
SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

SC’13 Tutorial:
Hands-on Practical Hybrid Parallel

Application Performance Engineering

Markus Geimer
Jülich Supercomputing Centre

Bert Wesarg
Technische Universität Dresden

Sameer Shende
University of Oregon

Brian Wylie
Jülich Supercomputing Centre

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Agenda

Time Topic Presenter
08:30 Introduction to VI-HPS & parallel performance engineering Wylie
09:00 VI-HPS Linux Live-ISO and MPI+OpenMP example code Wylie / all
09:15 Instrumentation & measurement with Score-P Wesarg
10:00 Break
10:30 Profile examination with CUBE Geimer
11:00 Configuration & customization of Score-P measurements Geimer
11:30 Specialized Score-P measurements & analyses Wesarg
12:00 Lunch
13:30 Automated trace analysis with Scalasca Geimer
14:15 Interactive trace analysis with Vampir Wesarg
15:00 Break
15:30 Profile examination with TAU ParaProf Shende
16:00 Performance data management with TAU PerfExplorer Shende
16:15 Finding typical parallel performance bottlenecks Wesarg
16:45 Review & conclusion Wylie
17:00 Adjourn

2

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Introduction to VI-HPS

Brian Wylie
Jülich Supercomputing Centre

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development
process of complex simulation codes running on highly-parallel
computer systems

• Start-up funding (2006–2011) by
Helmholtz Association of
German Research Centres

• Activities
– Development and integration of HPC programming tools

• Correctness checking & performance analysis
– Training workshops
– Service

• Support email lists
• Application engagement

– Academic workshops

http://www.vi-hps.org
2

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS partners (founders)

3

Forschungszentrum Jülich
■ Jülich Supercomputing Centre

RWTH Aachen University
■ Centre for Computing & Communication

Technical University of Dresden
■ Centre for Information Services & HPC

University of Tennessee (Knoxville)
■ Innovative Computing Laboratory

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS partners (cont.)

4

Barcelona Supercomputing Center
■ Centro Nacional de Supercomputación

German Research School
■ Laboratory of Parallel Programming

Lawrence Livermore National Lab.
■ Centre for Applied Scientific Computing

Technical University of Munich
■ Chair for Computer Architecture

University of Oregon
■ Performance Research Laboratory

University of Stuttgart
■ HPC Centre

University of Versailles St-Quentin
■ LRC ITACA

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Productivity tools

MUST
■ MPI usage correctness checking

PAPI
■ Interfacing to hardware performance counters

Periscope
■ Automatic analysis via an on-line distributed search

Scalasca
■ Large-scale parallel performance analysis

TAU
■ Integrated parallel performance system

Vampir
■ Interactive graphical trace visualization & analysis

Score-P
■ Community instrumentation & measurement infrastructure

5

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Productivity tools (cont.)

KCachegrind
■ Callgraph-based cache analysis [x86 only]

MAQAO
■ Assembly instrumentation & optimization [x86 only]

mpiP/mpiPview
■ MPI profiling tool and analysis viewer

Open MPI
■ Integrated memory checking

Open|Speedshop
■ Integrated parallel performance analysis environment

Paraver/Extrae
■ Event tracing and graphical trace visualization & analysis

Rubik
■ Process mapping generation & optimization [BG only]

SIONlib
■ Optimized native parallel file I/O

STAT
■ Stack trace analysis tools

6

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Technologies and their integration

7

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error & anomaly
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /
MAQAO

SYSMON /
SIONLIB /
OPENMPI

STAT

SCORE-P

MPIP /
O|SS /
LWM2

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Disclaimer

Tools will not automatically make you,
your applications or computer systems

more productive.
However, they can help you understand

how your parallel code executes and
when / where it's necessary to work on
correctness and performance issues.

8

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS training & Tuning Workshops

• Goals
– Give an overview of the programming tools suite
– Explain the functionality of individual tools
– Teach how to use the tools effectively
– Offer hands-on experience and expert assistance using tools
– Receive feedback from users to guide future development

• For best results, bring & analyze/tune your own code(s)!

• VI-HPS Hands-on Tutorial series
– SC’08, ICCS’09, SC’09, Cluster’10, SC’10, SC’11, EuroMPI’12,

XSEDE’13 (San Diego), SC’13 (Denver)
• VI-HPS Tuning Workshop series

– 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen),
2012 (St-Quentin/F & Garching), 2013 (Saclay/F & Jülich)

9

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Recent & upcoming events

• ISC Extreme Scale Tools Tutorial (16 Jun 2013, Leipzig)
• EuroPar VI-HPS Tools Tutorial (26 Sep 2013, Aachen)
• 12th VI-HPS Tuning Workshop (7-11 Oct 2013, Jülich)

– Hosted by Jülich Supercomputing Centre, FZJ, Germany
– Using PRACE Tier-0 Juqueen BlueGene/Q system
– Score-P, Scalasca, Vampir, TAU, Periscope, Paraver, MUST, ...

• Further events to be determined
– (one-day) tutorials

• With guided exercises usually using a Live-DVD
– (multi-day) training workshops

• With your own applications on actual HPC systems

• Check www.vi-hps.org/training for announced events
• Contact us if you might be interested in hosting an event

10

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS Linux Live DVD/ISO

• Bootable Linux installation on DVD (or USB memory stick)
• Includes everything needed to try out our parallel tools on

an 64-bit x86-architecture notebook computer
• VI-HPS tools: MUST, PAPI, Score-P,

Periscope, Scalasca, TAU, Vampir*
• Also: Eclipse/PTP, TotalView*, etc.

* time/capability-limited
evaluation licences provided
for commercial products

• GCC (w/ OpenMP), OpenMPI
• Manuals/User Guides
• Tutorial exercises & examples

• Produced by U. Oregon PRL
• Sameer Shende

11

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS Linux Live ISO

• ISO image approximately 4GB
– download latest version from website
– http://www.vi-hps.org/training/livedvd
– optionally create bootable DVD or USB drive

• Boot directly from disk
– enables hardware counter access and offers best performance,

but no save/resume

• Boot within virtual machine
– faster boot time and can save/resume state,

but may not allow hardware counter access

• Boots into Linux environment for HPC
– supports building and running provided MPI and/or OpenMP

parallel application codes
– and experimentation with VI-HPS (and third-party) tools

12

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Introduction to
Parallel Performance Engineering

Markus Geimer, Brian Wylie
Jülich Supercomputing Centre

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance: an old problem

2

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Difference Engine

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase
■ Performance gains only through

increased parallelism

■ Optimizations of applications more
difficult

■ Increasing application complexity
■ Multi-physics
■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory
■ More CPUs / multi-core

Every doubling of scale reveals a new bottleneck!

3

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: XNS

■ CFD simulation of unsteady flows
■ Developed by CATS / RWTH Aachen
■ Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies

■ MPI parallel version
■ >40,000 lines of Fortran & C
■ DeBakey blood-pump data set (3,714,611 elements)

4

Hæmodynamic flow
pressure distributionPartitioned finite-element mesh

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

XNS wait-state analysis on BG/L (2007)

5

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance factors of parallel applications

■ “Sequential” factors
■ Computation

Choose right algorithm, use optimizing compiler
■ Cache and memory

Tough! Only limited tool support, hope compiler gets it right
■ Input / output

Often not given enough attention

■ “Parallel” factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

More or less understood, good tool support

6

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tuning basics

■ Successful engineering is a combination of
■ The right algorithms and libraries
■ Compiler flags and directives
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To compare alternatives
■ To validate tuning decisions and optimizations

After each step!

7

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

However…

■ It's easier to optimize a slow correct program than to
debug a fast incorrect one
Nobody cares how fast you can compute a wrong answer...

8

“We should forget about small efficiencies,
say 97% of the time: premature optimization

is the root of all evil.”

Charles A. R. Hoare

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance engineering workflow

9

■ Prepare application (with symbols),
insert extra code (probes/hooks)

■ Collection of data relevant to
execution performance analysis

■ Calculation of metrics, identification
of performance metrics

■ Presentation of results in an
intuitive/understandable form

■ Modifications intended to eliminate/reduce
performance problems

Preparation

Measurement

Analysis

Examination

Optimization

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of
the code

■ Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application
Know when to stop!

■ Don't optimize what does not matter
Make the common case fast!

10

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent
■ The duration of some interval

■ E.g., the time spent these send calls
■ The size of some parameter

■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput
■ Needed for normalization

11

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example metrics

■ Execution time
■ Number of function calls
■ CPI

■ CPU cycles per instruction

■ FLOPS
■ Floating-point operations executed per second

12

“math” Operations?
HW Operations?

HW Instructions?
32-/64-bit? …

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other

applications

■ CPU time
■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)
■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

13

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive

Inclusive vs. Exclusive values

Exclusive

14

int foo()
{

int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

15

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Sampling

16

■ Running program is periodically interrupted
to take measurement

■ Timer interrupt, OS signal, or HWC overflow
■ Service routine examines return-address stack
■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behavior
■ Not very detailed information on highly

volatile metrics
■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{

int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Instrumentation

17

Time

Measurement

■ Measurement code is inserted such that
every event of interest is captured directly

■ Can be done in various ways

■ Advantage:
■ Much more detailed information

■ Disadvantage:
■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()
{

int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

18

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance
■ Perturbation

■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?
■ How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data

19

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

20

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

Profile = summarization of events over execution interval

21

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles
■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs
■ Comparing processes/threads

22

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tracing

■ Recording information about significant points (events)
during execution of the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of
event records

23

Event tracing

void foo() {

...

send(B, tag, buf);
...

}

Process A

void bar() {

...
recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

sy
nc

hr
on

iz
e(

d)

void bar() {
trc_enter("bar");
...
recv(A, tag, buf);
trc_recv(A);
...
trc_exit("bar");

}

void foo() {
trc_enter("foo");
...
trc_send(B);
send(B, tag, buf);
...
trc_exit("foo");

}

instrument

Global trace view

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tracing vs. Profiling

■ Tracing advantages
■ Event traces preserve the temporal and spatial relationships

among individual events ( context)
■ Allows reconstruction of dynamic application behaviour on any

required level of abstraction
■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages
■ Traces can very quickly become extremely large
■ Writing events to file at runtime causes perturbation
■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

25

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

26

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Online analysis

■ Performance data is processed during measurement run
■ Process-local profile aggregation

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Inter-process analysis often involves application steering
to interrupt and re-configure the measurement

27

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards
■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

28

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Time-line visualization

29

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
foo
bar

58 60 62 64 66 68 70

B

A

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

No single solution is sufficient!

30

A combination of different methods, tools and techniques is
typically needed!

■ Analysis
■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement
■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation
■ Source code / binary, manual / automatic, ...

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size

manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes

function-by-function

31

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Hands-on example code:
NPB-MZ-MPI / BT
(on Live-ISO/DVD)

VI-HPS Team

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Steps

0.0 Reference preparation for validation

1.0 Program instrumentation
1.1 Summary measurement collection
1.2 Summary analysis report examination

2.0 Summary experiment scoring
2.1 Summary measurement collection with filtering
2.2 Filtered summary analysis report examination

3.0 Event trace collection
3.1 Event trace examination & analysis

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI suite

• The NAS Parallel Benchmark suite (MPI+OpenMP version)
– Available from

http://www.nas.nasa.gov/Software/NPB
– 3 benchmarks in Fortran77
– Configurable for various sizes & classes

• Move into the NPB3.3-MZ-MPI root directory

• Subdirectories contain source code for each benchmark
– plus additional configuration and common code

• The provided distribution has already been configured for the
tutorial, such that it's ready to “make” one or more of the
benchmarks and install them into a (tool-specific) “bin”
subdirectory

3

% cd Tutorial; ls
bin/ common/ jobscript/ Makefile README.install SP-MZ/
BT-MZ/ config/ LU-MZ/ README README.tutorial sys/

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Building an NPB-MZ-MPI benchmark

• Type “make” for instructions

4

% make
===
= NAS PARALLEL BENCHMARKS 3.3 =
= MPI+OpenMP Multi-Zone Versions =
= F77 =
===

To make a NAS multi-zone benchmark type

make <benchmark-name> CLASS=<class> NPROCS=<nprocs>

where <benchmark-name> is “bt-mz”, “lu-mz”, or “sp-mz”
<class> is “S”, “W”, “A” through “F”
<nprocs> is number of processes

[...]

* Custom build configuration is specified in config/make.def *
* Suggested tutorial exercise configuration for LiveISO/DVD: *
* make bt-mz CLASS=W NPROCS=4 *

Hint: the recommended build
configuration is available via
% make suite

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Building an NPB-MZ-MPI benchmark

• Specify the benchmark configuration
– benchmark name: bt-mz, lu-mz, sp-mz
– the number of MPI processes: NPROCS=4
– the benchmark class (S, W, A, B, C, D, E): CLASS=W

5

% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c
../sys/setparams bt-mz 4 W
mpif77 -c -O3 -fopenmp bt.f
[...]

cd ../common; mpif77 -c -O3 -fopenmp timers.f
mpif77 –O3 -fopenmp -o ../bin/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin/bt-mz_W.4
make: Leaving directory 'BT-MZ'

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT (Block Tridiagonal solver)

• What does it do?
– Solves a discretized version of unsteady, compressible Navier-

Stokes equations in three spatial dimensions
– Performs 200 time-steps on a regular 3-dimensional grid

• Implemented in 20 or so Fortran77 source modules

• Uses MPI & OpenMP in combination
– 4 processes with 4 threads each should be reasonable

• don’t expect to see speed-up when run on a laptop!
– bt-mz_W.4 should run in around 5 to 12 seconds on a laptop
– bt-mz_B.4 is more suitable for dedicated HPC compute nodes

• Each class step takes around 10-15x longer

6

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT reference execution

• Launch as a hybrid MPI+OpenMP application

7

% cd bin
% OMP_NUM_THREADS=4 mpiexec -np 4 ./bt-mz_W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 x 4
Iterations: 200 dt: 0.000800
Number of active processes: 4
Total number of threads: 16 (4.0 threads/process)

Time step 1
Time step 20
Time step 40
[...]

Time step 160
Time step 180
Time step 200
Verification Successful

BT-MZ Benchmark Completed.
Time in seconds = 5.57

Hint: save the benchmark
output (or note the run time)
to be able to refer to it later

Alternatively execute script:
% sh ../jobscript/ISO/run.sh

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tutorial exercise steps

• The tutorial steps are similar and repeated for each tool
• Edit config/make.def to adjust build configuration

– Modify specification of compiler/linker: MPIF77

• Make clean and build new tool-specific executable

• Change to the directory containing the new executable
before running it with the desired tool configuration

8

% make clean
% make bt-mz CLASS=W NPROCS=4
Built executable ../bin.$(TOOL)/bt-mz_W.4

% cd bin.$(TOOL)
% export …
% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT: config/make.def

9

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
#---
Items in this file may need to be changed for each platform.
#---
...
#---
The Fortran compiler used for MPI programs
#---
MPIF77 = mpif77

Alternative variants to perform instrumentation
#MPIF77 = psc_instrument -u user,mpi,omp –s ${PROGRAM}.sir mpif77
#MPIF77 = tau_f90.sh
#MPIF77 = scalasca -instrument mpif77
#MPIF77 = vtf77 –vt:hyb -vt:f77 mpif77
#MPIF77 = scorep --user mpif77

PREP is a generic preposition macro for instrumentation preparation
#MPIF77 = $(PREP) mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK = $(MPIF77)
...

Hint: uncomment one of these
alternative compiler wrappers
to perform instrumentation

Default (no instrumentation)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Score-P – A Joint Performance
Measurement Run-Time Infrastructure for

Periscope, Scalasca, TAU, and Vampir
Markus Geimer2), Bert Wesarg1), Brian Wylie2)

With contributions from
Andreas Knüpfer1) and Christian Rössel2)

1)ZIH TU Dresden , 2)FZ Jülich

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Fragmentation of Tools Landscape

• Several performance tools co-exist
• Separate measurement systems and output formats
• Complementary features and overlapping functionality
• Redundant effort for development and maintenance
• Limited or expensive interoperability
• Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

SILC Project Idea

• Start a community effort for a common infrastructure
– Score-P instrumentation and measurement system
– Common data formats OTF2 and CUBE4

• Developer perspective:
– Save manpower by sharing development resources
– Invest in new analysis functionality and scalability
– Save efforts for maintenance, testing, porting, support, training

• User perspective:
– Single learning curve
– Single installation, fewer version updates
– Interoperability and data exchange

• SILC project funded by BMBF
• Close collaboration PRIMA project

funded by DOE

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Partners

• Forschungszentrum Jülich, Germany
• German Research School for Simulation Sciences,

Aachen, Germany
• Gesellschaft für numerische Simulation mbH

Braunschweig, Germany
• RWTH Aachen, Germany
• Technische Universität Dresden, Germany
• Technische Universität München, Germany
• University of Oregon, Eugene, USA

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

Score-P Functionality

• Provide typical functionality for HPC performance tools
• Support all fundamental concepts of partner’s tools

• Instrumentation (various methods)
• Flexible measurement without re-compilation:

– Basic and advanced profile generation
– Event trace recording
– Online access to profiling data

• MPI, OpenMP, and hybrid parallelism (and serial)
• Enhanced functionality (OpenMP 3.0, CUDA,

highly scalable I/O)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

Design Goals

• Functional requirements
– Generation of call-path profiles and event traces
– Using direct instrumentation, later also sampling
– Recording time, visits, communication data, hardware counters
– Access and reconfiguration also at runtime
– Support for MPI, OpenMP, basic CUDA, and all combinations

• Later also OpenCL/HMPP/PTHREAD/…

• Non-functional requirements
– Portability: all major HPC platforms
– Scalability: petascale
– Low measurement overhead
– Easy and uniform installation through UNITE framework
– Robustness
– Open Source: New BSD License

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Score-P Architecture

Instrumentation wrapper

Application (MPI×OpenMP×CUDA)

Vampir Scalasca PeriscopeTAU

Compiler

Compiler

OPARI 2

POMP2

CUDA

CUDA

User

User

PDT

TAU

Score-P measurement infrastructure

Event traces (OTF2) Call-path profiles
(CUBE4, TAU)

Online interface

Hardware counter (PAPI, rusage)

PMPI

MPI

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

Future Features and Management

• Scalability to maximum available CPU core count
• Support for OpenCL, HMPP, PTHREAD
• Support for sampling, binary instrumentation
• Support for new programming models, e.g., PGAS
• Support for new architectures

• Ensure a single official release version at all times
which will always work with the tools

• Allow experimental versions for new features or research

• Commitment to joint long-term cooperation

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

Score-P hands-on:
NPB-MZ-MPI / BT

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

Performance Analysis Steps

0.0 Reference preparation for validation

1.0 Program instrumentation
1.1 Summary measurement collection
1.2 Summary analysis report examination

2.0 Summary experiment scoring
2.1 Summary measurement collection with filtering
2.2 Filtered summary analysis report examination

3.0 Event trace collection
3.1 Event trace examination & analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 11

NPB-MZ-MPI / BT Instrumentation

• Change back to directory containing NPB BT-MZ

• Edit config/make.def to adjust build configuration
– Modify specification of compiler/linker: MPIF77

...
#---
The Fortran compiler used for MPI programs
#---
#MPIF77 = mpif77

Alternative variants to perform instrumentation
...
MPIF77 = scorep mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK = $(MPIF77)
...

Uncomment the
Score-P compiler

wrapper specification

% cd ..

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 12

NPB-MZ-MPI / BT Instrumented Build

• Return to root directory and clean-up

• Re-build executable using Score-P instrumenter

% make clean

% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt-mz 4 W
scorep mpif77 -c -O3 -fopenmp bt.f
[...]

cd ../common; scorep mpif77 -c -O3 -fopenmp timers.f
scorep mpif77 –O3 -fopenmp -o ../bin.scorep/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt-mz_W.4
make: Leaving directory 'BT-MZ'

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 13

Measurement Configuration: scorep-info

• Score-P measurements are configured via environment
variables:
% scorep-info config-vars --full
SCOREP_ENABLE_PROFILING
Description: Enable profiling
[...]
SCOREP_ENABLE_TRACING
Description: Enable tracing
[...]
SCOREP_TOTAL_MEMORY
Description: Total memory in bytes for the measurement system
[...]
SCOREP_EXPERIMENT_DIRECTORY
Description: Name of the experiment directory
[...]
SCOREP_FILTERING_FILE
Description: A file name which contain the filter rules
[...]
SCOREP_METRIC_PAPI
Description: PAPI metric names to measure
[...]
SCOREP_METRIC_RUSAGE
Description: Resource usage metric names to measure
[... More configuration variables ...]

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 14

Summary Measurement Collection

• Change to the directory containing the new executable
adjust configuration and run application
% cd bin.scorep
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum
% OMP_NUM_THREADS=4 mpiexec -np 4 ./bt-mz_W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 x 4
Iterations: 200 dt: 0.000800
Number of active processes: 4
Use the default load factors with threads
Total number of threads: 16 (4.0 threads/process)
Use the default load factors with threads

Time step 1
Time step 20
[...]

Time step 180
Time step 200
Verification Successful

BT-MZ Benchmark Completed.
Time in seconds = 54.39

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 15

• Creates experiment directory ./scorep_bt-mz_W_4x4_sum
containing
– a record of the measurement configuration (scorep.cfg)
– the analysis report that was collated after measurement

(profile.cubex)

• Interactive exploration with CUBE / ParaProf

BT-MZ Summary Analysis Report Examination

% ls
... scorep_bt-mz_W_4x4_sum
% ls scorep_bt-mz_W_4x4_sum
profile.cubex scorep.cfg

% cube scorep_bt-mz_W_4x4_sum/profile.cubex

[CUBE GUI showing summary analysis report]

% paraprof scorep_bt-mz_W_4x4_sum/profile.cubex

[TAU ParaProf GUI showing summary analysis report]

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis report examination
with CUBE

Markus Geimer
Jülich Supercomputing Centre

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

CUBE

• Parallel program analysis report exploration tools
– Libraries for XML report reading & writing
– Algebra utilities for report processing
– GUI for interactive analysis exploration

• requires Qt4

• Originally developed as part of Scalasca toolset
• Now available as a separate component

– Can be installed independently of Score-P, e.g.,
on laptop or desktop

– Latest release: CUBE 4.2 (August 2013)

2

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis presentation and exploration

• Representation of values (severity matrix)
on three hierarchical axes
– Performance property (metric)
– Call path (program location)
– System location (process/thread)

• Three coupled tree browsers

• CUBE displays severities
– As value: for precise comparison
– As colour: for easy identification of hotspots
– Inclusive value when closed & exclusive value when expanded
– Customizable via display modes

3

Call
path

P
ro

pe
rty

Location

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis presentation

4

How is it
distributed across

the processes/threads?

What kind of
performance

metric?

Where is it in the
source code?

In what context?

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis report exploration (opening view)

5

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metric selection

6

Selecting the “Time” metric
shows total execution time

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Expanding the system tree

7

Distribution of
selected metric
for call path by
process/thread

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Expanding the call tree

8

Distribution of
selected metric

across the call tree

Collapsed: inclusive value
Expanded: exclusive value

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive

Inclusive vs. Exclusive values

Exclusive

9

int foo()
{

int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Selecting a call path

10

Selection updates
metric values shown
in columns to right

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Source-code view via context menu

11

Right-click opens
context menu

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Source-code view

12

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Flat profile view

13

Select flat view tab,
expand all nodes,
and sort by value

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Box plot view

14

Box plot shows distribution
across the system; with

min/max/avg/median/quartiles

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Alternative display modes

15

Data can be
shown in various

percentage modes

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Important display modes

16

• Absolute
– Absolute value shown in seconds/bytes/counts

• Selection percent
– Value shown as percentage w.r.t. the selected node

“on the left“ (metric/call path)

• Peer percent (system tree only)
– Value shown as percentage relative to the maximum peer value

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Multiple selection

17

Select multiple
nodes with
Ctrl-click

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Context-sensitive help

18

Context-sensitive
help available for

all GUI items

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

CUBE algebra utilities

• Extracting solver sub-tree from analysis report

• Calculating difference of two reports

• Additional utilities for merging, calculating mean, etc.
– Default output of cube_utility is a new report utility.cubex

• Further utilities for report scoring & statistics
• Run utility with “-h” (or no arguments) for brief usage info

19

% cube_cut -r '<<ITERATION>>' scorep_bt-mz_W_4x4_sum/profile.cubex
Writing cut.cubex... done.

% cube_diff scorep_bt-mz_W_4x4_sum/profile.cubex cut.cubex
Writing diff.cubex... done.

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

• CUBE
– Parallel program analysis report exploration tools

• Libraries for XML report reading & writing
• Algebra utilities for report processing
• GUI for interactive analysis exploration

– Available under New BSD open-source license
– Documentation & sources:

• http://www.scalasca.org
– User guide also part of installation:

• `cube-config --cube-dir`/share/doc/CubeGuide.pdf
– Contact:

• mailto: scalasca@fz-juelich.de

20

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Score-P hands-on:
NPB-MZ-MPI / BT (filtered)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Performance Analysis Steps

0.0 Reference preparation for validation

1.0 Program instrumentation
1.1 Summary measurement collection
1.2 Summary analysis report examination

2.0 Summary experiment scoring
2.1 Summary measurement collection with filtering
2.2 Filtered summary analysis report examination

3.0 Event trace collection
3.1 Event trace examination & analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Congratulations!?

• If you made it this far, you successfully used Score-P to
– instrument the application
– analyze its execution with a summary measurement, and
– examine it with one the interactive analysis report explorer GUIs

• ... revealing the call-path profile annotated with
– the “Time” metric
– Visit counts
– MPI message statistics (bytes sent/received)

• ... but how good was the measurement?
– The measured execution produced the desired valid result
– however, the execution took rather longer than expected!

• even when ignoring measurement start-up/completion, therefore
• it was probably dilated by instrumentation/measurement overhead

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

BT-MZ Summary Analysis Result Scoring

• Report scoring as textual output

• Region/callpath classification
– MPI (pure MPI library functions)
– OMP (pure OpenMP functions/regions)
– USR (user-level source local computation)
– COM (“combined” USR + OpenMP/MPI)
– ANY/ALL (aggregate of all region types)

% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex
Estimated aggregate size of event trace: 909.683.150 bytes
Estimated requirements for largest trace buffer (max_tbc): 235.123.450 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
ALL 235123450 683.87 100.0 ALL
USR 232516724 113.57 16.6 USR
OMP 5973040 475.03 69.5 OMP
COM 314732 66.30 9.7 COM
MPI 88898 28.96 4.2 MPI

USR

USR

COM

COM USR

OMP MPI

909 MB total memory
235 MB per rank!

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

BT-MZ Summary Analysis Report Breakdown

• Score report breakdown by region

% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex
[...]

flt type max_tbc time % region
ALL 235123450 683.87 100.0 ALL
USR 232516724 113.57 16.6 USR
OMP 5973040 475.03 69.5 OMP
COM 314732 66.30 9.7 COM
MPI 88898 28.96 4.2 MPI

USR 72578286 33.02 4.8 matvec_sub_
USR 72578286 37.37 5.5 binvcrhs_
USR 72578286 34.81 5.1 matmul_sub_
USR 6747972 2.72 0.4 binvrhs_
USR 6747972 3.41 0.5 lhsinit_
USR 2939464 2.24 0.3 exact_solution_
OMP 369840 0.05 0.0 !$omp parallel @exch…
OMP 369840 0.06 0.0 !$omp parallel @exch…
OMP 369840 0.06 0.0 !$omp parallel @exch…
OMP 369840 0.06 0.0 !$omp parallel @exch…

[...]

USR

USR

COM

COM USR

OMP MPI

More than
232 MB just for
these 6 regions

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

BT-MZ Summary Analysis Score

• Summary measurement analysis score reveals
– Total size of event trace would be ~900 MB
– Maximum trace buffer size would be ~235 MB per rank

• smaller buffer would require flushes to disk during measurement
resulting in substantial perturbation

– 99.8% of the trace requirements are for USR regions
• purely computational routines never found on COM call-paths

common to communication routines or OpenMP parallel regions
– These USR regions contribute around 32% of total time

• however, much of that is very likely to be measurement overhead
for frequently-executed small routines

• Advisable to tune measurement configuration
– Specify an adequate trace buffer size
– Specify a filter file listing (USR) regions not to be measured

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

BT-MZ Summary Analysis Report Filtering

• Report scoring with prospective filter listing
6 USR regions
% cat ../config/scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
binvcrhs*
matmul_sub*
matvec_sub*
exact_solution*
binvrhs*
lhs*init*
timer_*

% scorep-score -f ../config/scorep.filt scorep_bt-mz_W_4x4_sum/profile.cubex
Estimated aggregate size of event trace: 20.482.486 bytes
Estimated requirements for largest trace buffer (max_tbc): 6.377.264 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
or reduce requirements using file listing names of USR regions to be filtered.)

20.5 MB of memory in
total,

6.4 MB per rank!

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

BT-MZ Summary Analysis Report Filtering

• Score report breakdown by region
% scorep-score -r –f ../config/scorep.filt \
> scorep_bt-mz_W_4x4_sum/profile.cubex
flt type max_tbc time % region
* ALL 6377264 570.30 83.4 ALL-FLT
+ FLT 232516108 113.57 16.6 FLT
- OMP 5973040 475.03 69.5 OMP-FLT
* COM 314732 66.30 9.7 COM-FLT
- MPI 88898 28.96 4.2 MPI-FLT
* USR 616 0.00 0.0 USR-FLT

+ USR 72578286 33.02 4.8 matvec_sub_
+ USR 72578286 37.37 5.5 binvcrhs_
+ USR 72578286 34.81 5.1 matmul_sub_
+ USR 6747972 2.72 0.4 binvrhs_
+ USR 6747972 3.41 0.5 lhsinit_
+ USR 2939464 2.24 0.3 exact_solution_
- OMP 369840 0.05 0.0 !$omp parallel @exch…
- OMP 369840 0.06 0.0 !$omp parallel @exch…
- OMP 369840 0.06 0.0 !$omp parallel @exch…
[...]

Filtered
routines
marked
with ‘+’

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

BT-MZ Filtered Summary Measurement

• Set new experiment directory and re-run measurement
with new filter configuration
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum_filtered
% export SCOREP_FILTERING_FILE=../config/scorep.filt
% OMP_NUM_THREADS=4 mpiexec -np 4 ./bt-mz_W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 x 4
Iterations: 200 dt: 0.000800
Number of active processes: 4
Use the default load factors with threads
Total number of threads: 16 (4.0 threads/process)
Use the default load factors with threads

Time step 1
Time step 20
[...]

Time step 180
Time step 200
Verification Successful

BT-MZ Benchmark Completed.
Time in seconds = 8.11

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

BT-MZ Tuned Summary Analysis Report Score

• Scoring of new analysis report as textual output

• Significant reduction in runtime (measurement overhead)
– Not only reduced time for USR regions, but MPI/OMP reduced

too!
• Further measurement tuning (filtering) may be

appropriate
– e.g., use “timer_*” to filter timer_start_, timer_read_, etc.

% scorep-score scorep_bt-mz_W_4x4_sum_filtered/profile.cubex
Estimated aggregate size of event trace: 20.482.486 bytes
Estimated requirements for largest trace buffer (max_tbc): 6.377.264 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid intermediate flushes
or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
ALL 6377264 74.16 100.0 ALL
OMP 5973040 45.45 61.3 OMP
COM 314732 9.77 13.2 COM
MPI 88898 18.94 25.5 MPI
USR 616 0.00 0.0 USR

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Hardware performance/soft counter
measurements hands-on

VI-HPS Team

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Advanced Measurement Configuration: Metrics

• If Score-P has been built with performance metric
support it is capable of recording performance counter
information

• Requested counters will be recorded with every
enter/exit event

• Supported metric sources
– PAPI
– Resource usage statistics

Note: Additional memory is needed to store metric values.
Therefore, you may have to adjust SCOREP_TOTAL_MEMORY,

for example as reported using “scorep-score -c”

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Advanced Measurement Configuration: Metrics

• Recording hardware counters via PAPI

• Also possible to record them only per rank

% export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS
% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

[... More application output ...]

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_DCM
% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

[... More application output ...]

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Advanced Measurement Configuration: Metrics

• Available PAPI metrics
– Preset events: common set of events deemed relevant and

useful for application performance tuning
• Abstraction from specific hardware performance counters,

mapping onto available events done by PAPI internally

– Native events: set of all events that are available on the CPU
(platform dependent)

% papi_avail

% papi_native_avail

Note:
Due to hardware restrictions
- number of concurrently measured events is limited
- there may be unsupported combinations of concurrent events
- Use papi_event_chooser tool to test event combinations

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

Advanced Measurement Configuration: Metrics

• Recording operating system resource usage

• Also possible to record them only per rank

% export SCOREP_METRIC_RUSAGE=ru_stime
% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

[... More application output ...]

% export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss
% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

[... More application output ...]

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

Advanced Measurement Configuration: Metrics

• Available resource usage metrics
% man getrusage
[... Output ...]

struct rusage {
struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims (soft page faults) */
long ru_majflt; /* page faults (hard page faults) */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* IPC messages sent */
long ru_msgrcv; /* IPC messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

[... More output ...]

Note:
(1) Not all fields are maintained on each

platform.
(2) Check scope of metrics (per process

vs. per thread)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Score-P hands-on
CUDA: Jacobi example

VI-HPS Team

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Jacobi Solver

• Jacobi Example
– Iterative solver for system of equations

– Code uses OpenMP, CUDA and MPI
for parallelization

• Domain decomposition
– Halo exchange at boundaries:

• Via MPI between processes
• Via CUDA between hosts and accelerators

Uold U
ui, j  buold,i, j ax(uold,i1, j uold,i1, j)ay(uold,i, j1 uold,i, j1) rHs/ b

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Jacobi Without Instrumentation

Compile host code
% mpicc -O3 -fopenmp -DUSE_MPI –I<path_to_cuda_header>

-c jacobi_cuda.c -o jacobi_mpi+cuda.o

Compile CUDA kernel
% nvcc -O3 -c jacobi_cuda_kernel.cu

-o jacobi_cuda_kernel.o

Link executable
% mpicc -fopenmp -lm –L<path_tocuda_libs> -lcudart

jacobi_mpi+cuda.o jacobi_cuda_kernel.o -o ./jacobi_mpi+cuda

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Instrumentation with Score-P

Compile host code
% scorep mpicc -O3 -fopenmp -DUSE_MPI –I<path_to_cuda_header>

-c jacobi_cuda.c -o jacobi_mpi+cuda.o

Compile CUDA kernel
% scorep nvcc -O3 -c jacobi_cuda_kernel.cu

-o jacobi_cuda_kernel.o

Link executable
% scorep mpicc -fopenmp -lm –L<path_tocuda_libs> -lcudart

jacobi_mpi+cuda.o jacobi_cuda_kernel.o -o ./jacobi_mpi+cuda

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

CUDA Advanced Measurement Configuration

• Enable recording of CUDA events with the CUPTI
interface via environment variable
SCOREP_CUDA_ENABLE

• Provide a list of recording types, e.g.

• Start with using the default configuration

• Adjust CUPTI buffer size (in bytes) as needed

% export SCOREP_CUDA_ENABLE=runtime,driver,gpu,kernel,idle

% export SCOREP_CUDA_ENABLE=yes

% export SCOREP_CUDA_BUFFER=100000

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

SCOREP_CUDA_ENABLE: Recording Types

Recording type Remark

yes/DEFAULT/1 "runtime, kernel, concurrent, memcpy"

no Disable CUDA measurement (same as unset SCOREP_CUDA_ENABLE)

runtime CUDA runtime API

driver CUDA driver API

kernel CUDA kernels

kernel_counter Fixed CUDA kernel metrics

concurrent Concurrent kernel recording

idle GPU compute idle time

pure_idle GPU idle time (memory copies are not idle)

memcpy CUDA memory copies

sync Record implicit and explicit CUDA synchronization

gpumemusage Record CUDA memory (de)allocations as a counter

stream_reuse Reuse destroyed/closed CUDA streams

device_reuse Reuse destroyed/closed CUDA devices

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Measurement (Profiling)

% export OMP_NUM_THREADS=6
% export SCOREP_CUDA_ENABLE=yes
% export SCOREP_CUDA_BUFFER=500000
% export SCOREP_EXPERIMENT_DIRECTORY=jacobi_cuda_profile

% mpirun -n 2 ./jacobi_mpi+cuda 4096 4096 0.15

Jacobi relaxation Calculation: 4096 x 4096 mesh with
2 processes and 6 threads + one Tesla T10 Processor for each process.
307 of 2049 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.

0, 0.113429
… … … … … …
900, 0.000101

total: 12.835816 s

Problem size
(x dimension) Load balancing factor

(in this example 15% of the
computations are calculated

on the CPU)
Problem size
(y dimension)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

CUBE4 Analysis

% cube jacobi_cuda_profile/profile.cubex

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

Scoring

• Do we need to filter? (Overhead and memory footprint)

 Very small example => no filtering

% scorep-score jacobi_cuda_profile/profile.cubex
Estimated aggregate size of event trace (total_tbc): 3.875.472 bytes
Estimated requirements for largest trace buffer (max_tbc): 1.937.936 bytes
(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid

intermediate flushes or reduce requirements using file listing
names of USR regions to be filtered.)

flt type max_tbc time % region
ALL 1937936 24.97 100.0 ALL
OMP 1154110 18.78 75.2 OMP
USR 667480 5.95 23.8 USR
MPI 116192 0.14 0.5 MPI
COM 154 0.10 0.4 COM

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

Measurement (Tracing)

% export OMP_NUM_THREADS=6
% export SCOREP_CUDA_ENABLE=yes
% export SCOREP_CUDA_BUFFER=500000
% export SCOREP_EXPERIMENT_DIRECTORY=jacobi_cuda_trace
% export SCOREP_ENABLE_PROFILING=false
% export SCOREP_ENABLE_TRACING=true

% mpirun -n 2 ./jacobi_mpi+cuda 4096 4096 0.15

Jacobi relaxation Calculation: 4096 x 4096 mesh with
2 processes and 6 threads + one Tesla T10 Processor for each process.
307 of 2049 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.

0, 0.113429
… … … … … …
900, 0.000101

total: 12.875220 s

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 11

Vampir Analysis

% vampir jacobi_cuda_trace/traces.otf2

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Automatic trace analysis
with Scalasca

Markus Geimer, Brian Wylie
Jülich Supercomputing Centre

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Automatic trace analysis

• Idea
– Automatic search for patterns of inefficient behavior
– Classification of behavior & quantification of significance

– Guaranteed to cover the entire event trace
– Quicker than manual/visual trace analysis
– Parallel replay analysis exploits available memory & processors

to deliver scalability

2

Call
path

P
ro

pe
rty

Location

Low-level
event trace

High-level
result

Analysis 

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

The Scalasca project: Overview

• Project started in 2006
– Initial funding by Helmholtz Initiative & Networking Fund
– Many follow-up projects

• Follow-up to pioneering KOJAK project (started 1998)
– Automatic pattern-based trace analysis

• Now joint development of
– Jülich Supercomputing Centre

– German Research School for Simulation Sciences

3

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

The Scalasca project: Objective

• Development of a scalable performance analysis toolset
for most popular parallel programming paradigms

• Specifically targeting large-scale parallel applications
– such as those running on IBM BlueGene or Cray XT systems

with one million or more processes/threads

• Latest release:
– Scalasca v2.0 with Score-P support (August 2013)

4

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca 2.0 features

• Open source, New BSD license
• Fairly portable

– IBM Blue Gene, IBM SP & blade clusters, Cray XT, SGI Altix,
Solaris & Linux clusters, ...

• Uses Score-P instrumenter & measurement libraries
– Scalasca 2.0 core package focuses on trace-based analyses
– Supports common data formats

• Reads event traces in OTF2 format
• Writes analysis reports in CUBE4 format

• Current limitations:
– No support for nested OpenMP parallelism and tasking
– Unable to handle OTF2 traces containing CUDA events

5

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca trace analysis

Scalasca workflow

6

Instr.
target
application

Measurement
library

HWC
Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler /

linker

Instrumented
executable

Source
modules

R
ep

or
t

m
an

ip
ul

at
io

n

Which problem? Where in the
program?

Which
process?

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Wait at NxN

• Time spent waiting in front of synchronizing collective
operation until the last process reaches the operation

• Applies to: MPI_Allgather, MPI_Allgatherv, MPI_Alltoall,
MPI_Reduce_scatter, MPI_Reduce_scatter_block,
MPI_Allreduce

7

time

location

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Late Broadcast

• Waiting times if the destination processes of a collective
1-to-N operation enter the operation earlier than the source
process (root)

• Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv

time

location

MPI_Bcast (root)

MPI_Bcast

MPI_Bcast

MPI_Bcast

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Late Sender

• Waiting time caused by a blocking receive operation posted
earlier than the corresponding send

• Applies to blocking as well as non-blocking communication

time

location

MPI_Recv

MPI_Send

time

location

MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

location

MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_IsendMPI_Wait MPI_Wait

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Hands-on:
NPB-MZ-MPI / BT

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca command

• One command for (almost) everything…

– The ‘scalasca -instrument’ command is deprecated and
only provided for backwards compatibility with Scalasca 1.x.

– Recommended: use Score-P instrumenter directly

11

% scalasca
Scalasca 2.0
Toolset for scalable performance analysis of large-scale applications
usage: scalasca [-v][-n][c] {action}

1. prepare application objects and executable for measurement:
scalasca –instrument <compile-or-link-command> # skin (using scorep)

2. run application under control of measurement system:
scalasca –analyze <application-launch-command> # scan

3. interactively explore measurement analysis report:
scalasca –examine <experiment-archive|report> # square

-v, --verbose enable verbose commentary
-n, --dry-run show actions without taking them
-c, --show-config show configuration and exit

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca compatibility command: skin

• Scalasca application instrumenter

– Provides compatibility with Scalasca 1.x
– Recommended: use Score-P instrumenter directly

12

% skin
Scalasca 2.0: application instrumenter using scorep
usage: skin [-v] [–comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>

-comp={all|none|...}: routines to be instrumented by compiler
(... custom instrumentation specification for compiler)

-pdt: process source files with PDT instrumenter
-pomp: process source files for POMP directives
-user: enable EPIK user instrumentation API macros in source code
-v: enable verbose commentary when instrumenting

--*: options to pass to Score-P instrumenter

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca convenience command: scan

• Scalasca measurement collection & analysis nexus

13

% scan
Scalasca 2.0: measurement collection & analysis nexus
usage: scan {options} [launchcmd [launchargs]] target [targetargs]

where {options} may include:
-h Help: show this brief usage message and exit.
-v Verbose: increase verbosity.
-n Preview: show command(s) to be launched but don't execute.
-q Quiescent: execution with neither summarization nor tracing.
-s Summary: enable runtime summarization. [Default]
-t Tracing: enable trace collection and analysis.
-a Analyze: skip measurement to (re-)analyze an existing trace.
-e exptdir : Experiment archive to generate and/or analyze.

(overrides default experiment archive title)
-f filtfile : File specifying measurement filter.
-l lockfile : File that blocks start of measurement.

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca convenience command: square

• Scalasca analysis report explorer

14

% square
Scalasca 2.0: analysis report explorer
usage: square [-v] [-s] [-f filtfile] [-F] <experiment archive

| cube file>
-F : Force remapping of already existing reports
-f filtfile : Use specified filter file when doing scoring
-s : Skip display and output textual score report
-v : Enable verbose mode

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Automatic measurement configuration

• scan configures Score-P measurement by setting some
environment variables automatically
– e.g., experiment title, profiling/tracing mode, filter file, …
– Precedence order:

• Command-line arguments
• Environment variables already set
• Automatically determined values

• Also, scan includes consistency checks and prevents
corrupting existing experiment directories

• For tracing experiments, after trace collection completes
then automatic parallel trace analysis is initiated
– uses identical launch configuration to that used for measurement

(i.e., the same allocated compute resources)

15

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary measurement

• Run the application using the Scalasca measurement
collection & analysis nexus prefixed to launch command

• Creates experiment directory ./scorep_bt-mz_W_4x4_sum
16

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum
% OMP_NUM_THREADS=4 scan mpiexec –np 4 ./bt-mz_W.4
S=C=A=N: Scalasca 2.0 runtime summarization
S=C=A=N: ./scorep_bt-mz_W_4x4_sum experiment archive
S=C=A=N: Thu Sep 13 18:05:17 2012: Collect start
mpiexec –np 4 ./bt-mz_W.4

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes: 4

[... More application output ...]

S=C=A=N: Thu Sep 13 18:05:39 2012: Collect done (status=0) 22s
S=C=A=N: ./scorep_bt-mz_W_4x4_sum complete.

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis report examination

• Score summary analysis report

• Post-processing and interactive exploration with CUBE

• The post-processing derives additional metrics and
generates a structured metric hierarchy

17

% square scorep_bt-mz_W_4x4_sum
INFO: Displaying ./scorep_bt-mz_W_4x4_sum/summary.cubex...

[GUI showing summary analysis report]

% square -s scorep_bt-mz_W_4x4_sum
INFO: Post-processing runtime summarization result...
INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Post-processed summary analysis report

18

Split base metrics into
more specific metrics

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Steps

0.0 Reference preparation for validation

1.0 Program instrumentation
1.1 Summary measurement collection
1.2 Summary analysis report examination

2.0 Summary experiment scoring
2.1 Summary measurement collection with filtering
2.2 Filtered summary analysis report examination

3.0 Event trace collection
3.1 Event trace examination & analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace measurement collection...

• Re-run the application using Scalasca nexus with “-t” flag

20

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace
% OMP_NUM_THREADS=4 scan -t mpiexec –np 4 ./bt-mz_W.4
S=C=A=N: Scalasca 2.0 trace collection and analysis
S=C=A=N: ./scorep_bt-mz_W_4x4_trace experiment archive
S=C=A=N: Thu Sep 13 18:05:39 2012: Collect start
mpiexec –np 4 ./bt-mz_B.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes: 4

[... More application output ...]

S=C=A=N: Thu Sep 13 18:05:58 2012: Collect done (status=0) 19s
[... continued ...]

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace measurement ... analysis

• Continues with automatic (parallel) analysis of trace files

21

S=C=A=N: Thu Sep 13 18:05:58 2012: Analyze start
mpiexec –np 4 scout.hyb ./scorep_bt-mz_W_4x4_trace/traces.otf2
SCOUT Copyright (c) 1998-2012 Forschungszentrum Juelich GmbH

Copyright (c) 2009-2012 German Research School for Simulation
Sciences GmbH

Analyzing experiment archive ./scorep_bt-mz_W_4x4_trace/traces.otf2

Opening experiment archive ... done (0.002s).
Reading definition data ... done (0.004s).
Reading event trace data ... done (0.669s).
Preprocessing ... done (0.975s).
Analyzing trace data ... done (0.675s).
Writing analysis report ... done (0.112s).

Max. memory usage : 145.078MB

Total processing time : 2.785s
S=C=A=N: Thu Sep 13 18:06:02 2012: Analyze done (status=0) 4s

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace analysis report exploration

• Produces trace analysis report in experiment directory
containing trace-based wait-state metrics

22

% square scorep_bt-mz_W_4x4_trace
INFO: Post-processing runtime summarization result...
INFO: Post-processing trace analysis report...
INFO: Displaying ./scorep_bt-mz_W_4x4_trace/trace.cubex...

[GUI showing trace analysis report]

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Post-processed trace analysis report

23

Additional trace-based
metrics in metric hierarchy

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Online metric description

24

Access online metric
description via context

menu

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Online metric description

25

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Pattern instance statistics

26

Access pattern instance
statistics via context menu

Click to get
statistics details

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Connect to Vampir trace browser

27

To investigate most severe
pattern instances, connect

to a trace browser…
…and select trace file from

the experiment directory

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Show most severe pattern instances

28

Select “Max severity in trace
browser” from context menu
of call paths marked with a

red frame

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Investigate most severe instance in Vampir

29

Vampir will automatically
zoom to the worst

instance in multiple steps
(i.e., undo zoom provides

more context)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

Scalable performance analysis of
large-scale parallel applications
– toolset for scalable performance measurement & analysis of

MPI, OpenMP & hybrid parallel applications
– supporting most popular HPC computer systems
– available under New BSD open-source license
– sources, documentation & publications:

• http://www.scalasca.org
• mailto: scalasca@fz-juelich.de

30

1

Performance Analysis with Vampir

Bert Wesarg, Andreas Knüpfer
ZIH, Technische Universität Dresden

2SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Outline

Part I: Welcome to the Vampir Tool Suite
– Mission
– Event Trace Visualization
– Vampir & VampirServer
– The Vampir Displays

Part II: Vampir Hands On
– Visualizing and analyzing NPB-MZ-MPI / BT

Part III: Summary and Conclusion

3SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Mission

• Visualization of dynamics
of complex parallel processes

• Requires two components
– Monitor/Collector (Score-P)
– Charts/Browser (Vampir)

Typical questions that Vampir helps to answer:
– What happens in my application execution during a given time in

a given process or thread?
– How do the communication patterns of my application execute

on a real system?
– Are there any imbalances in computation, I/O or memory usage

and how do they affect the parallel execution of my application?

4SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Event Trace Visualization with Vampir

• Alternative and supplement to automatic analysis
• Show dynamic run-time behavior graphically at any level

of detail
• Provide statistics and performance metrics

Timeline charts
– Show application activities and

communication along a time axis

Summary charts
– Provide quantitative results for the

currently selected time interval

5SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir – Visualization Modes (1)

• Directly on front end or local machine

% vampir

Score-P Trace
File

(OTF2)

Vampir 8CPU CPU

CPU CPUCPU CPU

CPUCPU

Multi-Core
Program

Multi-Core
Program

Thread parallelSmall/Medium sized trace

6SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir – Visualization Modes (2)

• On local machine with remote VampirServer

Score-P

Vampir 8

Trace
File

(OTF2)

VampirServer

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

Many-Core
Program

Large Trace File
(stays on remote machine)

MPI parallel application

LAN/WAN

% vampirserver start –n 12 % vampir

7SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Usage order of the Vampir Performance
Analysis Toolset

1. Instrument your application with Score-P

2. Run your application with an appropriate test set

3. Analyze your trace file with Vampir
– Small trace files can be analyzed on your local workstation

1. Start your local Vampir
2. Load trace file from your local disk

– Large trace files should be stored on the HPC file system
1. Start VampirServer on your HPC system
2. Start your local Vampir
3. Connect local Vampir with the VampirServer on the HPC system
4. Load trace file from the HPC file system

8SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

The main displays of Vampir

• Timeline Charts:
– Master Timeline

– Process Timeline

– Counter Data Timeline

– Performance Radar

• Summary Charts:
– Function Summary

– Message Summary

– Process Summary

– Communication Matrix View

9

Vampir hands-on

Visualizing and analyzing NPB-MZ-MPI / BT

10SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

% vampir scorep_bt-mz_B_4x4_trace

Master Timeline

Navigation Toolbar

Function Summary

Function Legend

11SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Master Timeline

Detailed information about
functions, communication

and synchronization events
for collection of processes.

12SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Detailed information about
different levels of function
calls in a stacked bar chart
for an individual process.

Process Timeline

13SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Typical program phases

Initialisation Phase Computation Phase

14SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Detailed counter
information over time for

an individual process.

Counter Data Timeline

15SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Performance Radar

Detailed counter
information over time for
a collection of processes.

16SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Inititialisation Phase

Context View:
Detailed information about

function “initialize_”.

17SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Feature: Find Function

Execution of function
“initialize_” results in

higher page fault
rates.

18SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Computation Phase

Computation phase
results in higher

floating point
operations.

19SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

MPI communication
results in lower

floating point
operations.

Zoom in: Computation Phase

20SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Finalisation Phase

“Early reduce”
bottleneck.

21SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Process Summary

Function Summary:
Overview of the

accumulated information
across all functions and for
a collection of processes.

Process Summary:
Overview of the

accumulated information
across all functions and for

every process independently.

22SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Process Summary

Find groups of similar
processes and

threads by using
summarized function

information.

23

Summary and Conclusion

24SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Summary

• Vampir & VampirServer
– Interactive trace visualization and analysis
– Intuitive browsing and zooming
– Scalable to large trace data sizes (20 TByte)
– Scalable to high parallelism (200000 processes)

• Vampir for Linux, Windows and Mac OS X

• Note: Vampir does neither solve your problems
automatically nor point you directly at them. It does,
however, give you FULL insight into the execution of
your application.

25SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Conclusion

• performance analysis very important in HPC

• use performance analysis tools for profiling and tracing
• do not spend effort in DIY solutions,

e.g. like printf-debugging

• use tracing tools with some precautions
– overhead
– data volume

• let us know about problems and about feature wishes
• vampirsupport@zih.tu-dresden.de

26SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir is available at http://www.vampir.eu,
get support via vampirsupport@zih.tu-dresden.de

27SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Staff at ZIH - TU Dresden:

Ronny Brendel, Holger Brunst, Jens Doleschal,
Ronald Geisler, Daniel Hackenberg, Michael Heyde,
Matthias Jurenz, Michael Kluge, Andreas Knüpfer,

Matthias Lieber, Holger Mickler, Hartmut Mix,
Matthias Weber, Bert Wesarg, Frank Winkler,

Matthias Müller, Wolfgang E. Nagel

Acknowledgement

Profile Analysis with ParaProf

Sameer Shende
Performance Reseaerch Lab, University of Oregon

http://TAU.uoregon.edu

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Performance System® (http://tau.uoregon.edu)

• Parallel performance framework and toolkit
– Supports all HPC platforms, compilers, runtime system
– Provides portable instrumentation, measurement, analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Performance System®

• Instrumentation
– Fortran, C++, C, UPC, Java, Python, Chapel
– Automatic instrumentation

• Measurement and analysis support
– MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
– pthreads, OpenMP, hybrid, other thread models
– GPU, CUDA, OpenCL, OpenACC
– Parallel profiling and tracing
– Use of Score-P for native OTF2 and CUBEX generation
– Efficient callpath proflles and trace generation using Score-P

• Analysis
– Parallel profile analysis (ParaProf), data mining (PerfExplorer)
– Performance database technology (PerfDMF, TAUdb)
– 3D profile browser

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf Profile Analysis Framework

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Parallel Profile Visualization: ParaProf

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Parallel Profile Visualization: ParaProf

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: 3D Communication Matrix

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Hands-on: Profile report exploration

• The Live-DVD contains Score-P experiments of BT-MZ
– class “B“, 4 processes with 4 OpenMP threads each
– collected on a dedicated node of the SuperMUC HPC system

at Leibniz Rechenzentrum (LRZ), Munich, Germany

• Start TAU‘s paraprof GUI with default profile report

9

% cd
% cd workshop-vihps/supermuc_expts
% ls
periscope-1.5 scorep_bt-mz_B_4x4_sum
README scorep_bt-mz_B_4x4_sum+mets
run.out scorep_bt-mz_B_4x4_trace
scorep-20120913_1740_557443655223384

% paraprof scorep-20120913_1740_557443655223384/profile.cubex
OR
% paraprof scorep_bt-mz_B_4x4_trace/scout.cubex

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Manager Window: scout.cubex

Metrics in the profile

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Main window

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Options

Unselect this to expand
each routine in its own

space

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf:

Each color represents an
event executing on one or

more threads

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Windows

Right click on a given node
to choose other windows

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Thread Statistics Table

Click to sort by a given
metric, drag and move to

rearrange columns

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Score-P with TAU (LU NPB)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Thread Callgraph Window

Click on options to choose
a different color or to resize
the box based on metrics

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Callpath Thread Relations Window

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf:Windows -> 3D Visualization -> Bar Plot

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: 3D Scatter Plot

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Scatter Plot

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: 3D Topology View for a Routine

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Topology View 3D Torus (IBM BG/P)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf:Topology View (6D Torus Coordinates BG/Q)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Node View

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Add Thread to Comparison Window

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Score-P Profile Files, Database

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: File -> Preferences

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Group Changer Window

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Options -> Derived Metric Panel

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Sorting Derived Flops Metric by Exclusive Time

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• U.S. Department of Energy (DOE)
– Office of Science
– ASC/NNSA, Tri-labs (LLNL,LANL, SNL)

• U.S. Department of Defense (DoD)
– HPC Modernization Office (HPCMO)

• NSF Software Development for Cyberinfrastructure
(SDCI)

• Juelich Supercomputing Center, NIC
• Argonne National Laboratory
• Technical University Dresden
• ParaTools, Inc.
• NVIDIA

Support Acknowledgments

Profile Data Mining with PerfExplorer

Sameer Shende
Performance Reseaerch Lab, University of Oregon

http://TAU.uoregon.edu

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

TAUdb: Performance Data Mgmt. Framework

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Using TAUdb

• Configure TAUdb (Done by each user)
% taudb_configure --create-default

• Choose derby, PostgreSQL, MySQL, Oracle or DB2
• Hostname
• Username
• Password
• Say yes to downloading required drivers (we are not allowed to distribute these)
• Stores parameters in your ~/.ParaProf/taudb.cfg file

• Configure PerfExplorer (Done by each user)
% perfexplorer_configure

• Execute PerfExplorer
% perfexplorer

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

Using PerfExplorer

% wget http://tau.uoregon.edu/data.tgz (Contains CUBE profiles from Score-P)
% taudb_configure --create-default
(Chooses derby, blank user/passwd, yes to save passwd, defaults)
% perfexplorer_configure
(Yes to load schema, defaults)
% paraprof
(load each trial: DB -> Add Trial -> Type (Paraprof Packed Profile) -> OK) OR use

taudb_loadtrial –a “app” –x “experiment” –n “name” file.ppk
Then,
% perfexplorer
(Select experiment, Menu: Charts -> Speedup)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

TAUdb and the TAU Portal

• Development of the TAU portal
– Common repository for collaborative data sharing
– Profile uploading, downloading, user management
– Paraprof, PerfExplorer can be launched from the portal using Java

Web Start (no TAU installation required)

• Portal URL
http://tau.nic.uoregon.edu

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Performance Data Mining (PerfExplorer)

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

• comparative, clustering, correlation, dimension reduction, …
– Use the existing TAU infrastructure

• TAU performance profiles, taudb
– Client-server based system architecture

• Technology integration
– Java API and toolkit for portability
– taudb
– R-project/Omegahat, Octave/Matlab statistical analysis
– WEKA data mining package
– JFreeChart for visualization, vector output (EPS, SVG)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

PerfExplorer - Cluster Analysis

• Performance data represented as vectors - each
dimension is the cumulative time for an event

• k-means: k random centers are selected and instances
are grouped with the "closest" (Euclidean) center

• New centers are calculated and the process repeated
until stabilization or max iterations

• Dimension reduction necessary for meaningful results
• Virtual topology, summaries constructed

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

PerfExplorer - Cluster Analysis (sPPM)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

PerfExplorer - Correlation Analysis (Flash)

• Describes strength and direction of a linear relationship
between two variables (events) in the data

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 11

PerfExplorer - Correlation Analysis (Flash)

• -0.995 indicates strong,
negative relationship

• As CALC_CUT_
BLOCK_CONTRIBUTIO
NS() increases in
execution time,
MPI_Barrier() decreases

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 12

PerfExplorer - Comparative Analysis

• Relative speedup, efficiency
– total runtime, by event, one event, by phase

• Breakdown of total runtime
• Group fraction of total runtime
• Correlating events to total runtime
• Timesteps per second

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 13

PerfExplorer - Interface

Select experiments
and trials of interest

Data organized in application,
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 14

PerfExplorer - Interface

Select analysis

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 15

PerfExplorer - Relative Efficiency Plots

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 16

PerfExplorer - Relative Efficiency by Routine

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 17

PerfExplorer - Relative Speedup

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 18

PerfExplorer - Timesteps Per Second

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 19

Usage Scenarios: Evaluate Scalability

• Goal: How does my application scale? What bottlenecks occur at what core counts?
• Load profiles in taudb database and examine with PerfExplorer

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 20

Usage Scenarios: Evaluate Scalability

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 21

PerfExplorer

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 22

PerfExplorer

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 23

Performance Regression Testing

1

Typical performance bottlenecks and
how they can be found

Bert Wesarg
ZIH, Technische Universität Dresden

2SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Case I:
– Finding load imbalances in OpenMP codes

• Case II:
– Finding communication and computation imbalances in MPI

codes

Outline

3SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

ଵݕ
⋮
௠ݕ

ൌ
ܽଵଵ ⋯ ܽ௡ଵ
⋮ ⋱ ⋮

ܽ௠ଵ ⋯ ܽ௠௡

∙
ଵݔ
⋮
௡ݔ

• Matrix has significant more zero elements => sparse
matrix

• Only non-zero elements of ܽ௜௝ are saved efficiently in
memory

• Algorithm:

Case I: Sparse Matrix Vector Multiplication

foreach row r in A
y[r.x] = 0
foreach non-zero element e in row
y[r.x] += e.value * x[e.y]

4SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Naïve OpenMP Algorithm:

• Distributes the rows of A evenly across the threads in the
parallel region

• The distribution of the non-zero elements may influence
the load balance in the parallel application

Case I: Sparse Matrix Vector Multiplication

#pragma omp parallel for
foreach row r in A

y[r.x] = 0
foreach non-zero element e in row
y[r.x] += e.value * x[e.y]

5SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Measuring the static OpenMP application

Case I: Load imbalances in OpenMP codes

% cd ~/Bottlenecks/smxv
% make PREP=scorep
scorep gcc -fopenmp -DLITTLE_ENDIAN \

-DFUNCTION_INC='"y_Ax-omp.inc.c"' -DFUNCTION=y_Ax_omp \
-o smxv-omp smxv.c -lm

scorep gcc -fopenmp -DLITTLE_ENDIAN \
-DFUNCTION_INC='"y_Ax-omp-dynamic.inc.c"‘ \
-DFUNCTION=y_Ax_omp_dynamic -o smxv-omp-dynamic smxv.c -lm

% OMP_NUM_THREADS=8 scan –t ./smxv-omp yax_large.bin

6SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Two metrics which indicate load imbalances:
– Time spent in OpenMP barriers
– Computational imbalance

• Open prepared measurement on the LiveDVD with Cube

Case I: Load imbalances in OpenMP codes: Profile

% cube ~/Bottlenecks/smxv/scorep_smxv-omp_large/trace.cubex

[CUBE GUI showing trace analysis report]

7SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Time spent in OpenMP barriers

These threads spent up to
20% of there running time

in the barrier

8SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

Master thread does 66% of
the work

9SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Improved OpenMP Algorithm

• Distributes the rows of A dynamically across the threads
in the parallel region

Case I: Sparse Matrix Vector Multiplication

#pragma omp parallel for schedule(dynamic,1000)
foreach row r in A

y[r.x] = 0
foreach non-zero element e in row
y[r.x] += e.value * x[e.y]

10SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Two metrics which indicate load imbalances:
– Time spent in OpenMP barriers
– Computational imbalance

• Open prepared measurement on the LiveDVD with
Cube:

Case I: Profile Analysis

% cube ~/Bottlenecks/smxv/scorep_smxv-omp-dynamic_large/trace.cubex

[CUBE GUI showing trace analysis report]

11SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Time spent in OpenMP barriers

All threads spent similar
time in the barrier

12SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

Threads do nearly equal
work

13SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Open prepared measurement on the LiveDVD with
Vampir:

Case I: Trace Comparison

% vampir ~/Bottlenecks/smxv/scorep_smxv-omp_large/traces.otf2

[Vampir GUI showing trace]

14SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Time spent in OpenMP barriers

Improved runtime

Less time in
OpenMP barrier

15SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

Great imbalance for time
spent in computational

code

Great imbalance for time
spent in computational

code

16SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Case I:
– Finding load imbalances in OpenMP codes

• Case II:
– Finding communication and computation imbalances in MPI

codes

Outline

17SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Calculating the heat conduction at each timestep
• Discretized formula for space ݀ݔ, ݕ݀ and time ݀ݐ

௜,௝௧ାଵߠ ൌ ௜,௝௧ߠ ൅ ቆ
௜ାଵ,௝௧ߠ െ ௜,௝௧ߠ2 ൅ ௜ିଵ,௝௧ߠ2

ଶݔ݀ ൅
௜,௝ାଵ௧ߠ െ ௜,௝௧ߠ2 ൅ ௜,௝ିଵ௧ߠ2

ଶݕ݀ ቇ ∙ ݇ ∙ ݐ݀

Case II: Heat Conduction Simulation

18SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Application uses MPI for boundary exchange and
OpenMP for computation

• Simulation grid is distributed across MPI ranks

Case II: Heat Conduction Simulation

19SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Ranks need to exchange boundaries before next
iteration step

Case II: Heat Conduction Simulation

20SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• MPI Algorithm

• Building and measuring the heat conduction application:

• Open prepared measurement on the LiveDVD with Cube

Case II: Profile Analysis

foreach step in [1:nsteps]
exchangeBoundaries
computeHeatConduction

% cd ~/Bottlenecks/heat
% make PREP=‘scorep --user’

[... make output ...]
% scan –t mpirun –np 16 ./heat-MPI 3072 32

% cube ~/Bottlenecks/heat/scorep_heat-MPI_16/trace.cubex

[CUBE GUI showing trace analysis report]

21SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Step 1: Compute heat in the area which is
communicated to your neighbors

Case II: Hide MPI communication with computation

22SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Step 2: Start communicating boundaries with your
neighbors

Case II: Hide MPI communication with computation

23SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Step 3: Compute heat in the interior area

Case II: Hide MPI communication with computation

24SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Improved MPI Algorithm

• Measuring the improved heat conduction application:

• Open prepared measurement on the LiveDVD with Cube

Case II: Profile Analysis

foreach step in [1:nsteps]
computeHeatConductionInBoundaries
startBoundaryExchange
computeHeatConductionInInterior
waitForCompletionOfBoundaryExchange

% scan –t mpirun –np 16 ./heat-MPI-overlap 3072 32

% cube ~/Bottlenecks/heat/scorep_heat-MPI-overlap_16/trace.cubex

[CUBE GUI showing trace analysis report]

25SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Open prepared measurement on the LiveDVD with
Vampir:

Case II: Trace Comparison

% vampir ~/Bottlenecks/heat/scorep_heat-MPI_16/traces.otf2

[Vampir GUI showing trace]

26SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Thanks to Dirk Schmidl, RWTH Aachen, for providing the
sparse matrix vector multiplication code

Acknowledgments

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Review

Brian Wylie
Jülich Supercomputing Centre

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Summary

You’ve been introduced to a variety of tools, and had an
opportunity to try them with a prepared example code

– with guidance to apply and use the tools most effectively

• Tools provide complementary capabilities
– computational kernel & processor analyses
– communication/synchronization analyses
– load-balance, scheduling, scaling, …

• Tools are designed with various trade-offs
– general-purpose versus specialized
– platform-specific versus agnostic
– simple/basic versus complex/powerful

2

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tool selection

• Which tools you use and when you use them likely to
depend on situation
– which are available on (or for) your computer system
– which support your programming paradigms and languages
– which you are familiar (comfortable) with using

• also depends on the type of issue you have or suspect

• Awareness of (potentially) available tools can help finding
the most appropriate tools

3

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (getting started)

• First ensure that the parallel application runs correctly
– no-one will care how quickly you can get invalid answers or

produce a directory full of corefiles
– parallel debuggers help isolate known problems
– correctness checking tools can help identify other issues
– (that might not cause problems right now, but will eventually)

• e.g., race conditions, invalid/non-compliant usage

• Generally valuable to start with an overview of execution
performance
– fraction of time spent in computation vs comm/synch vs I/O
– which sections of the application/library code are most costly

• and how it changes with scale or different configurations
– processes vs threads, mappings, bindings

4

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (communication/synchronization)

• Communication/synchronization issues generally apply
to every computer system (to different extents) and
typically grow with the number of processes/threads
– Weak scaling: fixed computation per thread, and perhaps fixed

localities, but increasingly distributed
– Strong scaling: constant total computation, increasingly divided

amongst threads, while communication grows
– Collective communication (particularly of type “all-to-all”) result in

increasing data movement
– Synchronizations of larger groups are increasingly costly
– Load-balancing becomes increasingly challenging, and

imbalances increasingly expensive
• generally manifests as waiting time at following collective ops

5

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (wasted waiting time)

• Waiting times are difficult to determine in basic profiles
– Part of the time each process/thread spends in communication &

synchronization operations may be wasted waiting time
– Need to correlate event times between processes/threads

• Periscope uses augmented messages to transfer timestamps and
additional on-line analysis processes

• Post-mortem event trace analysis avoids interference and provides
a complete history

• Scalasca automates trace analysis and ensures waiting times are
completely quantified

• Vampir allows interactive exploration and detailed examination of
reasons for inefficiencies

6

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (core computation)

Effective computation within processors/cores is also vital
– Optimized libraries may already be available
– Optimizing compilers can also do a lot

• provided the code is clearly written and not too complex
• appropriate directives and other hints can also help

– Processor hardware counters can also provide insight
• although hardware-specific interpretation required

– Tools available from processor and system vendors help
navigate and interpret processor-specific performance issues

7

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS tools portfolio and their integration

8

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MARMOT / MUST

PERISCOPEKCACHEGRIND

TAU

MAQAOSIONLIB /
OPENMPI

STAT

SCORE-P

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Featured VI-HPS tools

• Score-P
– community-developed instrumenter & measurement libraries for

parallel profiling and event tracing

• CUBE & ParaProf/PerfExplorer
– interactive parallel profile analyses

• Scalasca
– automated event-trace analysis

• Vampir
– interactive event-trace visualizations and analyses

• TAU/PDT
– comprehensive performance system

9

SC‘13: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

• Website
– Introductory information about the VI-HPS portfolio of tools for

high-productivity parallel application development
• links to individual tools sites for details and download

– Training material
• tutorial slides
• latest ISO image of VI-HPS Linux DVD with productivity tools
• user guides and reference manuals for tools

– News of upcoming events
• tutorials and workshops
• mailing-list sign-up for announcements

http://www.vi-hps.org

10

