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We investigate 2 + 1 flavour QCD thermodynamics using dynamical Wilson fermions in the

fixed scale approach. Our previous study at a pion mass of 545 MeV is extended with two

additional pion masses, approximately 440 MeV and 280 MeV. We perform simulations using

3 or 4 lattice spacings at each fixed pion mass and measure the renormalised chiral condensate,

strange quark number susceptibility and Polyakov loop as a function of the temperature. We

observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered

while the pseudo-critical temperature associated with the strange quark number susceptibility

or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement

with previous results obtained in the staggered formulation.

1 Introduction

In Refs. 1, 2 we have started a study of 2 + 1 flavour QCD thermodynamics using the

Wilson fermion formulation. Even though continuum extrapolated results with physical

pion masses are already available within the staggered formulation3–8 the theoretical un-

certainty related to the so-called rooting trick necessitates a comprehensive study with a

theoretically sound fermion formulation. One example is the Wilson fermion formulation.

In Ref. 2 the pion mass was rather large, around 545 MeV. A careful continuum extrap-

olation was performed at this fixed pion mass and a comparison was made with similarly

continuum extrapolated staggered results and nice agreement was found between the two

approaches. In the current work we lower the pion mass and add 440 MeV and 280 MeV

to our data set.

The motivation for lowering the pion mass is clearly that we would like to approach

the physical pion mass point. But intermediate pion masses, between the physical point

and the rather heavy 545 MeV are also important on their own. This is mainly because it

was observed in simulations with staggered fermions that the pseudo-critical temperature

associated with the light chiral condensate is decreasing as the pion mass is lowered. In

order to confirm this phenomenon we have simulated at the intermediate pion masses of

440 MeV and 280 MeV.

The results for these intermediate masses confirm the picture that emerged from the

staggered simulations and indeed the light chiral pseudo-critical temperature is decreasing

as the pion mass is lowered. On the other hand the pseudo-critical temperature associated
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with the confinement-deconfinement transition of the strange quark (given by the strange

quark number susceptibility) and the Polyakov loop is only mildly sensitive to the pion

masses, again in accordance with the staggered results.

Apart from being theoretically sound another attractive feature of the Wilson formula-

tion using the fixed scale approach is that it complements the staggered formulation using

the fixed Nt approach in terms of cut-off effects. More precisely, as a function of temper-

ature the fixed Nt approach has small cut-off effects for high temperature (because of a

small bare coupling) and has larger cut-off effects at low temperature (because of a larger

bare coupling) while in the fixed scale approach the situation is exactly the opposite: low

temperatures correspond to large Nt and hence lead to small cut-off effects while high

temperatures correspond to low Nt and hence larger cut-off effects. For further studies of

finite temperature QCD using the Wilson formulation see Refs. 9–15.

The organisation of the paper is as follows. In Sec. 2 we summarise the simulation

setup, parameters and algorithms that were used. In Sec. 3 the measured observables are

given and their renormalisation properties are discussed and in Sec. 4 we present the results

of our investigations.

2 Simulation Points and Techniques

The Symanzik tree level improved action16, 17 is used in the gauge sector while in the

fermionic sector the clover18 Wilson action further improved by six steps of stout smearing

is adopted19. The clover coefficient is set to its tree level value cSW = 1 and the stout

smearing parameter is chosen at ̺ = 0.11. For more details see Ref. 2.

The light quarks u and d are assumed to be degenerate and a 2+ 1 flavour algorithm is

used. The HMC algorithm20 is adopted for the light quarks and the RHMC algorithm21 for

the strange quark. Various algorithmic improvements are applied for speeding up the sim-

ulation: the Sexton-Weingarten multiple time scale integration22, the Omelyan integration

scheme23 and even-odd preconditioning24.

Finite temperature simulations of QCD can be carried out in two main approaches (or

a mixture of the two). First, in the fixed-Nt approach the bare coupling is used to change

the temperature at given temporal lattice extent Nt. Then increasing Nt corresponds to

the continuum limit. Second, the fixed scale approach where the temperature is changed

by changing Nt at fixed bare coupling β. The continuum limit in this case corresponds to

increasing β. While the former is better suited for staggered fermions the latter is more

convenient for Wilson fermions and we hence use the latter.

The calculations were performed at the same four gauge couplings as in Ref. 2

β = 3.30, 3.57, 3.70 and 3.85. The scale was set by mΩ = 1672 MeV. The temperature at

each fixed bare coupling β is varied in discrete steps by varying Nt.

In our past work2 the pion mass was relatively heavy, around 545 MeV. We will call

the simulations at this mass the “heavy” pion mass point.

Two sets of simulations were performed in the current work each corresponding to a

fixed mπ/mΩ and mK/mΩ mass ratio. In the first set, which we call “medium” pion

mass, the quark masses were tuned to mπ/mΩ = 0.264(3) and mK/mΩ = 0.341(2).
These correspond to about mπ = 440 MeV and mK = 570 MeV. At this pion mass the

simulations were performed at all 4 lattice spacings. Finite volume effects are expected to

be small since mπL > 7 at each lattice spacing.
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β amud ams Ns Nt

3.30 -0.1122 -0.0710 32 6 - 16, 32

3.57 -0.0347 -0.0115 48 6 - 16, 64

3.70 -0.0181 0.0 48 8 - 24, 48

3.85 -0.0100 0.0050 64 8 - 36, 64

β amud ams Ns Nt

3.30 -0.1245 -0.0710 32 6 - 16, 32

3.57 -0.0443 -0.0115 48 8 - 24, 64

3.70 -0.0258 0.0 64 8 - 24, 96

Table 1. Bare parameters for the “medium” pion mass (top) and “light” pion mass (bottom) simulations. The Nt

values used for the finite temperature runs and the values used for the zero temperature runs are separated by a

comma.
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Figure 1. The various pion and kaon masses used in our past and current work. The heaviest pion mass is from

our past work2, the 4 red data points correspond to 4 lattice spacings. For the medium pion mass (this work) also

4 lattice spacings are used, while for the lightest pion mass (this work) we have simulated at 3 lattice spacings.

The physical point is also shown for comparison. The scale is set by mΩ = 1672 MeV.

In the second set, which we call “light” pion mass, the meson masses were tuned to

mπ/mΩ = 0.171(1) and mK/mΩ = 0.315(3), corresponding to about mπ = 280 MeV

and mK = 520 MeV. At these pion masses the simulations were performed at 3 lattice

spacings and for the finite volume of the system mπL > 5.4 holds.

At each lattice spacing, i.e. fixed β, the mass of the strange quark ms is fixed at

its physical value across all three pion masses “heavy”, “medium” and “light” and the

physical point is approached by changing mud only.

A summary of the various pion and kaon masses used in our past and current work is

shown on Fig. 1. The bare quark masses, spatial and temporal lattice extents are shown in

Tab. 1 while the measured meson, baryon and PCAC masses are shown in Tab. 2. As can

be seen mΩ and hence the lattice spacing depends rather mildly on the light quark masses.
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β mπ/mΩ mK/mΩ amPCAC amΩ a [fm]
3.30 0.262(3) 0.340(3) 0.0248(2) 1.11(1) 0.133(1)

3.57 0.270(3) 0.344(3) 0.01710(5) 0.737(7) 0.088(1)

3.70 0.258(4) 0.337(5) 0.01266(3) 0.578(8) 0.069(1)

3.85 0.256(4) 0.343(6) 0.00890(1) 0.446(7) 0.053(1)

β mπ/mΩ mK/mΩ amPCAC amΩ a [fm]
3.30 0.174(4) 0.325(7) 0.0084(2) 0.97(2) 0.117(3)

3.57 0.174(2) 0.311(4) 0.00693(4) 0.723(8) 0.087(1)

3.70 0.170(1) 0.316(5) 0.00481(2) 0.560(9) 0.067(1)

Table 2. Spectroscopy and physical scale results from zero temperature simulations, top: “medium” pion mass,

bottom: “light” pion mass. The lattice spacings are set by mΩ = 1672 MeV.

At each finite temperature point around 1000-1500 equilibrated trajectories were generated

while around 1000 at zero temperature points.

3 Renormalisation

The temperature dependence of three quantities is determined in the current work, the

renormalised light chiral condensate, the strange quark number susceptibility and the renor-

malised Polyakov loop.

3.1 Chiral Condensate

The bare light chiral condensate requires both additive and multiplicative renormalisation.

The details of the full renormalisation procedure is given in Ref. 2 following Refs. 25, 26

and will be summarised below.

Additive renormalisation at T > 0 is implemented by the subtraction of T = 0 quanti-

ties as this difference is free from polynomial divergences. Multiplicative renormalisation

is then achieved by the multiplication of the PCAC mass mPCAC and the finite renor-

malisation constant ZA. The latter were determined in the chiral limit from 3-flavour

simulations in Ref. 2 and can be taken from there directly for each β. Finally the Ward

identity establishes a relationship26 between the chiral condensate and the integrated pion

correlator leading to the final expression for the fully renormalised condensate at finite

temperature,

mR〈ψ̄ψ〉R(T ) = 2Nfm
2

PCACZ
2

A∆PP (T ) , (1)

where,

∆PP (T ) =

∫

d4x 〈P0(x)P0(0)〉(T )−

∫

d4x 〈P0(x)P0(0)〉(T = 0) , (2)

where P0(x) is the bare pseudo-scalar condensate; for more details see Ref. 2. The final

result in Ref. 2 was shown formR〈ψ̄ψ〉R(T )/m
4
π since this combination is dimensionless.

However when comparing different pion masses as in the current work this normalisation

is not convenient because it introduces an artificial pion mass dependence through the 4th

power. It turns out that the normalisation mR〈ψ̄ψ〉R(T )/m
2
π/m

2

Ω
is more suitable as can
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be inferred from the GMOR relation as well. All results related to the chiral condensate

will be presented with the latter normalisation and also the final result in Ref. 2 will be

converted into it for comparison.

3.2 Strange Quark Number Susceptibility

The strange quark number susceptibility χs can be made dimensionless by considering

χs/T
2 and can be improved at tree level by the division of its infinite volume and massless

Stefan-Boltzmann limit at each finite Nt. The Stefan-Boltzmann values for each Nt were

listed in Ref. 2. The strange quark number susceptibility is sensitive to the confinement-

deconfinement temperature of the strange quark and as we will see is only mildly dependent

on the pion mass.

3.3 Polyakov Loop

Our renormalisation procedure for the Polyakov loop also follows Ref. 2. The additive di-

vergence of the free energy can be removed by the following renormalisation prescription:

a fixed value L∗ can be fixed for the renormalised Polyakov loop at a fixed but arbitrary
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Figure 2. The pion mass dependence of the renormalised chiral condensate at four different lattice spacings.

β = 3.30 (top left), β = 3.57 (top right), β = 3.70 (bottom left), β = 3.85 (bottom right). The data for

the “heavy” pion mass (545 MeV) is from Ref. 2. Clearly as the pion mass is decreased the pseudo-critical

temperature is also decreasing.
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temperature T∗ > Tc. This prescription leads to the following renormalised Polyakov loop

LR in terms of the bare quantity L0,

LR(T ) =

(

L∗

L0(T∗)

)

T∗

T

L0(T ) . (3)

We choose T∗ = 0.143 mΩ and L∗ = 1.2 similarly to Ref. 2 while other choices would

simply correspond to other renormalisation schemes.

4 Results

At each fixed pion mass the simulations were performed at several, 3 or 4, bare couplings.

These in principle allow for a controlled continuum extrapolation similarly to Ref. 2 but

this will be left to a future publication. We however do show one example of the continuum

extrapolation which is for the chiral condensate, see below.

The renormalised chiral condensate is shown on Fig. 2 for the four lattice spacings

corresponding to the four bare couplings β. On each plot the three pion masses are shown

and clearly as the pion mass decreases the pseudo-critical temperature corresponding to the

chiral crossover of QCD is seen to decrease as well. This feature is visible at all four lattice
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Figure 3. The pion mass dependence of the strange quark number susceptibility at four different lattice spacings.

β = 3.30 (top left), β = 3.57 (top right), β = 3.70 (bottom left), β = 3.85 (bottom right). The data for

the “heavy” pion mass (545 MeV) is from Ref. 2. As can be seen the pseudo-critical temperature is only mildly

sensitive to the pion mass.
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Figure 4. The pion mass dependence of the renormalised Polyakov loop at four different lattice spacings.

β = 3.30 (top left), β = 3.57 (top right), β = 3.70 (bottom left), β = 3.85 (bottom right). The data for

the “heavy” pion mass (545 MeV) is from Ref. 2. As can be seen the pseudo-critical temperature is not sensitive

to the pion mass at all.
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Figure 5. Comparison of the continuum renormalised chiral condensate results for the three pion masses 545

MeV (heavy), 420 MeV (medium) and 280 MeV (light). A downward shift in the pseudo-critical temperature

with decreasing pion masses is clearly visible.

191



spacings we expect the same to hold in the continuum as well. Indeed, as shown on Fig. 5

the continuum results corresponding to the three pion masses also show this behaviour.

The strange quark number susceptibility is shown on Fig. 3 again for all four lattice

spacings separately. At each lattice spacing the data for the three pion masses show only

mild dependence on the pion mass itself. We have not yet performed a continuum extrapo-

lation of the data but certainly expect that also the continuum result at each pion mass will

be only mildly sensitive to the pion mass.

On Fig. 4 our similarly presented data for the Polyakov loop is given. At each of the

four lattice spacings the data corresponding to the three pion masses is shown. Just as

with the strange quark number susceptibility very little sensitivity to the pion mass is seen.

Again, this feature is expected also for the continuum results.
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