, i.e. gray-
value, images. It divides the image into n classes A1, . . . ,An
which contain the seeds in the beginning. Afterward, the
algorithm assigns all remaining pixels iteratively to one of the
Ai, i ∈ [1, n]. In each iteration, one pixel is assigned to one of
the sets Ai. Therefore, the set T of all non-labeled pixels which
directly border on the already labeled regions is defined as in
equation (1). It contains all pixels which have not yet been
added to any of the Ai but which are directly adjacent to one
of the Ai. N(x) is the set of all direct neighbors of a pixel at
the one-dimensional position x.

T =

{
x /∈

n⋃
i=1

Ai | N(x) ∩
n⋃

i=1

Ai 6= ∅

}
(1)

If pixel x ∈ T borders on exactly one of the Ai, let i(x)
be the index for which N(x) ∩ Ai(x) 6= ∅. Otherwise, if x is
neighbor of two or more of the Ai, i(x) is defined as the index
for which N(x)∩ Ai(x) 6= ∅ and a measure δ(x) is minimized.
This measure δ(x) defines how similar a pixel x is compared
to the region it adjoins. It may be defined as follows with g(x)
being the gray value of pixel x:

δ(x) =
∣∣∣∣g(x)− mean

y∈Ai(x)

[g(y)]
∣∣∣∣ (2)

Alternatively, pixels adjacent to two or more of the Ai can be
assigned to a new set B containing all boundary pixels. In the
end of each iteration, the pixel z ∈ T with

δ(z) = min
x∈T
{δ(x)} (3)

is labeled corresponding to Ai(z) and appended to this set.
The definitions (2) and (3) assure that the regions Ai are as
homogeneous as possible and, by the use of N(x), that each
of the regions is connected.

C. Automating the Choice of Seeds

The first major challenge in the development process of a
segmentation for microscopic images acquired with PLI was
the adoption to the immense number of images. The choice of
the seeds had to be brought into focus. A definition by hand
results in an unacceptable effort because at least one seed for
each of the hundreds of thousands of images per brain has
to be chosen. Hence, an automation of this step was needed
to get away from an interactive processing of the images and
thus enable a parallelization. This step has been done based
on high level knowledge of the images.

It has been decided to use the so-called transmittance of the
18 different shots of the same brain region for the segmentation
because this modality allows a clear distinction between brain
tissue and background. Automating the choice of seeds step
for the PLI data, it had to be kept in mind that there are
tiles showing both brain tissue and background but that some
only show one of the two classes as it is visible in figure
2. It is observable that the brain is in principle brighter than
the rest of the image. Therefore it was possible to utilize an
intensity histogram based choice of seeds. Taking the different
image contents into account, it was not reasonable to use
separate histograms of the different tiles because they might
not contain information about both brain and background
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Fig. 2. These four images are representative examples for PLI microscopic
tiles. 2(a) and 2(b) show both the dark brain with a large intensity variance on a
brighter background. 2(c) contains only brain tissue and 2(d) only background.

intensities. Instead, the joint histogram of all available mosaic
tiles of all sections has been calculated.

The user has to define a rough threshold differentiating
between brain and background intensities based on the joint
intensity histogram. The effort of this manual step is indepen-
dent of the number of images to be processed, so setting one
value per brain. So the segmentation has been split into two
independent tools, the first one calculates the joint intensity
histogram, the second one performs the region growing as
follows. In between, the manual choice of the threshold takes
place.

The user-defined threshold divides the intensities into two
intervals. For both intervals within the histogram, the median
intensity q0.5 and the quantiles qα and q1−α have been
calculated. Based on this information, a measure mcand has
been calculated that defines how well suited a pixel is to be
used as a seed for the respective class. (x, y) denotes the two-
dimensional coordinates of a pixel and g (x, y) the intensity of
this pixel.

mcand(x, y) =

{
g(x,y)−q0.5

q0.5−qα
, g(x, y) ≤ q0.5

q0.5−g(x,y)
q1−α−q0.5

, g(x, y) > q0.5
(4)

= max

(
g(x, y)− q0.5

q0.5 − qα
,

q0.5 − g(x, y)
q1−α − q0.5

)
(5)

This measure can be computed independently for each
pixel and is stored in a measure image. With this definition,
every pixel is a candidate seed given that mcand(x, y) ≤ 1. The
candidates with the smallest values are the comparably best
seeds. Pixel with intensities similar to the threshold are not

(a) (b)

(c) (d)

Fig. 3. These images demonstrate the measure mcand for two of the four
examples. The original images are visible in the background. The measure
values are illustrated as overlays; the background seeds are green, brain seeds
are red. Green resp. red pixels correspond to measure value 0, i.e. reliable
candidate seeds. For measure values in ]0, 1], a gradient from green resp. red
to transparent is used. All pixels with measure values larger than 1 have a
transparent color in the overlay.

seeds for any of the regions because the intensity ranges of
brain and background overlap.

In fact, there are two measure images, one based on the
brain and one based on the background intensity interval.
If candidate seeds would be chosen using these measures
mcand, also noise pixels were seed candidates. Image noise
denotes pixels with a variation in intensity or color compared
to the neighboring ones that bears no reference to the captured
object and which mostly appears as isolated mis-colored pixels.
Therefore, also spatial information has been included in the
definition of the measure δ in form of a linear smoothing filter.

The calculation of the initial measure and the following
smoothing operation could be combined to a single discrete
convolution, i.e. a linear image filter. The final seed measure
images mfinal have been computed using convolution equation
(6).

mfinal(x, y) = w (x, y) ∗ mcand (x, y)

=

m∑
i=−m

n∑
k=−n

w (i, k) · mcand (x + i, y + k) (6)

It turned out that a weighted averaging smoothing filter
w works best for the PLI tiles, if for a central value p all
other entries have the same value 1−p

(2m+1)·(2n+1)−1 . The central
weight has been chosen to p = 0.1 and m = n = 4. Figure
3 illustrates the final measure images mfinal for brain and



(a) (b)

Fig. 4. These images demonstrate the elimination of small isles of brain
seeds. The side effect of this step is a smoothing of the remaining measure
values.

background seeds of the example tiles showing both brain and
background.

In this figure, it is observable that some of the dirt particles
in the background region of the image tiles are erroneously
labeled as seeds for the brain region. Since the dirt particles
result in isles of seeds that are much smaller than any brain
region, they could be erased out of mfinal:

For all brain seeds, the number N of brain seeds within
a square neighbor region with a size of (radius · 2 + 1)2

has been determined. Furthermore, the sum S of the inverted
measure values of these neighboring seeds has been computed.
(1 denotes the indicator function.)

S(x, y) =
radius∑

i,k=−radius

{(1.0− mfinal (x + i, y + k))

·1{x≤1} (mfinal (x + i, y + k))
}

(7)

Using N and S as in equation (8), seeds are rated higher,
i.e. they are more reliable, if they have other comparably good
seeds in their surroundings. Otherwise, they are downgraded
as in case of the seeds isles caused by the dirt particles in the
background. The effect of the elimination of small brain seed
isles is illustrated in figure 4.

m̂final (x, y) =

m1,
N

(radius·2+1)
2 ≥ threshold

m2,
N

(radius·2+1)
2 < threshold

, (8)

m1 = 1.0− S (x, y)

(radius · 2 + 1)
2 ,

m2 = 1.0 + (1.0− threshold) · S (x, y)

(radius · 2 + 1)
2

A deeper explanation and analysis of the automated choice
of seeds can be found in the Master’s thesis [17].

D. Parallelization for a GPU cluster

As it has been mentioned above, the enormous number of
PLI microscopic tiles can only be handled if the segmentation

Fig. 5. Schematic illustration of the architecture of JUDGE. Each node
consists of two NVIDIA GPUs and two 6-core Intel Xeon processors. For
the present application, two pairs of CPUs and GPUs (marked in yellow and
orange) are used per node. This one-to-one assignment is used because there
are some parts which are not ported to the GPUs but which cause a significant
load on the CPUs. So the most suitable assignment is one GPU to one CPU.
The CPUs may communicate using the network (blue lines). The remaining
ten CPUs stay idle and may be used by other applications.

software is parallelized. JSC hosts among other supercom-
puters the GPU cluster JUDGE. Each of its 206 compute
nodes consists of two Intel Xeon X5650 (Westmere) six-core
processors and two NVIDIA GPUs as illustrated in figure 5.
54 of the nodes contain Tesla M2050 (Fermi) GPUs, the others
Tesla M2070 (Fermi). These two GPUs only differ regarding
the available memory which is with 3GB respectively 6GB
sufficient for the present application. There are 96GB of main
memory per node available. The network is an InfiniBand QDR
HBA.

To exploit this architecture, the parallelization has been
done on two levels. A multi-core approach using distributed
memory has been combined with a transfer of some algo-
rithmic steps on the GPUs. The two levels can be used in
combination or separately so that the software can be ported
to supercomputers with a different architecture without much
effort.

1) Multi-core Approach: Since neighboring tiles of a sec-
tion are captured with a sufficiently large overlapping, it is
possible to process all tiles independently of the others because
all required information is already present in the respective tile.

To port the seeded region growing segmentation to a multi-
core platform, the tiles of a section have been cyclically
distributed between all available processes. This distribution
has been used for the computation of the joint histogram as
well as for the seeded region growing. In case of the joint
histogram, every process first calculates the joint histogram
of the tiles assigned to it. Thus, each process has got a part
of the global joint histogram that covers the whole intensity
range but only a part of the tiles. Afterward, these distributed
histograms are collected by a master process using the Message
Passing Interface (MPI) and combined to the global joint
histogram using the MPI_Reduce method with MPI_SUM
as the reduction operation.

The seeded region growing of a tile can be done completely
independent of the other tiles so that no MPI communication
is required. This is possible because the overlapping region of



TABLE I. PROPORTION OF RUNTIME REQUIRED BY THE DIFFERENT
STEPS OF THE SEGMENTATION.

Step of the Algorithm Proportion of Runtime
Calculation of the measure image mfinal 48.46%
Elimination of the seed isles out of mfinal 48.21%
Labeling of the seeds in the masks 0.11%
Seeded region growing 3.21%
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Fig. 6. The runtime of all GPU-parallelized steps of the seeded region
growing executing the tool with thread block sizes from 128 to 768 in steps
of 64. The shortest runtime is reached using block sizes of 192, 256 and 384
threads. The jump from 384 to 448 threads can be explained by analyzing
the achieved occupancy of the device. For up to 384 threads per block, four
blocks can be executed simultaneously on the same multiprocessor of the
GPU. For 448 and more threads, only three blocks are possible. This reduces
the achieved occupancy of the device drastically, i.e. the runtime is increased.
For larger numbers of threads per block, the enlarging of the block size fills
the multiprocessor again with threads so that the occupancy grows.

two neighboring tiles is much larger than all used neighbor-
hood sizes. Furthermore, the seeded region growing algorithm
is stable in respect of the choice of seeds, i.e. a moderate
change of the seeds does not result in a different segmentation
mask.

2) GPU Approach: For the second level of parallelism, the
required runtime per section of the different region growing
steps has been analyzed in a sequential execution. The mea-
sured proportions of runtime of the different main steps on
the total runtime are listed in table I. The two steps required
to obtain the seeds for the region growing consume together
96.67% of the total runtime, i.e. the calculation of mfinal and
the elimination of seed isles. Therefore, it has been worthwhile
to revise these steps. The runtime of the calculation of the joint
intensity histogram does not have to be considered with respect
to a GPU parallelization because it consumes only 0.6% of the
runtime per section compared to the in table I presented joint
runtime of seed determination and region growing.

An analysis of the algorithms of these two steps revealed
that both are data parallel operations, i.e. the operations can be
computed independently for each pixel. This can be directly
extracted from the definitions (6) and (8) which refer only to
a single pixel (x, y). Nevertheless, information of a defined
amount of neighboring pixels is required to compute these
measures.

GPUs are processors that can exploit data parallelism since
they have thousands of parallel processing units designed to
execute the same instruction on thousands of pixels in the same
processor cycle. So they are fitting to the two steps of the

for each section s
for each tile t in s

for each pixel (x, y) in t

Compute the measure mfinal(x, y)

for each pixel (x, y) in t

Eliminate the seed isles: m̂final(x, y)

for each pixel (x, y) in t

Is (x, y) a seed?
true f.

Mark mask(x, y) as belonging to the
resp. region ∅

Perform the seeded region growing

Fig. 7. This figure demonstrates how the two levels of the hybrid paralleliza-
tion of the seeded region growing work together. The red loops are parallelized
using the multi-core approach with MPI, the blue ones are executed on the
GPUs using CUDA.

algorithm mentioned above. Thus, for each of the available
CPUs, an additional GPU has been used so that a one-to-one
assignment has been achieved as it is illustrated in figure 5 by
the yellow and orange colored processing units.

For a re-implementation of these two steps on a GPU,
the framework CUDA, version 4.1, has been used. Since the
pixels of the images can be processed independently, a one-to-
one assignment of pixels to CUDA threads has been applied.
It has been decided to use one-dimensional thread blocks in
form of rows because this shape exploits the data locality
of the operations best: The images are stored in C order, so
row-wise. For the processing of two neighboring pixels, the
required other pixels are nearly the same which implies this
one-dimensional shape for a thread block.

In order to find out the optimal size of the thread blocks,
the region growing has been executed with thread block sizes
varying from 128 to 768 in steps of 64 threads per block.
The results are illustrated in figure 6. It figured out that the
optimal thread block size is at 256 threads per block and thus
an amount of 16384 thread blocks for the standard tile size of
PLI.

3) Hybrid Parallelization: Figure 7 demonstrates how the
two levels of the hybrid parallelization are combined. The
seeded region growing contains outer loops iterating over
all available image tiles, i.e. over all sections and all tiles
within a section. These loops marked with the red color
have been parallelized in the multi-core approach. Using the
section number and the tile coordinates within the section, a
consecutive index for every tile has been computed. Iterating
over this index idx using P processes, a process Pi gets every
Pth tile.

Inside these outer loops iterating over all indexes, the
seeded region growing is performed tile by tile. This segmenta-
tion starts with three blue marked loops iterating over all pixels
of the respective tile. Inside these loops, the final measure
mfinal is computed, the brain seed isles are eliminated and the
obtained seeds are marked in the segmentation mask. Since all
three operations are data-parallel, they have been ported to the



Fig. 8. The segmentation result is illustrated as edges between the classes
within the masks. The detail images demonstrate that the edges follow the
real outer edges of the brain tissue. The extracted regions are connected and
do not contain holes.

GPU(s) using CUDA.

This schematic picture of the algorithm structure demon-
strates not only how the two levels of the hybrid parallelization
can be used in combination, but also that they can be omitted
independent of each other. It has to be noted that the only
non-parallelized part of the algorithm is the green marked line
which is the seeded region growing.

III. RESULTS

A. Segmentation Masks

The first important step to evaluate the results of the
developed region growing is to have a closer look at the
segmentation masks. If the masks are considered separately
from the original images, it is difficult to see if the extracted
mask regions fit the actual regions. A good alternative is to
display the original image together with the edges between
the mask regions drawn in as thin lines as it has been done
for figure 8.

In this illustration, it is visible that the brain tissue is
identified very well by the presented enhancement of the
seeded region growing. The segmentation masks present the
desired quality which is only possible because the developed
automated choice of seeds works correctly. In particular, no
seed for one of the regions is placed into the other region.
The dirt particles in the background are ignored during the
seed determination. The black rings visible in figure 8 are
air bubbles which occur during the preparation of the brain
tissue. They are always added to the brain region since they
may occur in both the brain and the background region of the
image and this assignment is important for other steps in the
reconstruction pipeline.

B. Runtime and Speedup

To evaluate the hybrid parallelization of the seeded region
growing, the runtime respectively speedup behavior of both
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Fig. 9. These speedup curves per section have been measured on JUDGE
with up to 64 processes. The blue curve belongs to the calculation of the
joint intensity histogram of all image tiles. It flattens out as a result of the
collection of the distributed computed histograms. The red curve shows the
speedup behavior of the region growing part of the segmentation. Since there is
no inter-process communication needed, an optimal, linear speedup is reached.

TABLE II. PROPORTION OF RUNTIME REQUIRED BY THE DIFFERENT
STEPS OF THE SEGMENTATION WITH AND WITHOUT THE GPU

PARALLELIZATION.

Step of the Algorithm Proportion of Runtime
sequential GPU parallel

Calculation of the measure image mfinal 48.46% 9.87%
Elimination of the seed isles out of mfinal 48.21% 5.58%
Labeling of the seeds in the masks 0.11% 3.31%
Seeded region growing 3.21% 81.24%

levels has to be analyzed. Figure 9 shows the speedup curves of
the multi-core approach. In particular, there is a speedup curve
of the calculation of the joint histogram and another one of the
region growing itself. These two parts of the segmentation tool
are interrupted by the user input of the intensity threshold.

The speedup curve of the calculation of the joint intensity
histogram is linear for small numbers of processes but flattens
out for larger ones. This is justifiable by the increasing effort
for the inter-process communication to collect the distributed
histograms. In case of the seeded region growing, an optimal
and thus linear speedup is reached since no communication is
needed.

To evaluate the effect of the GPU parallelization approach,
the runtime required by the different steps of the algorithm
has once again been measured as it is visible in table II. The
summed up proportions of runtime of the seed determination
steps is reduced from 96.67% to 15.45% using the CUDA
version instead of the sequential one. This results in an increase
of the proportion of the (not modified) region growing from
3.21% to 81.24% so that the runtime behavior is dominated by
the effort for the actual growing process. This is also the reason
for the one-to-one assignment of GPUs and CPUs. Figure 10
illustrates the influence of the CUDA parallelization on the
runtime behavior of the segmentation.

We have executed the segmentation using on the one hand
up to 64 CPUs and on the other hand up to 64 pairs of CPUs
and GPUs. The total runtime per section of the region growing
has been measured. It is observable that the trend of the
runtime curve is for both cases the same. The additional use of
a GPU per process results in a shift down of the runtime curve,
i.e. the region growing is accelerated by a factor of about 20.



 100

 1000

 10000

 100000

 1e+06

 0  10  20  30  40  50  60

R
un

tim
e 

pe
r S

ec
tio

n 
[s

]

CPUs / GPU-CPU pairs

CPUs only
GPU-CPU pairs

Fig. 10. This diagram compares the scaling behavior of the multi-core
approach with and without the additional use of the GPU parallelization, i.e.
up to 64 processes respectively 64 pairs of CPUs and GPUs are used. It is
observable that the trend of the runtime per section is the same, the use of
CUDA results in a shift down of the original curve. The segmentation is
accelerated by a factor of 20 due to the additional use of a GPU per process.

IV. DISCUSSION

This paper focuses on the development and hybrid par-
allelization of a segmentation for PLI image tiles. The ad-
ditionally presented automation of the choice of seeds was
necessary because of the immense number of images to be
processed in case of PLI and to make a parallel execution
possible. The achieved level of automation is sufficiently high
since only a single value, i.e. the threshold within the intensity
histogram, has to be defined manually to segment an entire
human brain. The developed algorithm works well for PLI
but is no solution for every possible use case because it is
adopted to the characteristics of the present data. Of course,
it is possible to define an analog similarity measure δ using
different image characteristics for other use cases. In this
sense, the developed automated choice of seeds is generally
applicable if the image characteristics are well analyzed and
the definition of the measure is adopted to them.

The presented algorithm provides good results for PLI as
demonstrated in figure 8 given that the images are sufficiently
homogeneous. The variances of the section thickness and of
the illumination must not be too high since both would result
in a distortion of the joint intensity histogram. The extracted
edges between the brain and non-brain regions provide an ex-
actness which is adequate for the processing in the subsequent
reconstruction steps.

Also the parallelization of the region growing segmenta-
tion is worth discussing. Two comparably simple levels of
parallelism have been applied to the seeded region growing.
The tiles are distributed among the available processes on the
first level. For every process on a CPU, an additional GPU is
used to compute the data-parallel parts of the algorithm as a
second level of parallelism. Both levels can be used separately
or in combination. The use of one level does not influence
the scaling behavior of the other one, i.e. the additional use
of GPUs does not weaken the linear speedup of the multi-
core approach. The other way round, distributing the tiles
to different CPU-GPU pairs instead of using only one does
not have any influence on the acceleration achieved by the
use of the GPU. This independence of the two levels of the

hybrid parallelization allows an easy porting from the GPU
cluster JUDGE to another supercomputer or cluster. It is also
possible to use the tool for small parts of a brain on a normal
workstation. Nevertheless, it is important to adjust parameters
like the thread block size to the respective available hardware.

The linear scaling behavior of the multi-core approach
allows to process a given amount of data as fast as required
given that enough processes are available in parallel. Let us
assume that it would take about 295 days to process a whole
human brain using the sequential variant of the algorithm. The
additional use of a GPU reduces the runtime to 15 days. In
combination with the multi-core implementation using 64 pairs
of CPUs and GPUs, it is even reduced to 5.6 hours. This short
example demonstrates how well the two parts of the hybrid
parallelization complement each other. The multi-core level
copes with the immense number of images, the GPU level
addresses the large size of the images consisting of about
4,000,000 pixels per tile.

The optimal linear speedup of the multi-core approach
is only achieved if an equal load distribution between the
processes is provided. This does not only mean that every
process has a work package containing the same number of
images but also that the average runtime per tile and core is
equally distributed. Images that show only one of the regions,
i.e. brain tissue or background, are almost entirely covered with
seeds. Since all seeds are directly applied to one of the regions
in the mask, the number of remaining pixels for the region
growing is much smaller compared to “mixed” images. So
these one-region images are segmented much faster than mixed
ones. If some processes obtain mainly the one-region images
and other mainly mixed ones, the first group of processes will
be finished much earlier than the second resulting in long idle
parts of runtime. Therefore, it is indispensable to find a clever
assignment of image tiles to processes to minimize the idle
parts of runtime for every brain to be analyzed.

Other parallelizations of segmentations achieve a smaller
acceleration per GPU than the presented factor 20, e.g. in
[6] an acceleration by a factor of 4.9 to 6.8 depending on
the GPU has been reached. In [7], a multithreaded OpenMP
parallelization has been described resulting in a speedup of 2.6
for 4 processes, so an efficiency of 0.65. [5] has reached an
almost linear speedup like our presented approach.

Since the growing process consumes more than 80% of
the total runtime in the GPU parallelized variant, it should
be reconsidered to parallelize this step of the algorithm on
a third, additional level. Possible approaches might base on
a division of each tile in sub-tiles as it is done in [7]-[11].
These sub-tiles may then be processed either using again a
multi-core variant, so distributed memory, or a multi-threaded
version with shared memory. Nevertheless, this step always
includes an additional communication or synchronization effort
so that the perfect linear speedup achieved by the presented
multi-core approach will not be maintained. Thus, it would
have to be evaluated if the runtime gain due to the new level
of parallelism is compensated by the induced communication
or synchronization effort.

Another approach for a parallelization of the region grow-
ing would be a GPU parallel version of this step since this is
the only one which is still computed on the CPU(s). Indeed,



this step bases on an intrinsically sequential algorithm. There
have been trials for a GPU parallel region growing like [6] but
the achieved speedups are not as high as what can be reached
in case of other algorithms.

All in all, a further parallelization of the growing process
has to be kept in mind but it has to be weighed out if
the additional effort is reasonable since with the already
implemented two levels of parallelization, the required amount
of runtime can be reduced to the desired range given that
the needed infrastructure is available. In addition, the time
needed to section and image a whole brain is much larger
than the few hours or days required to segment the images,
i.e. the segmentation is faster than the images are available for
access. From this point of view, another enhancement of the
parallelization is not required for the PLI data.

V. CONCLUSION

We presented a seeded region growing segmentation spe-
cialized for images of the human brain acquired with the
technique of Polarized Light Imaging. The choice of seed
pixels has been automated so that only a single point of manual
interaction is required in order to process an entire human
brain, i.e. a threshold within the joint intensity histogram of
all images has to be set. The tool has been parallelized for the
GPU cluster JUDGE achieving a linear speedup due to a multi-
core approach, and another acceleration by a factor of 20 using
GPUs in addition to the CPUs. Both levels of parallelism can
be used in combination or as alternatives, depending on the
available hardware. The segmentation masks are sufficiently
accurate for our purposes and the required runtime is fast
enough.
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[15] O. Gómez, J. A. González, and E. F. Morales, “Image Segmentation
Using Automatic Seeded Region Growing and Instance-Based
Learning,” in Progress in Pattern Recognition, Image Analysis and
Applications, ser. Lecture Notes in Computer Science, L. Rueda,
D. Mery, and J. Kittler, Eds. Springer Berlin Heidelberg, 2007,
vol. 4756, pp. 192–201. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-76725-1 21

[16] I. Sanders, “Seeded region growing using multiple seed points,” in
16th Annual Pattern Recognition Association of South Africa Annual
Symposium. PRASA, 2005, pp. 177–182.

[17] A. Westhoff, “GPU-accelerated Segmentation of high-resolution
Human Brain Images acquired with Polarized Light Imaging,” Jülich,
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