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Abstract

This thesis is concerned with the quantum mechanical investigation of a novel class of
magnetic phenomena in atomic- and nanoscale-sized systems deposited on surfaces
or embedded in bulk materials that result from a competition between the exchange
and the relativistic spin-orbit interactions. The thesis is motivated by the observation
of novel spin-textures of one- and two-dimensional periodicity of nanoscale pitch
length exhibiting a unique winding sense observed in ultra-thin magnetic films on
nonmagnetic metallic substrates with a large spin-orbit interaction. The goal is to
extend this field to magnetic clusters and nano-structures of finite size in order to
investigate in how far the size of the cluster and the atoms at the edge of the cluster or
ribbon that are particular susceptible to relativistic effects change the balance between
different interactions and thus lead to new magnetic phenomena. As an example,
the challenging problem of Fe nano-islands on Ir(111) is addressed in detail as for an
Fe monolayer on Ir(111) a magnetic nanoskyrmion lattice was observed as magnetic
structure.

To achieve this goal a new first-principles all-electron electronic structure code based
on density functional theory was developed. The method of choice is the Korringa-
Kohn-Rostoker (KKR) impurity Green function method, resorting on a multiple
scattering approach. This method has been conceptually further advanced to combine
the neglect of any shape approximation to the full potential, with the treatment of
non-collinear magnetism, of the spin-orbit interaction, as well as of the structural
relaxation together with the perfect embedding of a finite size magnetic cluster of
atoms into a surface or a bulk environment. For this purpose the formalism makes
use of an expansion of the Green function involving explicitly left- and right-hand
side scattering solutions. Relativistic effects are treated via the scalar-relativistic
approximation and a spin-orbit coupling term treated self-consistently. This required
the development of a new algorithm to solve the relativistic quantum mechanical
scattering problem for a single atom with a non-spherical potential formulated in
terms of the Lippmann-Schwinger integral equation.

Prior to the investigation of the Fe nano-islands, the magnetic structure of an Fe
monolayer is studied using atomistic spin-dynamics on the basis of a classical model
Hamiltonian, which uses realistic coupling parameters obtained from first principles. It
is shown that this method is capable to find the experimentally determined magnetic
structure.

The magnetic structures of Fe nano-islands on Ir(111) are determined applying the



new KKR code. The consequence of the structural relaxation on the magnetism
is discussed. It is shown that for a 19-atom Fe island a manifestly non-collinear
magnetic structure is formed, which is strongly influenced by a relativistic chiral inter-
atomic exchange interaction term known as the Dzyaloshinskii-Moriya interaction.
Model calculations using the atomistic spin-dynamics method with realistic coupling
parameters, harvested from ab initio calculations, are carried out to gain a better
understanding. The 4-spin interaction, a higher order exchange interaction term, has
been essential to explain the magnetic structure. The combination of ab initio and
model calculations establishes a success approach for the understanding of complex
magnetism in finite nano-structures.
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Conventions

In this work tries to stick to the following convention in mathematical formulas, if not
otherwise indicated:

Symbol explanation
~r vector head vector containing Cartesian coordinates
r underline general vector
r̂ hat normalized Cartesian vector
M double underline general matrix
M bold matrix containing angular expansion indices (l,m)
D calligraphic symbol differential operator e.g. the Hamiltonian H
i imaginary unit

Θ(x) Heaviside function Θ(x) =

{
0 : x < 0

1 : x ≥ 0

δ(x) Dirac delta function

In addition, additional information and important formulas are highlighted by a gray
box

Important notes
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1 Introduction

Magnetism at surfaces is an exciting field of research, since the reduction of the
dimension leads to new physical phenomena. It is also important in current data
storage technology keeping in mind that the drastic increase of the information density
in modern magnetic hard discs only became possible by layered magnetic systems
and ultrathin films. One particular example is the giant magnetoresistance effect
[1, 2] discovered by P. Grünberg and A. Fert, who were awarded the Nobel prize
in Physics in 2007. This particular example shows that new magnetic phenomena,
resulting from reduction of dimensionality, can have a great impact on the technological
developments.

Such rapid improvements only became feasible by understanding the fundamental
physics of low dimensional systems and made surface magnetism a very active field of
research in the last decades. Many theoretical and experimental techniques have been
developed to understand and analyze physical effects on surfaces. A breakthrough
came with the development of the scanning tunneling microscope (STM) [3], which
is able to image surfaces on the atomic scale, and which was extended to probe
also the magnetic signal by using spin-polarized (SP) tips. Additionally, significant
theoretical developments have led to progress in the field of surface magnetism. The
drastic increase of computational power makes ab initio calculations based on density
functional theory (DFT) [4, 5] feasible to accurately describe surface properties.

One interesting example that emerged in recent years is the study of novel magnetic
phases in low-dimensional systems. Spin-spirals with a unique rotational sense [6, 7]
were predicted from ab initio calculations and were also found by experiments in
various systems of magnetic monolayers deposited on non-magnetic surfaces. The
formation of these spin structures was found to be caused by an anisotropic magnetic
interaction, the Dzyaloshinskii-Moriya (DM) interaction, which only occurs if space-
and time-inversion symmetry are broken. These findings motivated further research
that led to the discovery of another novel phase, namely two dimensional magnetic
nano-skyrmionic structures [8] in Fe monolayers on Ir(111). Such magnetic structures
were long known for various kinds of bulk materials where they spread a size of up to
100 nm [9, 10, 11, 12], but have now for the first time been observed at surfaces on
the nanometer scale. The concept of skyrmions goes back to T. H. R. Skyrme [13],

9



Introduction

describing topologically stable field configurations in elementary particle physics, but
can also be applied to magnetic structures [14, 15], where their formation arises due
to a competition of ferromagnetic and anisotropic exchange.

Additional interesting effects arise if the dimension is further reduced, resulting in
zero-dimensional structures like magnetic ad-atoms, dimers and nano-islands on non-
magnetic surfaces. Various groups studied finite magnetic nano-structures [16, 17, 18,
19, 20, 21], which are experimentally accessible by spin-polarized STM experiments
and have partly been compared to ab initio calculations.

An accurate theoretical treatment of these novel magnetic phases is, however, a very
challenging task. On the one hand one needs a method that can reliably predict
their non-collinear spin density and energy difference on a quantum-mechanical
basis. On the other hand, one faces the problem of a large number of possible
solutions locating the true ground state. Especially, if the periodicity is broken by
nano-structures, the theoretical treatment is extremely cumbersome, as the majority
of DFT codes are based on band-structure methods, which are designed to treat
periodically repeated structures. There, isolated nano-structures are approximated
by a system of periodically repeated images, where an enormous amount of atoms
(leading to a high amount of computational time) have to be included in order to
reduce effects from periodic images.

The motivation of this thesis was to study accurately finite-sized magnetic nano-
structures embedded in bulk materials or on surfaces. To achieve this aim, a self-
consistent full-potential full-relativistic real-space all-electron density-functional theory
code based on the Korringa-Kohn-Rostoker Green function method was developed to
study finite non-collinear magnetic nano-structures and clusters perfectly embedded in
bulk materials or on surfaces. The focus lies especially on reproducing surface related
properties and magnetic effects correctly. These requirements are fulfilled by:

• A code, which is based on a real-space DFT embedding method.

• A full angular-dependent treatment of the potential (full-potential).

• The ability to treat structural relaxation effects.

• The inclusion of spin-orbit coupling (SOC) and non-collinear magnetism for an
accurate description of magnetic properties.

• A feedback to and from simplified model calculations for better interpretation
of the results.

In the following it is explained in detail how these requirements are met.

For the accurate treatment of isolated nano-structures in the bulk of materials or
on their surfaces, the Korringa-Kohn-Rostoker Green function method is an ideal
candidate. This method is not based on calculating the wave functions, but on directly
calculating the Green function to obtain all physical quantities. The theoretical
foundation to treat finite nano-structures in bulk materials is rather involved, since
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one has to treat an infinite number of atoms, but cannot make use of translational
symmetry. One resorts to the embedding method, which requires the knowledge of
the Green function. Within this method, in a finite region of space, impurity atoms
are embedded into an otherwise translationally symmetric host. First, the Green
function of the host is determined by a normal band-structure calculation. Then, an
impurity region is embedded by solving a Dyson equation, where the Green function
of the host is used as a reference in order to calculate the Green function of the
embedded system. By expanding the Green function into local quantities, defined
by finite-ranged potentials around each nucleus and a coupling matrix, a numerically
elegant way to obtain the Green function can be found within the multiple-scattering
approach. The calculation of the Green function is divided into a local single-site
scattering problem for each atomic site and a structural Dyson equation, describing
multiple-scattering between the sites.

Furthermore, the following additions have been included: A formalism has been
implemented which is able to treat non-collinear [22, 23, 24] formations of spins
to accurately describe the magnetic properties resulting from complex magnetic
interactions. In many cases the origin of complex magnetic interactions relies on
relativistic effects, making it essential to treat these accurately. This is done via the
scalar-relativistic equations and by including spin-orbit coupling by an additional
term to the Hamiltonian. The latter acts like a potential term, introducing strong
scattering contributions coupling different scattering channels, which brings up the
need to develop a novel numerical technique that provides sufficient accuracy in this
complicated case.

In many cases, a spherical approximation of the potential is assumed, which is
considered to give a reasonable description of bulk properties. However, to accurately
describe surface properties, where a strong gradient of the potential is to be expected,
the spherical approximation of the potential leads to inaccurate results and the full
potential [25, 26] needs to be taken explicitly into account. Furthermore, structural
relaxation effects of impurity atoms are to be expected on surfaces. The magnetic
properties turn out to be very sensitive on the positions of the nuclei, requiring to
explicitly include the relaxations. This is a demanding task in the impurity KKR
method, since, there, impurity atomic sites are assumed to coincide with the host
lattice positions. To overcome this restriction, two techniques have been implemented.
The first method is based on expanding the Green function for small displacements,
making the treatment of small lattice relaxations possible. The second method, the
method of virtual atoms, is able to treat impurity positions at arbitrary positions, but
is numerically more demanding. The combination of both methods is able to treat
relaxed impurity positions accurately.

Spin-orbit coupling in combination with a non-spherical treatment of the potential
requires a new numerical algorithm for the single-site scattering problem to treat
the coupling between scattering channels correctly. So far full-potential calculations
were based on a perturbative approach, which results in numerical instabilities when
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treating SOC. Within this thesis a new method was developed and implemented,
which accurately solves the single-site equations for a non-spherical potential. The
resulting method is not based on solving a differential equation, but uses an integral
equation, the so called Lippmann-Schwinger equation to obtain the solutions. This
adds flexibility allowing to treat either the Schrödinger, the scalar-relativistic or the
Dirac equation with a single numerical solver. The implementation of the latter has
been realized in collaboration with Pascal Kordt [27], who derived the Kernel of the
Dirac Lippmann-Schwinger equation, allowing a fully relativistic treatment of the
single-site equations within the presented code. It is, to the knowledge of the author,
the first time that single-site equations for non-spherical potentials are fully solved by
an integral method.

To study large systems in a reasonable amount of time, the developed code has been
parallelized to carry out calculations on up to ∼ 100 cores simultaneously. This can
be achieved by calculating the Green function for different energies in parallel, leading
to an almost ideal speed-up. In addition, it is known that non-collinear magnetic
states need a lot of self-consistency steps to converge. A variety of mixing schemes for
the angular part of the magnetization density are discussed, which can speed up the
convergence of the magnetic moment drastically.

The ab initio results are compared to model calculations. The complexity of the
model Hamiltonian makes it non-trivial to find even the ground state structure. For
further analysis of the model Hamiltonian, the juSpinX code, based on an atomistic
spin-dynamics (ASD) method [28] is used, which follows the classical trajectory of the
magnetic moment of each individual spin. This code was developed by the present
author and yields statistical and time-dependent properties even at finite temperature.
This is made possible by including a temperature bath by a stochastic approach. In
this thesis, this method is especially used to find the energy minimum by simulated
annealing, where standard gradient methods fail. Different methods are used to be
able to perform detailed analysis of the magnetic properties of a nano-structures. To
get a better understanding of magnetic phenomena, which can be calculated with
ab initio methods, classical model Hamiltonians have been proven to help. While
simple systems can be described by a nearest neighbor Heisenberg model, neighboring
atoms of up to 10 neighboring shells have to be included to describe complex magnetic
structures. In addition, different coupling terms need to be included like the DM and
the 4-spin interaction to describe such systems. For an accurate description by model
Hamiltonians, a formalism to extract the resulting model parameters from ab initio
calculations is needed. The method of infinitesimal rotations has been included to
calculate the coupling tensor of the extended Heisenberg model, which incorporates
the exchange and the DM coupling constants. While other DFT methods [29, 30]
need to use a high amount of different ab initio calculations to fit model parameters
accurately, this method is able to calculate the interactions with almost no additional
computational demand.

Overall, a hybrid philosophy to calculate and analyze magnetic properties is used in
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this thesis: Insights for the magnetic properties can most powerfully be obtained, if
ab initio and model calculations are performed, simultaneously. Results which can
be obtained from first principle calculations can help to improve model calculation
and vice versa. On the one hand, ab initio calculations within the KKR impurity
framework can provide model parameters, which are needed to perform realistic ASD
model calculations. On the other hand, ASD is able to suggest structures relatively
quickly, which can then be tested by ab initio methods. In addition, the dependence
on coupling constants within the model Hamiltonian and the physical significance of
different interaction terms can be analyzed. The stability with respect to temperature
or external magnetic fields can be investigated which can help to design appropriate
experiments. Model calculations can also provide better initial conditions to improve
the convergence of ab initio non-collinear energy minimization. Since it is not clear
if the chosen model Hamiltonian always describes the magnetic system sufficiently
well, ground state properties can be compared to ab initio calculations to attest the
validity. In summary, strong synergy effects can be achieved if a combination of both
model and ab initio studies is considered.

This thesis is structured as follows:

Chapter 2 gives a general introduction to density functional theory by briefly discussing
the most important concepts. Chapter 3 introduces the concept of Green functions.
There, especially the Dyson equation and the Lippmann-Schwinger equation are
discussed, as they play an important role in KKR Green function theory. In addition,
the expansion of the Green function used in KKR theory is introduced. The formalism
separates the problem into a structural part that is solved via an algebraic Dyson
equation and a locally defined part representing the scattering problem. In chapter 4,
details on the single-site problem are discussed, presenting the basic equations that are
used to solve the Schrödinger and the scalar-relativistic equations including spin-orbit
coupling. The t-matrix is introduced which contains all scattering properties of an
isolated atom. Details are given on how the resulting differential equations can be
reformulated into integral equations. Chapter 5 explains the numerical technique
which has been developed and implemented within this work to solve the coupled
set of single-site integral equations for a non-spherical potential. A direct inversion
technique, which accurately describes the off-diagonal part of the potential, and a
subinterval method to speed up the calculation time are presented. In addition, an
interpolation method based on Chebyshev polynomials is introduced, which assures an
accurate description of radial functions. Chapter 6 discusses additional KKR-related
concepts in more detail, which have been used to describe magnetic nano-structures
on surfaces. Starting with a general description of the KKR method, details are given
on how to obtain the host Green function which is needed for the impurity calculation.
Then, the KKR impurity method is explained in detail including the approximations
that the method relies on. Subsequently, methods to treat lattice relaxations are
discussed, introducing the method of small displacements and the concept of virtual
atoms. Finally, the treatment of magnetism in KKR theory is introduced. This
involves the non-collinear formulation in KKR Green function theory, a description of
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magnetic model Hamiltonians that are considered in this thesis, as well as details on
how to extract model parameters directly from ab initio calculations. This is possible
by the method of infinitesimal rotations, which is based on perturbative calculations
of the change of the single particle energy with respect to small rotations of the
magnetic moments. This is yet another strong advantage of the KKR Green function
method, since it has direct access to the Green function. Chapter 7 introduces the
ASD method. It describes how the time-evolution of a classical atomistic magnetic
moments are calculated and how time-dependent properties at finite temperature are
calculated by including a temperature bath. The usefulness of this method, especially
for minimizing the energy of a magnetic model Hamiltonian by simulated annealing
is explained. In Chapter 8, calculations are reported for disc shaped nano-islands
consisting of 7 and 19 Fe atoms deposited on the Ir(111) surface. Collinear as well as
non-collinear magnetic properties are discussed including the influence of structural
relaxation effects. The magnetic configuration is obtained by ab initio minimizations
resulting in a non-collinear formation of spins. The resulting magnetic structures are
discussed involving model parameters, which have been calculated for all structures.
In addition, the results are compared to model calculations and the validity of the
model is described. Finally all results, which could be obtained are summed up and
discussed in the summary. At the end, an outlook is given how this work can be
continued.

14



2 Density functional theory

Schrödinger equation

The fundamental equation to describe a quantum mechanical (non-relativistic) system
is the time-dependent Schrödinger equation, which reads (in Rydberg atomic units1):

Hψ(~r1, ~r2, .., ~rN ; t) = i
∂

∂t
ψ(~r1, ~r2, .., ~rN ; t) (2.1)

It consists of a Hamiltonian H and the many-body wave function ψ(~r1, ~r2, .., ~rN ; t),
which contains all information about physical observables. This work aims to determine
the ground state properties of solids. Therefore, the time-independent Schrödinger
equation is used, which can describe stationary states:

Hψ(~r1, ~r2, .., ~rN) = E ψ(~r1, ~r2, .., ~rN) (2.2)

In addition, the Born-Oppenheimer approximation is used which separates the motion
of the nuclei from the motion of the electrons. In the resulting Hamiltonian which acts
on the electronic subsystem all nuclei are frozen such that their position just enters as
an external parameter in the potential. The Hamiltonian for a system combining N
electrons then looks as follows:

H = −
N∑
i=1

∇2
i +

∑
i<j

U(~ri, ~rj) +
∑
i

v(~ri) (2.3)

The first part is the kinetic energy operator

T = −
N∑
i=1

∇2
i (2.4)

the second term describes the Coulomb potential of the electron-electron interaction

U =
∑
i<j

U(~ri, ~rj) =
∑
i<j

2

|~ri − ~rj|
(2.5)

1see excursion on page 16
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Density functional theory

and the last part the interaction with the external potential due to the nuclei, located
at positions ~Rj, and with an atomic numbers Zj :

V =
∑
i

v(~ri) =
∑
i

∑
j

−2Zj

|~ri − ~Rj|
(2.6)

The solution of Schrödinger equation is just practicable for the calculation of systems
of only a few electrons. Even for the calculation of a single gold atom, it will not
be possible to solve the equation exactly. Imagine the many-body wave function
ψ(~r1, ~r2, .., ~rN ). It contains for each electron a three dimensional vector. Assume that
a numerical solution is of interest and for a rough estimate a mesh with 10 values in
each spacial direction would be sufficient. Then, each argument would assume 1000
values. Given a total number of 79 electrons would lead to 10236 values which need
to be stored. To do so, it would take about 10223 TB of memory. Such an amount
will never be achievable. The idea of density functional theory (DFT) is to use the
electronic density n(~r ) instead of the wave function to determine the ground state
properties, since it just depends on one vectorial argument ~r.

Rydberg atomic units

In atomic units, the following physical constants are defined as

~2 = 2me = e2/2 = 1

Here, me is the mass of an electron, e its charge and ~ the Plank constant divided by
2π. This results in a redefinition of the unit system of all physical quantities. The
most important are:

angular momentum l = [~]
mass m = [2me]

charge q = [1/
√

2 e]
length r = [~/(me2)] ≈ [5.29 · 10−9cm]
energy E = [1Ry] ≈ [13.6058eV]

Hohenberg-Kohn theorem

It took about 38 years after Schrödinger’s first paper on quantum mechanics for
Hohenberg and Kohn [31] (HK) to realize that the ground state density contains
the same information as the ground state wave function (for non-degenerate states).
Later, Levy [32] extended the theory to also degenerate states. Formally, this is a
major breakthrough since the ground state density depends on just one argument
for all particles contrary to the wave function which depends on one argument for
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each particle. The HK theorem states that the ground state wave function is a unique
functional of the density

ψ0(~r1, ~r2, ..~rn) = ψ0[n] (2.7)

and, thus, each observable as well as the total energy are given as functionals of the
density:

E[n] = 〈ψ[n] |H|ψ[n]〉 = T [n] + U [n] + V [n] (2.8)

The most important aspect is that the total energy is variational. Assume a given
density n0. If this density minimizes the energy functional, then, n0 is the ground
state density and all other non-degenerate densities describe excited states.

E[n0] < E[n] for all n 6= n0 =⇒ n0 is ground state density

Thus, the ground state density, energy as well values of other observables can be found
by minimizing an energy functional and evaluating the corresponding functionals of
the density.

Kohn-Sham equations

Kohn and Sham [5] came up with the idea to replace the full many-body problem by
a fictitious system of non-interacting electrons in an effective medium such that its
ground state density coincides with the ground state density of the many-body wave
function.

The first step is to rewrite the exact many-body energy functional in the following
form

E[n] = T [n] + U [n] + V [n]

= Ts[n] + UH [n] + V [n] + Exc[n] (2.9)

with

UH [n] =

∫
d~r

∫
d~r ′

n(~r )n(~r ′)

|~r − ~r ′|
, V [n] =

∫
d~r n(~r )Vext(~r )

Ts[n] =
∑
i

〈
φi
∣∣−∇2

∣∣φi〉 .
The first part resembles a non-interacting system containing the kinetic energy func-
tional of non-interacting wave functions Ts[n], a term containing the Hartree energy
UH [n] and an energy term by the external field V [n]. Because the particles are
non-interacting, the solution can be described by single particle wave functions |φi 〉
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(defined in equation 2.10) and the kinetic energy functional Ts[n] can be expressed
as the sum over the individual kinetic energies. It is an explicit functional of the
orbitals φi, but due to equation 2.7 an implicit functional of the density. The difference
T − Ts between the many-body kinetic energy functional and the non-interacting
counterpart and further many-body effects by the difference U − UH between the real
electron-electron interaction and the Hartree potential are summed up by a so called
exchange-correlation (xc) functional.

Varying the total energy with respect to the density while constraining the single
particle wave functions with a normalization condition leads to the so called Kohn-
Sham-equations: (

−∇2 + Veff(~r )
)
φi(~r) = εiφi(~r) (2.10)

These are Schrödinger-like single particle equations with the only difference that the
real potential is substituted by an effective potential

Veff(~r ) =

∫
d~r ′

n(~r ′)

|~r − ~r ′|
+ Vext(~r) +

δExc[n]

δn(~r )
(2.11)

containing effects due to the exchange-correlation functional. However, one should
keep in mind that the eigenvalues εi refer to Lagrange parameters and should be
physically interpreted with care. Up to this point, the Kohn-Sham equations are exact
and no approximation has been made. However, these equations cannot be solved
since the exact exchange-correlation term is not known. The idea of breaking up the
density functional in equation 2.9 is that most of the physics is captured by the first
three terms and that a smart approximation of the last part, the xc-energy, can be
found. These days, huge effort is spent to find good approximations for that term.
The historically most important one is the local spin density approximation (LSDA)
which is used in this thesis and will be explained in the next section.

Local (spin) density approximation (LDA)

The idea of the local spin density approximation comes from the assumption that the
electron density is slowly varying. Even though this assumption is not fulfilled in reality,
the method has met great success. If we assume that exchange and correlation effects
have a local character, then the exchange-correlation energy of a density n(~r) can
be, at a point ~r, approximated by the exchange correlation energy of a homogeneous
electron gas of the same density nhom = n(~r). The exchange correlation functional is a
functional of the density. However, as soon as it comes to approximations, it is useful
to provide further information, like the spin-density m(~r) = n↑(~r)− n↓(~r) in order to
refine the approximation. This has been done by von Barth and Hedin [33], which
were the first to use exchange correlation energies εhom

xc (n↑, n↓) per electron of a spin-
polarized homogeneous electron gas. One way to determine the exchange-correlation
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functional of a homogeneous electron gas is to use quantum Monte-Carlo calculation
for different spin-up and spin-down densities

Exc
LDA[n↑, n↓] =

∫
d~r n(~r ) εhom

xc (n↑(~r ), n↓(~r ) ) . (2.12)

This turns out to be a sufficiently good approximation for many systems even if the
density is strongly varying. However, there are also many other systems for which it
has been shown that the LDA fails and more sophisticated approximations have to be
used which, however, are beyond the scope of the present work.
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3 Green functions

The concept of Green functions [34, 35] goes back to George Green who derived a
formalism to solve inhomogeneous differential equations. By knowledge of the Green
function of a homogeneous differential equation, it is possible to determine the solution
of a corresponding inhomogeneous differential equation. Given a linear differential
operator z − L (where z is a complex number) the Green function is defined by

(z − L)G(x, x′; z) = δ(x, x′),

where δ(x, x′) is the Dirac delta function. Then, the solution of a differential equation
with an inhomogeneity h

(z − L)f = h

can be obtained by

f(x) = f0(x) +

∫
dx′G(x, x′; z)h(x′),

where f0(x) is the general solution of the homogeneous differential equation (z −
L)f0(x) = 0. The Green function G can so to speak be identified with the inverse
of the differential operator z − L. It is a non-local object with two indices x and x′

and depends on the parameter z. The inhomogeneity will correspond in the following
chapter to the potential and z can be identified with an energy parameter.

3.1. Green function in physics

To determine the quantum-mechanical properties of a solid, the following type of
single-particle Hamiltonian needs to be solved.

H |ψ 〉 = E |ψ 〉 (3.1)
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This leads for bound states to a discrete eigenvalue problem H |ψn 〉 = En |ψn 〉 with
eigenvalues En and eigenfunctions |ψn 〉. Usually, the eigenvalue problem is solved
for the eigenvalues and eigenfunctions and all eigenstates are sum up to the highest
occupied energy, the Fermi energy EF , to calculate the density of the system. An
alternative way, which is used in this work, is to calculate the Green function of the
differential equation which is defined as:

(ε−H)G(ε) = 1, ε = E + iδ, δ > 0 (3.2)

Here 1 represents the identity operator. It will be, in a real space representation, given
by a Dirac delta function δ(~x−~x ′) and a unity matrix 1 in a basis set representation
. The Green function has a parametric dependence on the energy, with real energies
being of physical interest. However, for mathematical convenience and for numerical
purposes, it is useful to introduce a imaginary component. The Green function has
singularities at real energies, making an integration numerically demanding. However,
by analytical continuation into the complex plane, a complex energy contour can
replace the integral on the real axis. The number of energy values can, thus, be
drastically reduced, since the Green function in the complex plane is smooth. The
Green function itself contains the full information of all physical properties. The
expectation value of any operator A can be calculated by the following relationship

〈A〉 = − 1

π
Im

∫ EF

dE Tr
[
AG(E)

]
(3.3)

where the integral is to be evaluated up to the Fermi energy EF . By means of the
Green function, any kind of physical observable can be calculated, which reflects that
the Green function contains as much information as the wave function itself.

Formally from equation (3.2) the Green function can be calculated by an inversion of
the operator ε−H:

G = (ε−H)−1 (3.4)

A more practical way to calculate a Green function is based on finding a relation to
an already known Green function. Two differential operators which just differ by an
additive term have Green functions which are connected by a simple transformation.
Suppose an operator H′ is connected to the operator H by an additive term ∆V :

H′ = H + ∆V (3.5)

The Green function of the new operator is defined by

G ′ = (ε−H′)−1, (3.6)
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Short introduction of the Dirac notation

We will be using in part the Dirac notation (or bra-ket notation), where the state
vectors are represented by a ‘ket’ |ψn 〉 and their duals by a ‘bra’ 〈ψn |. The Schrödinger
equation in the Dirac notation can be written as

H |ψn 〉 = En |ψn 〉

and the properties of a complete orthonormal basis expressed by

〈ψn |ψm 〉 = δnm,
∑
n

|ψn 〉 〈ψn | = 1.

All quantities expressed in the Dirac notation can be easily re-expressed in any kind of
basis notation. The real space representation can be achieved by applying the position
basis:

〈~r |~r ′ 〉 = δ(~r − ~r ′),
∫
dr |~r 〉 〈~r | = 1

By using the completeness relation, the ket vector of the Hilbert space can be
represented in real space by:

ψn(~r) = 〈~r |ψn 〉

More information can be found in the literature [36].

which is also called the resolvent of the differential operator. The Green function G ′
can be expressed by means of the Green function G according to:

(ε−H−∆V)G ′ = 1

(ε−H)G ′ = 1 + ∆V G ′

G ′ = (ε−H)−1 + (ε−H)−1∆V G ′

G ′ = G + G∆V G ′ (3.7)

The last equation is known as the Dyson equation and plays a central role in KKR
Green function theory. The additive term can be identified by a potential difference
between two otherwise equivalent Hamiltonians. By means of a Green function which
is already known (e.g. free space) one can, using equation 3.7, calculate the Green for
any kind of potential.

One can formally expand equation 3.7 by subsequently inserting the left-hand side
into G ′:

G ′ = G + G∆V G ′ (3.8)

= G + G(∆V + ∆VG∆V + ...)G (3.9)

23



Green functions 3.1 Green function in physics

This infinite series of operators is often interpreted as a series of scattering events.
Imagine G to be the Green function of free space. Then ∆V = V will be given by
additive potential term. The expansion can be interpreted as a series of multiple
scattering processes due to a perturbation which is induced by V. A more detailed
explanation is given in section 3.4.

The part in brackets in 3.9 is often referred to as the scattering path operator T

T ′(z) = ∆V + ∆VG∆V + ... =
1

∆V−1 − G
(3.10)

It contains the same information as the Green function and the two can be transformed
into each other. By means of the scattering path operator, equation 3.9 can be written
as:

G ′ = G + GT ′G (3.11)

Either equation 3.7 or equation 3.10 can be used to determine the Green function
G ′. Expressed in a basis set, both involve a matrix inversion, which means that the
numerical calculation is of equal complexity.

Lippmann-Schwinger equation

A similar approach can be followed for the solutions of the differential equation
resulting in the Lippmann-Schwinger equation. It is used to determine the wave
function for a predefined energy ε in an energy spectrum, where the wave functions are
interpreted to be scattering solutions. It was already mentioned in the introduction
that the solutions of two differential equation

(ε−H0) |ψ0 〉 = 0 (3.12)

(ε−H0) |ψ 〉 = ∆V |ψ 〉 (3.13)

can be related to each other. A general solution |ψ 〉 of the inhomogeneous differential
equation is given in terms of two parts. The first part consists of the solution |ψ0 〉
of the homogeneous differential equation. The second part consists of the particular
solution of inhomogeneous equation. This part can, simply speaking, be determined
by multiplying equation 3.13 with the resolvent, G0 = (ε − H0)

−1. One can easily
verify that the resulting ansatz

|ψ 〉 = |ψ0 〉+ G0V |ψ 〉 (3.14)
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solves equation 3.13. This equation is called the Lippmann-Schwinger (LS) equation
and is, besides the Dyson equation, the second central equation which is used in
KKR theory. It relates eigenfunctions of the same eigenvalue to each other. Given
the solution of equation 3.12 (e.g. free-space), which is analytically known, the wave
functions |ψ 〉 for any potential can be determined using equation 3.14 as long as the
spectrum of H coincides with the spectrum of H0, for the energy range of interest.

Real space representation

For formal considerations a basis independent notation is useful. However, if an actual
numerical treatment is needed, a real space representation is used. Using the Dirac
notation the Green function can be expressed as

G(ε) =
1

ε−H
=

1

ε−H
∑
n

|ψn 〉 〈ψn | (3.15)

=
∑
n

|ψn 〉 〈ψn |
ε− En

, (3.16)

which is termed the spectral representation or Lehmann-representation of the Green
function. By using a transformation into the position basis |~r 〉 one obtains the Green
function:

〈~r |G(E)|~r ′ 〉 = G(~r, ~r ′; ε) =
∑
n

ψn(~r)ψ∗n(~r ′)

ε− En
(3.17)

It is important to point out that the sum over n runs over all occupied and unoccupied
states, making equation 3.17 an object, which is complex to calculate numerically. The
defining equation for the Green function in real space can be determined by applying
the completeness relation to 3.2 resulting in

[ε−H(~r)]G(~r, ~r ′) = δ(~r − ~r ′)

All observables, especially the electronic density, can be calculated by the knowledge
of the Green function. If purely the electron density is of interest, then the diagonal
elements of the Green function in ~r and ~r ′ are sufficient for its calculation.

ρ(~r) = − 1

π
Im

∫ EF

dεG(~r, ~r; ε)
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The Dyson equation can also be expressed in real space leading to the following
integral equation.

〈~r | G ′ |~r ′ 〉 = 〈~r | G0 |~r ′ 〉+ 〈~r | G0VG |~r ′ 〉

= 〈~r | G0 |~r ′ 〉+

∫
d~r ′′

∫
d~r ′′′ 〈~r | G0 |~r ′′ 〉 〈~r ′′ | V |~r ′′′ 〉 〈~r ′′′ | G |~r ′ 〉

G(~r, ~r ′; ε) = G0(~r, ~r ′; ε) +

∫
d~r ′′

∫
d~r ′′′G0(~r, ~r ′′; ε)V (~r′′, ~r′′′)G(~r ′′′, ~r ′; ε) (3.18)

Since, in this work, just local potentials are considered, one integral will cancel out
resulting in the Dyson equation in real space:

G(~r, ~r ′; ε) = G0(~r, ~r ′) +

∫
d~r ′′G0(~r, ~r ′′; ε)V (~r ′′)G(~r ′′, ~r ′; ε)

In the same fashion, the Lippmann-Schwinger equation can be expressed in real space
resulting in:

ψ(~r; ε) = ψ0(~r; ε) +

∫
d~r ′′G0(~r, ~r ′′; ε)V (~r ′′)ψ(~r ′′; ε) (3.19)

In further consideration, the energy index ε is dropped when making use the Green
function or wave function. It should be kept in mind that all Green functions and
wave functions are energy dependent.

3.2. Representation of the KKR Green function

For a numerical computation, the Green function needs to be transformed to a
representation which can be handled in a computer. By making use of the real
space vectors, one can make use of a finite three-dimensional mesh to solve quantum
mechanical equations, like it is used in [37]. Alternatively, functions can be expressed
by a complete set of basis functions which are chosen such that a truncation of the
basis functions gives a good approximation of the calculated properties. By doing so
a function can be represented by a vector, containing a finite number of values, which
either represent the mesh points or the expansion coefficients. In the KKR formalism,
a mixture of both methods is used, which will be explained in the following

In the KKR formalism the three-dimensional space is separated into cells around each
atom which are centered at the nuclei. These are found by a Voronoi construction
(see figure 3.1) of a polyhedron-shaped cell, where each point in space is assigned to
the cell which has the shortest (scaled) distance. The purpose of these cell divisions
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a) b)

Figure 3.1.: In a) the nuclei positions of 7 atoms are displayed and b) shows the
resulting cell division around the centers of the nuclei positions.

is to be able to separate the calculation of the Green function into local problems,
which each can be solved independently and a global part in which all local solutions
are connected. To do so, local variables ~r defined in each individual cell are introduced:

G(~x, ~x ′)→ G(Rn + ~r,Rn′
+ ~r ′)

The globally defined vector ~x pointing inside a cell n is substituted by a vector ~Rn +~r,
where ~Rn is a global vector pointing to the center of cell n, whereas the vector ~r is
locally defined inside the cell n. In the same fashion, the potential is divided into
local cell-dependent potentials which vanish outside the cell.

Figure 3.2: Separation of a real space vector

~x = ~Rn + ~r inside a cell n in a
vector ~Rn pointing to the center
of cell n and a locally defined
vector ~r.

V (~x ) =
∑
n

V n(~x−Rn) =
∑
n

V n(~r ), V n(~r ) =

{
V ( ~Rn + ~r ), if ~r ∈ cell(n)

0 otherwise

(3.20)
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The angular part of functions of ~r are expanded in real spherical harmonic[38] functions
resulting in:

f(~r) =
∑
L

fL(r)YL(r̂ )

The spherical harmonics carry an index L = (l,m) combining the orbital quantum
number and the magnetic quantum number. The radial part is treated by a non-
equidistant mesh, where up to the muffin-tin (MT) radius (see figure 3.2) a logarithmic
grid is used. This takes into account the rapidly increasing 1/r potential which needs
a more accurate description. Using this space separation, one can in a natural way
divide the problem into local only cell dependent properties, which can be calculated
individually for all cells, and global properties which connect the local solutions. These
connection coefficients are called the structural Green function and are discussed in
section 3.4.

3.3. Expansion of the single-site Green function

Applying the space separation which has been explained in the previous section one
can define a Green function Gn

s (~r, ~r ′) in each cell referring to a Hamiltonian with a
locally defined potential V n(~r ) which is zero outside the cell n. The resulting Green
function will be referred to as the single-site Green function. It is shown that this
Green function can be expressed in a semi-separable form by the so called scattering
solutions separating the spacial variables ~r and ~r ′.

Expansion of the potential-free Green function

First the expansion of the potential-free single-site Green function is discussed, where
the expansion coefficients are analytically known. There, all basic principles for the
expansion of a non-vanishing potential Green function can be identified.

The potential-free Green function is given by

g(~x, ~x ′; ε) = − eiκ|~x−~x
′|

4π|~x− ~x ′|
, κ =

√
ε (3.21)

The first step is to separate all vectorial properties into an angular part and its
absolute value by an expansion in real spherical harmonics:

g(~x, ~x ′; ε) =
∑
L

YL(x̂ ) gl(x, x
′)YL(x̂ ′) (3.22)
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The expansion coefficients are analytically known and are given by a combination of
spherical Bessel and Hankel functions, which are the solutions to the potential-free
Schrödinger equation in spherical coordinates.

gl(x, x
′) = κ jl(κx<)hl(κx>),

x< = min(x, x′)
x> = max(x, x′)

(3.23)

It will be further on shown that the Green function for a finite potential can also be
expanded in scattering solutions of the corresponding Hamiltonian.

Spherical Bessel and Hankel functions

The spherical Bessel and Neumann functions are the two independent solutions f(x)
of the following differential equation:

x2d
2f(x)

dx2
+ 2x

df(x)

dx
+ [x2 − n(n+ 1)]f(x) = 0.

The Hankel functions are, in this work, defined by,

hl(x) = −jl(x)− inl(x)

which deviates from the commonly [39] used definition by a factor of −i. The
asymptotic behavior at the origin is:

jl(x) ∼ xl, hl(x) ∼ 1/xl+1

Expansion of the on-site Green function for a finite potential

Suppose a single-site equation of the following form is given, which is to be solved:

(ε−H0 − V n(~r ))ψ(~r ) = 0 (3.24)

Here, V n(~r) is given by a finite potential around the origin and is vanishing beyond a
distance Rmax. Then, according to Zeller [40], the Green function is given by a linear
combination of independent scattering solutions RL(~r ),R̄L(~r ) and SL(~r ),S̄L(~r ).

G(~r, ~r ′) = κ
∑
L

[
Θ(r′ − r)RL(~r )S̄L(~r ′ ) + Θ(r − r′)SL(~r )R̄L(~r ′ )

]
(3.25)

Keep in mind that the Green function as well as all other solutions are energy-
dependent carrying an index ε. Two independent solutions of equation 3.24 can be
found. RL(~r ) is called the regular solution of the differential equation at an energy
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ε. It is finite at the origin and corresponds the regular potential-free solution JL(~r ),
which behaves like a Bessel function. The function SL(~r ) is called the irregular solution
since it diverges at the origin. The corresponding solution HL(~r ) for the potential-free
Hamiltonian acts like a Hankel function. Both functions indicated by bar symbol
are called the left solutions, since they are solutions of a differential equation, in
which the Hamiltonian acts to the left-hand side. Further details on how to compute
the left solution is given in chapter 4. All of the four functions can be expressed by
Lippmann-Schwinger equations

Rn
L(~r ) = JL(~r ) +

∫ R

0

d~r ′′G0(~r, ~r ′′)V n(~r ′′)Rn
L(~r ′′) (3.26)

SnL(~r ) =
∑
L′

HL′(~r )βL′L +

∫ R

0

d~r ′′G0(~r, ~r ′′)V n(~r ′′)SnL(~r ′′) (3.27)

R̄n
L(~r) = J̄L(~r ) +

∫ R

0

d~r ′′R̄n
L(~r ′′)V n(~r ′′)G0(~r ′′, ~r ) (3.28)

S̄nL(~r) =
∑
L′

β̄LL′H̄L′(~r ) +

∫ R

0

d~r ′′S̄nL(~r ′′)V n(~r ′′)G0(~r ′′, ~r ) (3.29)

where G0 is given by the single-site potential-free Green function. These single-site
solutions are formulated such that the correct boundary conditions are already satisfied
for the expansion of the Green function. Assuming that these boundary conditions
are included in the potential-free solutions JL(~r ), HL(~r ), J̄L(~r ), H̄L(~r ) all boundary
conditions which need to be applied are implicitly included. This is assured for the
irregular solutions by including the constant matrices βLL′ ,β̄′LL′ , which are given by

βLL′ = δLL′ − κ
∫ R

0

d~r J̄L(~r )V (~r )SL′(~r )

β̄LL′ = δLL′ − κ
∫ R

0

d~r S̄L(~r )V (~r ) JL′(~r )

Mathematical considerations

It is not directly obvious why the Green function can be expanded in scattering
solutions of the appropriate Hamiltonian. Especially, why the so called left solutions
are needed for the expansion. In the following an explanation is given why such an
expansion is meaningful. However, it is not claimed to give an exact proof of the
expansion.

Suppose a set of (coupled) ordinary differential equations of the form 3.30 is given,
where L(~r ) is a matrix containing linear differential operators and f(~r ) is a vector
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containing the solutions.

L(~r ) f
L
(~r ) = 0 (3.30)

All quantities are given by matrices and vectors resulting in a system of linear equations.
For simplicity matrices are restricted to 2× 2 matrices. The Green function to the
differential equation is defined by:

L(~r )G(~r, ~r ′ ) = −1 δ(~r − ~r ′) (3.31)

G(~r, ~r ′ )L(~r ′ ) = −1 δ(~r − ~r ′) (3.32)

An ansatz for the expansion similar to 3.25 can be made

G(~r, ~r ′ ) =
∑
L

AL Θ(r′ − r)RL(~r )S̄ L(~r ′ ) +
∑
L

AL Θ(r − r′)S L(~r )R̄L(~r ′ ) (3.33)

keeping the freedom of choice of a constant depending on L, which is not yet defined
and independent on ~r. Functions with a bar are assumed to be 1x2 matrices and
functions without a bar are 2x1 vectors.

RL(~r ) =

(
R1
L(~r )

R2
L(~r )

)
, S L(~r ) =

(
R1
L(~r )

R2
L(~r )

)
, (3.34)

R̄L(~r ) =
(
R̄1
L(~r ), R̄2

L(~r )
)
, S̄ L(~r ) =

(
S̄1
L(~r ), S̄2

L(~r )
)

These have to be chosen such that 3.31 and 3.32 are satisfied. Equation 3.31 is fulfilled
if:

L
(∑

L

AL (~r ) Θ(r′ − r)RL(~r )S̄ L(~r ′ ) + AL Θ(r − r′)S L(~r )R̄L(~r ′ )
)

= −1δ(r − r′)

(3.35)
Both cases, r > r′ and r′ > r, can be solved separately. In order to fullfill 3.35 the
right solutions need to be chosen such that

L(~r )RL(~r ) = 0, if r < r′ (3.36)

L(~r )S L(~r ) = 0, if r > r′ (3.37)

is satisfied. The functions R(~r) and S(~r) are simply given by the solution of 3.30
which we previously called the right-hand side scattering solution. In order to satisfy
equation 3.32 the expansion coefficients need to obey(∑

L

AL Θ(r′ − r)RL(~r )S̄ L(~r ′ ) + AL Θ(r − r′)S L(~r )R̄L(~r ′ )
)
L(~r ′ ) = −1 δ(r − r′)

(3.38)
which leads to defining functions for the so called left-hand side solutions:

R̄L(~r )L(~r ′ ) = 0, if r < r′ (3.39)

S̄ L(~r )L(~r ′ ) = 0, if r > r′ (3.40)
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The equation is to be understood as an operator which should be applied to a test
function. It has been shown that the differential equation has to satisfy 3.36, 3.37,
3.39, 3.40. However, it has not been shown how the constant AL has to be chosen.
It can be determined by the matching condition at ~r = ~r ′ and will be explained in
chapter 4, individually for different kinds of single-site problems.

Physical interpretation

The expansion functions are also called scattering solutions, which are known from
scattering experiments and can conveniently be interpreted by analyzing the Lippmann-
Schwinger equation. By making use of the expansion of the potential-free Green
function and restricting the absolute value r of ~r to be larger than R (radius around
the finite-sized potential) the Lippmann-Schwinger equation can be written as:

Rn
L(~r) = JL(~r ) + κ

∑
L′′

HL′′(~r )

∫ R

0

d~r ′′J̄L′′(~r ′′)V n(~r ′′)Rn
L(~r ′′) (3.41)

= JL(~r) + κ
∑
L′′

HL′′(~r ) tL′′L(E), |~r | > R (3.42)

The integral does not depend on ~r and can, thus, be substituted by a constant matrix
tLL′ . The interpretation is as follows. The resulting wave function is given by two
parts: The first part is given by the potential-free solution which is the incoming
scattering-free wave. The second part represents the resulting wave function which is
scattered at the potential resulting in a wave proportional to tLL′ . The term tLL′ is,
thus, interpreted as a scattering matrix giving the strength, in which a wave with an
L index is scattered into a wave with an L′ index.

In a similar way, the irregular solution can be analyzed for r > R,

SnL(~r) =
∑
L′

HL′(~r )βL′L +

∫ R

0

d~r ′′g(~r, ~r ′′)V n(~r ′′)SnL(~r ′′) (3.43)

=
∑
L′

HL′(~r )βL′L + κ
∑
L′

HL′(~r )

∫ R

0

d~r ′′J̄L′(~r ′′)V n(~r ′′)SnL(~r ′′) (3.44)

=
∑
L′

HL′(~r )
(
βL′L + κ

∫ R

0

d~r ′′J̄L′(~r ′′)V n(~r ′′)SnL(~r ′′)
)

(3.45)

=
∑
L′

HL′(~r )δL′L = HL(~r ) (3.46)
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3.4 Multiple scattering theory Green functions

showing that outside the cell, the solution with a finite potential is exactly the same,
compared to the potential-free solution. Both solutions just differ inside the cell. The
scattering interpretation for the irregular solution is, therefore, as follows. A partial
wave is created infinitely far away from the origin and is then propagating to the
origin. The wave is, then getting scattered as soon as it enters the potential region.

3.4. Multiple scattering theory

It will be shown in this section how the properties of the single-site problem can be
used to calculate the globally defined Green function. Therefore, the Green function
is expanded such that its calculation can be separated into a localized part, resulting
in the previously discussed single-site problem, and a globally defined part, resulting
in the structural Green function.

Expansion of the potential-free Green function

An expansion is to be found which separates globally from locally defined coordinates.
As shown in figure 3.2, the global Cartesian vector ~x which points inside a cell n can
be written as

~x = ~Rn + ~r

where ~Rn is pointing to the center of the cell n and ~r is locally defined inside the cell.
According to 3.22 and 3.23, the expansion coefficients of the potential-free Green
function can be written as

g(~x, ~x ′, E) = κ
∑
L

JL(~x<;E)HL(~x>;E),

x< = min(x, x′)
x> = max(x, x′)

κ =
√
E

(3.47)

defining here

JL(~x;E) = jl(κx)YL(x̂), HL(~x;E) = hl(κx)YL(x̂). (3.48)

The Green function at a cell n should be expanded around a center located in cell n′

where n and n′ are not identical. By using a transformation formula, the spherical
Hankel function can be expanded in Bessel functions around the new center:

HL(~r ′ + ~Rn′ − ~Rn;E) = −1

κ

∑
L′

gnn
′

LL′(E)JL′(~r ′;E) (3.49)
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Green functions 3.4 Multiple scattering theory

The expansion coefficient are given by

gnn
′

LL′(E) = 4π(1− δnn′)
∑
L′′

il−l
′+l′′CLL′L′′ HL′′(~Rn − ~Rn′

;E), (3.50)

where the Gaunt coefficients CLL′L′′ =
∫
dΩYL(r̂)YL′(r̂)YL′′(r̂) defined by the integral

over three real spherical harmonics have been used. Inserting of equation 3.49 into of
equation 3.47 leads to the expansion of the potential-free Green function:

gnn
′
(~r, ~r ′;E) = δnn′κ

∑
L

JL(~r<;E)HL(~r>;E) +
∑
LL′

JL(~r;E)gnn
′

LL′JL′(~r ′;E), (3.51)

Here, the single-site term for n = n′ has been included. The Green function can
be written as a sum of two terms: The first part is the previously known single-site
Green function, the second term is the so called multiple scattering contribution,
consisting of the regular solutions (Bessel functions) and the structural potential-free
Green function gnn

′

LL′ . Summing up the result, the Green function of a potential-free
Schrödinger-like Hamiltonian can be expressed as:

g(~r + ~Rn, ~r ′ + ~Rn′
) = δnn′ gns (~r, ~r ′) +

∑
LL′

JL(~r ) gnn
′

LL′JL′(~r ) (3.52)

gns (~r, ~r ′) = Θ(r′ − r)κ
∑
L

JL(~r )HL(~r ′) + Θ(r − r′)κ
∑
L

HL(~r )JL(~r ′) (3.53)

Expansion for a potential of finite range

A similar expansion can be found for the Green function at a finite potential V (~r )
between sites n and n′, namely:

G(~r + ~Rn, ~r ′ + ~Rn′
) = δnn′ Gn

s (~r, ~r ′) +
∑
LL′

Rn
L(~r )Gnn′

LL′R̄n′

L′(~r ′ ) (3.54)

The first term is the single-site Green function at site n, which is explained in detail
in section 3.3. The second term is a multiple scattering term including a structural
Green function, which is to be determined by solving a Dyson equation.

It will be further on shown that 3.54 is a valid expansion of the Green function. While
doing so, one can explicitly determine the structural Green function and all other
terms. The proof is done by showing that 3.54 solves the Dyson equation.
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3.4 Multiple scattering theory Green functions

G(~r + ~Rn, ~r ′ + ~Rn′
) = g(~r + ~Rn, ~r ′ + ~Rn′

)

+
∑
n′′

∫
d~r ′′ g(~r + ~Rn, ~r ′′ + ~Rn′′

)V (~r ′′ + ~Rn′′
)G(~r ′′ + ~Rn′′

, ~r ′ + ~Rn′
)

(3.55)

Assuming that the term 3.54 is correct, the expansion of the single-site Green function
3.52 and 3.54 are inserted into the Dyson equation. The last term can be expressed as:

∑
n′′

∫
n′′
d~r ′′g(~r + ~Rn, ~r ′′ + ~Rn′′

)Vn′′(~r ′′)G(~r′′ + ~Rn′′
, ~r ′ + ~Rn′

)

= δnn′

∫
n

d~r ′′g(~r, ~r ′′)V n(~r ′′)Gn
s (~r ′′, ~r ′) (3.56)

+

∫
n

d~r ′′g(~r, ~r ′′)V n(~r ′′)
∑
LL′

Rn
L(~r ′′)Gnn′

LL′R̄L(~r ′) (3.57)

+

∫
n′
d~r ′′

∑
LL′

JnL(~r ′′)gnn
′

LL′ J̄L(~r ′)V n(~r ′′)Gn′

s (~r ′′, ~r ) (3.58)

+
∑
n′′

∫
n′′
d~r ′′

∑
LL′

JL(~r)gnn
′′

LL′ J̄L′(~r ′′)V n′′
(~r ′′)

∑
L′′L′′′

Rn′′

L′′(~r ′′)Gn′′n′

L′′L′′′R̄n′

L′′′(~r ′)(3.59)

The resulting four terms 3.56 - 3.59 are to be discussed in more detail:

Term 3.56 By making use of the single-site Dyson equation, the integral gives the
difference between the single-site Green function for free-space with a finite potential

Gn(~r, ~r ′)− gn(~r, ~r ′)

Term 3.57-3.58 By defining the following two Lippmann-Schwinger equations:

∫
d~r ′′g(~r, ~r ′′)V n(~r ′′)Rn

L(~r ′′) = Rn
L(~r)− JL(~r) (3.60)∫

d~r ′′J̄L(~r ′′)V n(~r ′′)g(~r, ~r ′′) = R̄n
L(~r)− J̄L(~r) (3.61)

these terms can be written as:
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Green functions 3.4 Multiple scattering theory

∑
LL′

(
Rn
L(~r)− JL(~r)

)
Gnn′

LL′R̄n′

L′ +
∑
LL′

JL(~r)gnn
′

LL′

(
R̄n′

L′(~r ′)− J̄L′(~r ′)
)

(3.62)

Term 3.59 The integral appearing in the fourth term defines the t-matrix :

tnLL′ =

∫
d~rJ̄L(~r)V n(~r)RL′(~r), (3.63)

Implying that

∑
n′′

∑
L′L′′

gnn
′′

LL′ tn
′′

L′L′′Gn′′n′

L′′L′′′ = Gnn′

LL′′′ − gnn
′

LL′′′ , (3.64)

the fourth term, then, reads

∑
LL′

JL(~r)(Gnn′

LL′ − gnn
′

L′L)R̄n′

L′(~r ′) (3.65)

Inserting all of the definitions into the ansatz 3.54 solves the Dyson equation

∑
n′′

∫
n′′
g(~r + ~Rn, ~r ′ + ~Rn′′

)V (~r ′′)G(~r′′ + ~Rn′′
, ~r ′ + ~Rn′

) (3.66)

= δnn′(Gn(~r, ~r ′)− gn(~r, ~r ′)) (3.67)

+
∑
LL′

(Rn
L(~r)− JL(~r))Gnn′

LL′R̄n
L(~r) (3.68)

+
∑
LL′

Rn
L(~r)Gnn′

LL′(R̄n
L(~r)− J̄L(~r)) (3.69)

−
∑
LL′

JL(~r)(gnn
′

LL′ −Gnn′

LL′)R̄n
L′(~r ′) (3.70)

= G(~r + ~Rn, ~r ′ + ~Rn′
)− g(~r + ~Rn, ~r ′ + ~Rn′

) (3.71)

and, thus, shows the validity of the ansatz. It has been assumed, however that the
single-site Green function satisfies the single-site Dyson equation, which is discussed
in section 3.3. According to 3.64, the structural Green function needs to solve a Dyson
equation namely
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3.5 Angular momentum cut-off Green functions

Gnn′

LL′ = gnn
′

LL′ +
∑
n′′

∑
L′′L′′

gnn
′′

LL′′tn
′′

L′′L′′′Gn′′n′

L′′′L′ , (3.72)

which is referred to as the structural Dyson equation. Here, the t-matrix enters,
which has already been introduced in the last section. It has also been verified that
the expansion functions, which are defined during the derivation are given by the
single-site wave functions of each cell, expressed in integral equations. In order to
have a correct description, both the left- and the right-hand side equations are needed.
In most cases a transformation between both sides can be found. Further details are
shown in chapter 4, discussing the single-site solutions.

Physical interpretation The Dyson equation for the structural Green function
can be written as an infinite series by subsequently inserting 3.72 into itself:

Gnn′

LL′ = gnn
′

LL′+
∑

n′′L′′L′′′

gnn
′′

LL′′tn
′′

L′′L′′′gn
′′n′

L′′′L′ (3.73)

+
∑
n′′n′′′

∑
L′′L′′′L(4)L(5)

gnn
′′

LL′′tn
′′

L′′L′′′gn
′′n′′′

L′′′L(4)t
n′′′

L(4)L(5)g
n′′′n′

L(5)L′ + ... (3.74)

The t-matrix has previously been identified as a scattering matrix transforming an
incoming spherical wave to a scattered wave at a finite potential V n around a cell n.
A similar interpretation can be applied here. The first two terms of the expansion
of the structural Green function Gnn′ can be interpreted by a free propagation of a
particle between n and n′, summed up with all scattering events at tn′′ takes place
while propagating from n to n′. Order k terms are analogously identified with the
appearance of k scattering events between the cells n and n′. These interpretation
shows the physical significance of a scattering interpretation and makes clear why the
KKR method is referred to as a multiple scattering theory.

3.5. Angular momentum cut-off

All functions that explicitly depend on the real space vector ~r have been expanded in
real spherical harmonics YL(r̂ ), implicitly keeping in mind that the infinite series of
expansion terms converges fast. Then the resulting terms can be approximated by a
finite sum.

The expansion of the potential-free Green function (equation 3.51) of the Schrödinger
equation

gnn
′
(~r, ~r ′;E) = δnn′κ

∑
L

JL(~r<;E)H̄L(~r>;E) +
∑
LL′

JL(~r;E)gnn
′

LL′ J̄L′(~r ′;E) (3.75)
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Green functions 3.5 Angular momentum cut-off

is approximated by introducing a finite angular momentum cut-off value of lmax, by
assuming that all function values for L > (2 lmax + 1)2 in 3.75 vanish. In other words,
the structural Green function

gnn
′

LL′ = 0, if L > L
(1)
cut = (lmax + 1)2 (3.76)

can be assumed to be zero if L > L
(1)
cut. Recalling the Dyson equation 3.72

Gnn′

LL′ = gnn
′

LL′ +
∑
n′′

∑
L′′L′′′

gnn
′′

LL′′tn
′′

L′′L′′′Gn′′n′

L′′′L′ , (3.77)

and using assumption 3.76, it directly follows that all Green function values of Gnn′

LL′

vanish as well resulting in

Gnn′

LL′ = 0, if L > L
(1)
cut = (lmax + 1)2

The charge density, given by the trace over the Green function in real space rep-
resentation, is expanded around the center of the cell in spherical harmonics given
by:

ρnL(r) = − 1

π
Im

∫ EF

dε
∑
L′′′L′′′′

CLL′′′L′′′′

(
κ
∑
L′

Rn
L′′′L′(r, ε) S̄nL′′′′L′(r, ε)

+
∑
L′L′′

Rn
L′′′L′(r, ε)Gnn

L′L′′(ε) R̄n
L′′′′L′′(r, ε)

)
(3.78)

Since all functions in the bracket are assumed to vanish for L > L
(1)
cut and the following

relation for Gaunt coefficients is fulfilled

CLL′L′′ = 0 if l > |l′ + l′′|, (3.79)

the density vanishes for L > L
(2)
cut = (2lmax + 1)2:

ρL(r) = 0, if L > L
(2)
cut

The resulting charge density is to be restricted to the Voronoi via shape functions,
which are introduced in section 4.1. This leads to a second convolution with Gaunt
coefficients:
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3.5 Angular momentum cut-off Green functions

ρcut
L (r) =

∑
L′L′′

CLL′L′′ΘL′(r)ρL′′(r)

The expansion up to a maximum angular momentum value is kept for ρcut
L (r) by

using a cut-off of L
(2)
cut. This is an additional approximation, which is introduced if a

non-spherical potential is used. Accepting this condition, the knowledge of the shape
functions ΘL(r) up to L

(4)
cut = (4lmax + 1)2 is sufficient.
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4 Single site problem in KKR

This chapter presents a formalism for the calculation of the scattering properties
of a localized potential, which is needed for the calculation of the globally defined
Green function. It is implied that the crystal potential has been divided into regions
of space around each atom, defining the so called single-site equations which can
be solved individually for each cell. Two quantities need to be determined: First,
the single-site wave functions, which are needed to expand the Green function and,
secondly, the t-matrix which is used to solve the structural Dyson equation. All
single-site properties to determine the structural Dyson equation are contained in
the t-matrices. This leads to a natural separation of global and local properties.
In this chapter, details are given on how to determine the single-site properties for
the Schrödinger Hamiltonian and the scalar-relativistic equations, by either making
use of an integral equation or a differential equation. In addition, a method will be
developed on how to add a perturbative spin-orbit coupling Hamiltonian which acts
like a potential term. Details are given about the left-hand side solutions which need
to be explicitly calculated while adding the spin-orbit coupling Hamiltonian to either
the Schrödinger or scalar-relativistic equations.

4.1. Schrödinger equation

In the non-relativistic formulation, the single-site equation for a cell n is given by

(
−∇2

~r + V (n)(~r)
)
ψ

(n)
~k

(~r) = ε ψ
(n)
~k

(~r), ε = |~k|2 = κ2 (4.1)

where Rydberg atomic units1 are used. The potential V (n)(~r) is assumed to vanish
outside an encompassing sphere of radius Rmax around the cell center. For reasons
of convenience, the cell index n will be dropped in the following. For a vanishing
potential wave functions and Green function are analytically known and given by:

1defined on page 16
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Single site problem in KKR 4.1 Schrödinger equation

ψ0
~k
(~r ) = ei

~k·~r, g(~r, ~r ′; ε) =
ei κ|~r−~r

′|

4π|~r − ~r ′|
(4.2)

The equations are to be solved in the continuous energy regime, where scattering
solutions occur. These are characterized by a wave vector ~k, defining the boundary
condition of an incoming wave. According to chapter 3, by making use of 4.2, a
Lippmann-Schwinger equation can be defined by:

ψ~k(~r ) = ei
~k·~r +

∫
d~r g(~r, ~r ′; ε)V (~r ′)ψ~k(~r

′) (4.3)

which implicitly satisfies equation 4.1. The dependence on the vector ~k can be
expanded in real spherical harmonics, carrying the combined index L = (l,m).

ei
~k·~r =

∑
L

4πilYL(~k)jl(kr)YL(~r) (4.4)

ψ~k(~r) =
∑
L

4πilYL(~k)RL(~r; ε) (4.5)

This results in an integral equation for each value of L.

RL(~r; ε) = jl(κ r)YL(r̂) +

∫
d~r ′g(~r, ~r ′; ε)V (~r ′)RL(~r ′; ε) (4.6)

depending on the energy ε = κ2. This is, so to say, a basis change from plane to
spherical waves. In some cases, the label ε will be dropped throughout the chapter.
However, it needs to be kept in mind that Green functions and wave functions
are energy-dependent. An analogous expansion is done for the remaining vectorial
dependence on the real space vector ~r, by expanding the wave function and the
potential

V (~r ) =
∑
L

YL(~r )VL(r) (4.7)

RL(~r, ε) =
∑
L′

1

r
RL′L(r; ε)YL(~r) (4.8)

as well as the single-site Green function

g(~r, ~r ′) =
∑
L

1

r r′
YL(r̂) gl(r, r

′)YL(r̂ ′). (4.9)
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4.1 Schrödinger equation Single site problem in KKR

An analytical expression for the expansion coefficients is given by

gl(r, r
′) = κ rr′ [Θ(r − r′)jl(κr′)hl(κr) + Θ(r′ − r)jl(κr)hl(κr′)] (4.10)

where Θ defines the Heaviside2 step function. This expansion results in a set of
double-indexed integral equations,

RLL′(r; ε) = rjl(κr)δLL′ +

∫
dr ′gl(r, r

′; ε)
∑
L′′

VLL′′(r′)RL′′L′(r′; ε) (4.11)

The first index in RLL′(r; ε) describes the expansion of the radial dependence of all
functions in spherical harmonics and the second index describes the expansion of the
boundary condition depending on the wave vector ~k. The potential VLL′(r) can be
interpreted as a projection potential in the L,L′ subspace and is given by a convolution

VLL′(r) =
∑
L′′

CLL′L′′VL′′(r) (4.12)

with the so called Gaunt coefficients defined by CLL′L′′ =
∫
dΩYL(~r)YL′(~r)YL′′(~r). By

inserting the expansion coefficients of the single-site Green function and making use
of the relation

JL(r; ε) = r jl(κr), HL(r, ε) = r hl(κr), (4.13)

the radial Lippmann-Schwinger equation can be written as:

RLL′(r; ε) = JL(r; ε)δLL′ + κHL(r; ε)

∫ r

0

dr ′ JL(r′; ε)
∑
L′′

VLL′′(r′)RL′′L′(r′; ε)

+ κ JL(r; ε)

∫ R

r

dr ′HL(r′; ε)
∑
L′′

VLL′′(r′)RL′′L′(r′; ε)(4.14)

This equation can be used to determine the right-hand side solution and is in agree-
ment3 with Chapter 3.

Another way to determine the wavefunction RLL′(~r; ε), expanded in spherical har-
monics, is via a separation of variables of the Schrödinger equation. Here, the same

2Θ(x) =

(
0; x < 0
1; x ≥ 0

)
3The role of the left-hand side potential-free solution appearing in the LS equation in Chapter 3

will be explained later
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Single site problem in KKR 4.1 Schrödinger equation

definitions according to equation 4.8, 4.7 and 4.10 are used. By doing so, one ends up
with a coupled system of linear equations.

(
d2

dr2
− l(l + 1)

r2
+ ε

)
RLL′(r; ε) =

∑
L′′

VLL′′RL′′L′(r; ε) (4.15)

This is the Schrödinger equation for the radial wave functions, which include a factor
of r according to 4.8. For a spherical potential, VLL′ is independent on L and L′

leading to V (r), which decouples the system of equation, arriving at independent
equations for each value of l

[
− d2

dr2
+
l(l + 1)

r2
+ V (r)− ε

]
Rl(r, ε) = 0 (4.16)

independent of the quantum number m. The resulting wavefunctions are diagonal in
L and L′, depending only on the l-value. For a vanishing potential, the solution of
the differential equation

[
− d2

dr2
+
l(l + 1)

r2
− ε
]
R0
l (r, ε) = 0, (4.17)

is analytically known and given by either Bessel or Hankel functions.

R0
l (r; ε) =

{
JL(r; ε)
HL(r; ε)

}
= r

{
jl(κr)
hl(κr)

}
(4.18)

This can be proven by inserting equation 4.18 in equation 4.17.

The t-matrix

The t-matrix, which was defined in 3.63, is for the Schrödinger equation, expanded in
spherical harmonics, given by:

tLL′(ε) =

∫ Rmax

dr′JL(r; ε)
∑
L′′

VLL′′(r)RL′′L′(r; ε) (4.19)

It describes the scattering properties of the finite potential VLL′ for incoming potential-
free solutions 4.18 and is a dense matrix for a non-spherical potential . However,
if a spherical potential is assumed, then VLL′ and RLL′ are diagonal in L and L′.
This results according to equation 4.19 in an as well diagonal t-matrix. The physical
interpretation is that an incoming wave function jl(r), which is scattered at a spherical
potential, will scatter only to l-channels with the same l component, because a spherical
potential conserves the angular momentum.
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4.1 Schrödinger equation Single site problem in KKR

Shape function

Since the solution of all single-site problems are restricted to a locally defined cell,
one needs to explicitly take into account the shape of this cell. This can be done by
defining a function Θ(~r ), which is 1 if the vector ~r is contained inside the cell and
zero elsewhere (see figure 4.1a):

Θ(~r ) =

{
1, if ~r in cell
0, else

}
(4.20)

The shape function can be expanded in spherical harmonics resulting in

Θ(~r ) =
∑
L

ΘL(r)YL(r̂), (4.21)

where the function values are only non-trivial between the muffin-tin radius Rmt and
the maximal radius Rmax. Between both radii the values ΘL(r) need to be explicitly
calculated according to:

ΘL(r) =

∫
dΩYL(r̂) Θ(~r )

For r < Rmt the shape function Θ0(r) has a value of
√

4π (since
∫
dΩY0(r̂) =

√
4π)

and all other ΘL(r) are zero. For r > Rmax the shape functions vanish, making it is
sufficient to define ΘL(r) for RMT < r < Rmax (see figure 4.1b).

a) b)

Figure 4.1.: a) A single-site cell obtained by a Voronoi construction of a two-
dimensional square lattice, inside the cell (blue) the shape functions are 1
and outside the cell they are zero. b) Radial shape function expanded in
spherical harmonics for l = 0.

A function U(~r ) can be restricted to being non-zero only inside the cell by a multipli-
cation with the shape function:
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Single site problem in KKR 4.1 Schrödinger equation

U cut(~r ) = U(~r ) ·Θ(~r ) (4.22)

Expanding U(~r ) =
∑

L UL(r)YL(r̂) as well as U cut(~r ) =
∑

L U
cut
L (r)YL(r̂), the resulting

expansion coefficients for U cut(~r ) are given by a convolution with the Gaunt coefficients
CLL′L′′ :

U cut
L (r) =

∑
L′L′′

CLL′L′′UL′(r)ΘL′′(r) (4.23)

More information is provided in the work of Drittler [41].

Single-site Green function

The Green function for the spherical Schrödinger equation 4.15 is defined by:

(
d

dr2
− l(l + 1)

r2
+ ε)GLL′(r, r′; ε)−

∑
L′′

VLL′′GL′′L′(r, r′; ε) = δ(r − r′) (4.24)

According to section 3.3 the Green function can be expanded in a semi-separable form
by the left- and right-hand side single-site solutions and can be written as

GLL′(r, r′; ε) = κ
∑
L′′

[
Θ(r′−r)RLL′′(r ; ε)S̄L′′L′(r ′; ε)+Θ(r−r′)SLL′′(r; ε)R̄L′′L′(r ′; ε)

]
(4.25)

where RLL′′(r ), SLL′′(r ) are the right-hand side regular and irregular solutions of
equation 4.15 and R̄LL′′(r ), S̄LL′′(r ) the corresponding left-hand side solutions, which
are to be defined in the following.

Lippmann-Schwinger equations

The appropriate single-site solutions can, according to section 3.4 be calculated by
the following Lippmann-Schwinger equations in the Fredholm formulation
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RLL′(r) = JL(r)δLL′ +

∫ R

0

dr ′G0
L(r, r ′)

∑
L′′

VLL′′(r ′)RL′′L′(r ′) (4.26)

SLL′(r) = HL(r)βLL′ +

∫ R

0

dr ′G0
L(r, r ′)

∑
L′′

VLL′′(r ′)SL′′L′(r ′) (4.27)

R̄LL′(r) = J̄L(r)δLL′ +

∫ R

0

dr ′
∑
L′′

R̄LL′′(r ′)VL′′L′(r ′)G0
L′(r′, r) (4.28)

S̄LL′(r) = β̄LL′H̄L′(r) +

∫ R

0

dr ′
∑
L′′

S̄LL′′(r ′)VL′′L′(r ′)G0
L′(r′, r ) (4.29)

where the β matrices are defined by:

βLL′ = δLL′ − κ
∫ R

0

dr′J̄L(r′)
∑
L′′

VLL′′(r′)SL′′L′(r′) (4.30)

β̄LL′ = δLL′ − κ
∫ R

0

dr′
∑
L′′

S̄LL′′(r′)VL′′L′(r′)JL′(r′) (4.31)

RLL′ is called the regular Fredholm solution, whereas SLL′ is denoted as the irregular
Volterra solution, because of the inclusion of the β-matrix. This multiplicative constant
needs to be included to satisfy the correct boundary condition and guarantees that
the irregular solutions match to Hankel functions at r = Rmax. It will later be shown
that this factor disappears in the Volterra formulation. For the Schrödinger equation,
the potential-free left and right solutions are equivalent. A more detailed explanation
is given in the following:

Left-hand side solution

To determine the Green function, the left-hand side solution (defined on page 29) of
equation 4.15 is to be calculated. Since the Schrödinger Hamiltonian itself, without any
additional perturbation terms is self-adjoint (see excursion on page 59), the resulting
wave function should be identical to the right-hand side solution. The left-hand side
differential equation corresponding to 4.15 can be written as:

(
d

dr2
− l(l + 1)

r2
+ ε

)
R̄L′L(r; ε) =

∑
L′′

VL′′LR̄L′L′′(r; ε) (4.32)

Note that the summation over the potential is different. If it is symmetric in L and
L′, then, there is a simple relationship between the left-hand and the right-hand side
solution namely:
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R̄LL′(r; ε) = RL′L(r; ε) (4.33)

Thus, the left-hand side solution is simply the transpose of the right-hand side solution
in the L-subspace. This relationship can be shown by a transposition of 4.32 in
L-space. Alternatively, one can derive the relationship of the left- and right-hand side
solution by making use of the integral formulation according to equation 4.26 - 4.29.

Recalling equation 4.12, the potential VLL′(r) in spherical harmonics is always symmet-
ric in L and L′, since the Gaunt coefficients are invariant under a permutation of the
indices. However, the potential will not be symmetric if a perturbation Hamiltonian
is included to describe spin-orbit effects. This perturbative Hamiltonian acts like an
additional potential term which has non-symmetric components. More details are
given in section 4.4. Using spin-orbit coupling as a perturbative Hamiltonian, the
left-hand side solution needs to be calculated explicitly.

By inserting equation 4.33 in 4.25, for a symmetric potential VLL′ = VL′L the Green
function, expanded in spherical harmonics, can be written as:

GLL′(r, r′;E) = κ
∑
L′′

[
Θ(r′ − r)RLL′′(r )SL′L′′(r ′ ) + Θ(r − r′)SLL′′(r )RL′L′′(r ′ )

]
(4.34)

(VLL′ = VL′L)

The summation over L′′ goes over the second index which describes the boundary
condition of the Green function. This expansion is in agreement with Drittler [41].
By insertion of the potential free solutions 4.18 in equation 4.34 one can verify that
the expansions agree to equation 4.10.

Wronski relation of the second kind

The Green function for the coupled radial equations of the Schrödinger equation needs
to fulfill two conditions if the first and the second arguments are equal. The Green
function needs to be continuous and the first partial derivative has a discontinuity.

lim
δ→0

GLL′(r, r′)
∣∣∣r=r′+δ
r=r′−δ

= 0 (4.35)

lim
δ→0

∂rGLL′(r, r′)
∣∣∣r=r′+δ
r=r′−δ

= δLL′ (4.36)

This can be verified by two integrations of equation 4.24 over a small interval [r−δ, r+δ]
where δ → 0. Insertion of 4.25, the semi-separable form, into 4.36, performing a
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partial differentiation with respect to r and setting r = r′ afterwards leads to the
Wronski relation:∑

L′′

(
[∂rRLL′′(r)] H̄L′′L′(r)− [∂rHLL′′(r)] R̄L′′L′(r)

)
= δLL′/κ

For a symmetric potential, this relation is given by:

∑
L′′

(
[∂rRLL′′(r)]HL′L′′(r)− [∂rHLL′′(r)]RL′L′′(r)

)
=δLL′/κ (4.37)

(VLL′ = VL′L)

Note that the summation here runs over the second index. Therefore, it is also
called the Wronski relation of the second kind. It describes a matching condition for
the Green function which needs to be fulfilled. A similar Wronski relation with a
summation over the first index can be found by looking at the differential equation.

Wronski relation of the first kind

The right-hand side regular and the left-hand side irregular solutions of the Schrödinger
equations are given by:

(
−∂2

r +
l(l + 1)

r2
− ε
)
RLL′(r; ε) +

∑
L′′

VLL′′(r)RL′′L′(r; ε) = 0 (4.38)(
−∂2

r +
l(l + 1)

r2
− ε
)
H̄LL′(r; ε) +

∑
L′′

VL′′L′(r)H̄LL′′(r; ε) = 0 (4.39)

A matrix multiplication of equation 4.38 with H̄LL′(r; ε) in L,L′ and matrix multipli-
cation of equation 4.39 with RLL′(r; ε) from the left leads to:

∑
L′′

H̄LL′′(r; ε)∂2
rRL′′L′(r; ε) =

∑
L′′′

H̄LL′′′(r; ε)
l′′′(l′′′ + 1)

r2
RL′′′L′(r; ε)

+
∑
L′′′

H̄LL′′′(r; ε)
∑
L′′

VL′′′L′′(r)RL′′L′(r; ε) (4.40)

∑
L′′

RLL′′(r; ε)∂2
r H̄L′′L′(r; ε) =

∑
L′′′

R̄L′L′′′(r; ε)
l′′′(l′′′ + 1)

r2
H̄L′′′L(r; ε)

+
∑
L′′′

RL′L′′′(r; ε)
∑
L′′

VL′′L′′′(r)H̄LL′′(r; ε) (4.41)
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One can verify by insertion of equation 4.40 and 4.41 into the left hand site of∑
L′′

(
∂2
r H̄LL′′RL′′L′ − H̄L′L′′∂2

rRL′′L

)
= 0 (4.42)

that the result term vanishes. An integration leads to:

∑
L′′

(
H̄LL′′∂rRL′′L′ − ∂rH̄LL′′RL′′L′

)
= CLL′ (4.43)

where CLL′ is an integration constant which is independent of r and needs to be
determined. It has been shown by Drittler [41] that this constant is equal to 1/κ δLL′

leading to the Wronski relation of the first kind:

∑
L′′

(
H̄LL′′∂rRL′′L′ − ∂rH̄L′L′′RL′′L

)
= δLL′/κ (4.44)

Assuming a symmetric potential, the relation can be rewritten as

∑
L′′

(HL′′L∂rRL′′L′ − ∂rHL′′L′RL′′L) = δLL′/κ (4.45)

where the summation over L goes over the first index.

Fredholm and Volterra formulation of the integral equations

The Lippmann-Schwinger equations are given by equations 4.26 and 4.29. By insertion
of the single-site potential-free Green function one can define the following integral
equations:

RLL′(r) = JL(r)δLL′ + κHL(r)

∫ r

0

dr ′ J̄L(r′)
∑
L′′

VLL′′(r′)RL′′L′(r′)

+ κ JL(r)

∫ R

r

dr ′ H̄L(r′)
∑
L′′

VLL′′(r′)RL′′L′(r′) (4.46)

SLL′(r) = HL(r)βLL′ + κHL(r)

∫ r

0

dr ′ J̄L(r′)
∑
L′′

VLL′′(r′)SL′′L′(r′)

+ κ JL(r)

∫ R

r

dr ′ H̄L(r′)
∑
L′′

VLL′′(r′)SL′′L′(r′) (4.47)
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with βLL′ is defined by equation 4.30. These equations are known as the Lippmann-
Schwinger equation in the Fredholm formulation. The regular solution RLL′ , here, is
called the Fredholm solution, whereas the irregular solution SLL′ is called the Volterra
solution. This will become clear in the following discussion. By using the relation∫ r

0
drf(r) =

∫ R
0
drf(r) −

∫ R
r
drf(r) the equations can be rewritten such that the

integration intervals are equal. The resulting equations are given by:

RLL′(r) = JL(r)αLL′ + κHL(r)

∫ r

0

dr ′ J̄L(r′)
∑
L′′

VLL′′(r′)RL′′L′(r′)

− κ JL(r)

∫ r

0

dr ′ H̄L(r′)
∑
L′′

VLL′′(r′)RL′′L′(r′) (4.48)

SLL′(r) = HL′(r)δLL′ − κHL(r)

∫ R

r

dr ′ J̄L(r′)
∑
L′′

VLL′′(r′)SL′′L′(r′)

+ κ JL(r)

∫ R

r

dr ′ H̄L(r′)
∑
L′′

VLL′′(r′)SL′′L′(r′) (4.49)

by defining the αLL′ matrix as:

αLL′ = δLL′ + κ

∫ R

0

dr′H̄L(r′)
∑
L′′

VLL′′(r′)RL′′L′(r′) (4.50)

Here, the second equation has no additional prefactor in the source term. Since the
source term is purely a Hankel function (multiplied by r) and the type of integral
equation refers to a Volterra equation, the solution is denoted as the Volterra solution
of the integral equation. Without proof, it is to be mentioned here that the αLL′ and
βLL′ matrices are connected by α−1

LL′ = βLL′ . By multiplying equation 4.48 by the
inverse of αLL′ and equation 4.47 by the inverse of βLL′ , the appropriate Volterra and
Fredholm solutions can be defined as:

ULL′(r) = JL(r)δLL′ + κHL(r)

∫ r

0

dr ′ J̄L(r′)
∑
L′′

VLL′′(r′)UL′′L′(r′)

− κ JL(r)

∫ r

0

dr ′ H̄L(r′)
∑
L′′

VLL′′(r′)UL′′L′(r′) (4.51)

WLL′(r) = HL(r)δLL′ + κHL(r)

∫ r

0

dr ′ J̄L(r′)
∑
L′′

VLL′′(r′)WL′′L′(r′)

+ κ JL(r)

∫ R

r

dr ′ H̄L(r′)
∑
L′′

VLL′′(r′)WL′′L′(r′) (4.52)

defining
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RLL′(r) =
∑
L′′

ULL′′(r)αL′′L′ (4.53)

SLL′(r) =
∑
L′′

WLL′′(r) βL′′L′ (4.54)

where ULL′ is the regular Volterra solution and WLL′ is the irregular Fredholm solution.

Analogously, the same procedure can be applied to the left solution of the integral
equations. The results are briefly shown. The Fredholm integral equations are given
by:

R̄LL′(r) = J̄L(r)δLL′ + κ

∫ r

0

dr ′
∑
L′′

R̄LL′′(r′)VL′′L′(r′)JL′(r′)HL′(r)

+ κ

∫ R

r

dr ′
∑
L′′

R̄LL′′(r′)VL′′L′(r′)HL′(r′)JL′(r) (4.55)

S̄LL′(r) =
∑
L′

β̄LL′

∑
L′′

H̄L′(r) + κ

∫ r

0

dr ′
∑
L′′

S̄LL′′(r′)VL′′L′(r′)JL′(r′)HL′(r)

+ κ

∫ R

r

dr ′
∑
L′′

S̄LL′′(r′)VL′′L′(r′)HL′(r′)JL′(r) (4.56)

which can, using the same procedure, be converted to Volterra solutions:

R̄LL′(r) =
∑
L′

ᾱLL′ J̄L′(r) + κ

∫ r

0

dr ′
∑
L′′

R̄LL′′(r′)VL′′L′(r′)JL′(r′)HL′(r)

− κ
∫ r

0

dr ′
∑
L′′

R̄LL′′(r′)VL′′L′(r′)HL′(r′)JL′(r) (4.57)

S̄LL′(r) = H̄L(r)δLL′ − κ
∫ R

r

dr ′
∑
L′′

S̄LL′′(r′)VL′′L′(r′)JL′(r′)HL′(r)

+ κ

∫ R

r

dr ′
∑
L′′

S̄LL′′(r′)VL′′L′(r′)HL′(r′)JL′(r) (4.58)

defining the ᾱLL′ matrix as

ᾱLL′ = δLL′ + κ

∫ R

0

dr′
∑
L′′

R̄LL′′(r′)VL′′L′(r′)HL′(r′) (4.59)

and the β̄LL′ matrix as in 4.31.
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4.2 Dirac equation Single site problem in KKR

4.2. Dirac equation

The Dirac equation is shortly introduced to motivate the development of a scalar-
relativistic approximation and to introduce spin-orbit coupling effects in a perturbative
approach. An actual implementation of the Dirac equation for a non-spherical potential
has been done by Pascal Kordt. It was proven that the numerical framework, which
was developed and implemented in this work, can also be applied to the Dirac equation,
formulated in terms of a Lippmann-Schwinger equation. Further details can be found
in his diploma thesis [27].

The relativistic formulation of quantum mechanics for a single electron is given by
the Dirac equation. It was formulated by the British scientist Paul Dirac in 1928
and gives a relativistic quantum mechanical description of spin 1/2 particles. In the
absence of a vector potential, the Dirac Hamiltonian can be formulated as

H
D

=
c

i
~α · ~∇+

1

2
(β − 14×4) + V (~r)

where the α and β matrices are given by

β =

(
12×2 0

0 −12×2

)
, α

i
=

(
0 σ

i

σ
i

0

)

The convention of Rose [42] will be used throughout this section. For simplicity,
the potential is assumed to be spherically symmetric. In addition, the potential
V (r) = V (r) + β~σ ~B(r) can be decomposed into a scalar potential V (r) and a term,

which acts like a magnetic field ~B(r). The later is assumed to be pointing purely

in the z-direction ~B(r) = B(r)~ez. The four-component wave function ψ(~r;E) can
be expanded in spin-spherical harmonics χΛ(r̂), which are the eigenfunctions of the
spin-orbit coupling operator K.

ψ(~r;E) =
∑

Λ

(
gΛ(r;E)χΛ(r̂)
ifΛ(r;E)χ−Λ(r̂)

)
(4.60)

A definition and a more detailed analysis of spin-spherical harmonics are given in
the literature [43, 42]. The new basis will be referred to using a combined index of
Λ = (κ, µ) in contrast to the real spherical harmonic basis (L, s) = (l,m, s). These
turn out to be a suitable basis when treating the Dirac equation, since the spin degree
of freedom of an electron can couple to its momentum. The Dirac equation for the
radial part of the wave functions can, then, be formulated as system of two coupled
differential equations
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P ′Λ +
κ

r
PΛ =

[
E − V
c2

+ 1

]
QΛ (4.61)

QΛ
′ − κ

r
QΛ = −[E − V ]PΛ +B

∑
Λ′

〈χΛ |σ3|χΛ〉PΛ′ (4.62)

where the definitions PΛ(r;E) = r gΛ(r;E), FΛ(r;E) = c r fΛ(r;E) have been used.
By doing so, the angular part of ~r has been separated from the radial part. Here,
the derivative with respect to the radial variable r is indicated by a prime. The
components fΛ and gΛ are referred to as the big and the small component respectively.
It is not directly obvious how the spin and the orbital moment of an electron are
coupled in the Dirac equation. A better analysis can be done by inserting 4.61 in 4.62:

P ′′Λ =
l(l + 1)

r2
PΛ − SΛTPΛ + SΛTPΛ + SΛ

∑
Λ′

BΛΛ′PΛ′ +
S ′Λ
SΛ

[
d

dr
− 1

r
+
κ+ 1

r

]
PΛ

(4.63)

and defining SΛ = E−V
c2

+ 1 + B
c2
〈χ−Λ |σz|χ−Λ〉. The only term, here, which now

explicitly depends on the eigenvalue κ of the spin-orbit coupling operator is the last
term in 4.63. Thus, Ebert et al. claim [44] that this term is responsible for the
commonly called spin-orbit coupling effect.

4.3. Scalar-relativistic approximation

Solving the Dirac equation is numerical more demanding compared to the Schrödinger
equation, since the spin quantum number is intrinsically coupled to the orbital degrees
of freedom. In addition, wave functions are described by a spinor consisting of four
components, which, all together, increases the matrix dimensions, leading to a higher
computational demand. However, the Schrödinger equation neglects all relativistic
effects, which are to be explicitly treated for an accurate description, especially for
heavy elements. The scalar-relativistic (SR) approximation attempts a compromise.
While keeping all other relativistic effects [45], it neglects couplings between the spin
and the orbital degree of freedom, retaining spin as a good quantum number.

Koelling and Harmon [46] and Gollisch and Fritsche [47] have formulated a second
order equation of motion which is, from the structural point of view similar to 4.63.
Takeda [48] came up with a more sophisticated derivation resulting at the same
differential equation for a spherical potential.

Different formulations, for the scalar-relativistic differential equation are used, which
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differ in the treatment of the small component. The most commonly used one is
described by the following ansatz for the Dirac wave function, substituting equation
4.60:

ψ
Ls

(~r;E) =
1

r

(
PL(~r;E)YL(r̂)χs

−i σrQL(~r;E)YL(r̂)χs

)
(4.64)

Applying this to the Dirac operator and neglecting all couplings between the spin and
its orbital momentum, an effective Hamiltonian can be derived, which separates both
spin-directions. In this thesis, the non-spherical formulation of the scalar-relativistic
equations in [49] is used. Defining QL(~r;E) = c FL(~r;E), the SR equations for a
non-spherical potential can be written as:

(
d

dr
− 1

r
)PLL′(r) =

∑
L′′

BLL′′(r)FL′′L′ (4.65)

(
d

dr
+

1

r
)FLL′(r) =

∑
L′′

ULL′′(r)PL′′L′ (4.66)

with

ULL′(r) =
∑
L′′

[B−1]LL′′δL′′L′
l′′(l′′ + 1)

r2
− [ε δLL′ − vLL′(r)] (4.67)

BLL′(r) =
[ ε
c2

+ 1
]
δLL′ − 1

c2
vLL′(r) (4.68)

The term BLL′(r) =
[
ε
c2

+ 1
]
δLL′− 1

c2
vLL′(r), which can be interpreted as a relativistic

mass correction tensor for an electron in a non-spherical potential, depends explicitly
on the energy ε and on the angular-dependent potential. To simplify the set of
equations the relativistic mass is approximated by the spherically symmetric part
of the potential. This approximation can be justified because the order of the term
VLL′(r) is comparable or larger than c2 only close to the nucleus, where the potential
diverges. However, close to the nucleus, the spherical Coulomb potential of the nucleus
is dominating. Thus, this term is approximated by just taking into account the
spherical part of the potential.

M(r) =
1

2
Bsph(r) =

1

2
+
ε− V sph

2c2
, M0 =

1

2
+

ε

2c2
(4.69)

By doing so, the matrix reduces to a single value describing the relativistic mass M
of an electron in a potential. M0 is given by the relativistic mass of an electron in
free-space. By insertion of equation 4.68, equation 4.65 can be rewritten as:
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(
d

dr
− 1

r

)
PLL′(r) =

∑
L′′

BLL′′(r)FL′′L′(r) (4.70)

=
∑
L′′

([ ε
c2

+ 1
]
δLL′′ − 1

c2
VLL′′(r)

)
FL′′L′(r) (4.71)

=
[ ε
c2

+ 1
]
FLL′ −

∑
L′′

1

c2
VLL′′(r)FL′′L′(r) (4.72)

≈ 2M(r)FLL′(r) (4.73)

Equation 4.66 can as well be simplified by insertion of equation 4.67. As discussed
before, BLL′ is approximated by taken into account the spherical part of the potential.
The inverse of BLL′ , as a matrix in L and L′ , is thus given by the inverse of the
diagonal elements.

[B−1]LL′(r) ≈ δLL′

2M(r)

Equation 4.66, then, reads:

(
d

dr
+

1

r
)FLL′(r) =

∑
L′′

ULL′′(r)PL′′L′(r)

=
∑
L′′

(∑
L′′′

[B−1]LL′′′δL′′′L′′
l′′′(l′′′ + 1)

r2
− [ε δLL′′ − VLL′′(r)]

)
PL′′L′(r)

=
∑
L′′

[B−1]LL′′
l′′(l′′ + 1)

r2
PL′′L′(r)− ε PLL′(r) +

∑
L′′

VLL′′(r)PL′′L′(r)

≈
∑
L′′

δLL′′
1

2M

l′′(l′′ + 1)

r2
PL′′L′(r)− ε PLL′(r) +

∑
L′′

VLL′′(r)PL′′L′(r)

=
1

2M(r)

l(l + 1)

r2
PLL′(r)− ε PLL′(r) +

∑
L′′

VLL′′(r)PL′′L′(r) (4.74)

Finally the scalar-relativistic equations, as they are used in this thesis, are defined by:

(
d

dr
− 1

r

)
PLL′(r) = 2M(r)FLL′(r) (4.75)(

d

dr
+

1

r

)
FLL′(r) =

1

2M(r)

l(l + 1)

r2
PLL′(r)− ε PLL′(r) +

∑
L′′

VLL′′(r)PL′′L′(r)(4.76)
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and can be conveniently written in a matrix form by:

(
− 1

2M(r)
l(l+1)
r2

+ ε d
dr

+ 1
r

d
dr
− 1

r
−2M(r)

)(
PLL′

FLL′

)
−
(∑

L′′ VLL′′(r) 0
0 0

)(
PL′′L′

FL′′L′

)
= 0 (4.77)

For a spherical potential, the differential equations agree to the SRA differential
equations provided by Drittler [41], Takeda [48] and Koelling [46].

Potential-free right-hand side solutions

The scalar-relativistic equations for a vanishing potential are given by:

(
∂

∂r
− 1

r

)
P 0
l (r) =

[
1 +

1

c2
ε

]
F 0
l (r) (4.78)(

∂

∂r
+

1

r

)
F 0
l (r) =

[
1

1 + 1
c2
ε

l(l + 1)

r2
− ε
]
P 0
l (r) (4.79)

Inserting equation 4.78 in equation 4.79 leads to the following second order differential
equation:

[
− ∂2

∂r2
+
l(l + 1)

r2
−
(

1 +
ε

c2

)
ε

]
P 0
l (r) = 0 (4.80)

Here, the identity ( ∂
∂r

+ 1
r
)
(
∂
∂r
− 1

r

)
= ∂2

∂r2
has been used. The previous differential

equation matches the form of a Bessel differential equation, where the solution is
known:

P 0
l (r) = r fl(κ r), κ =

√
ε+

ε2

c2
, fl(κ r) =

{
jl(κ r)

hl(κ r)
(4.81)

The structure of the differential equation 4.80 matches the Schrödinger equation with
a modified term κ, which can be described by relativistic effects. Details are given in
the excursion (p. 58).

By the knowledge of the big component, the solution of the small component can be
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Relativistic mass

The solutions of the radial Schrödinger equation are given by spherical Bessel (and
Hankel functions). These can be interpreted as plane waves, which are traveling with
a momentum ~κ:

jl(k r), κ =
√
ε

Since the solutions of the scalar-relativistic equations are also given by Bessel functions,
the same interpretation can be applied to the big component of the potential-free
solution. However, the argument κ is modified.

jl(k r), κ =

√
ε+

ε2

c2

This modification can be justified by the relativistic mass enhancement which we
expect to find in a relativistic treatment. In a classical picture the momentum in SI
units is given by ~κ =

√
2mE, where κ is the wave vector of an electron and m, E its

mass and energy. In a relativistic picture, while increasing the kinetic energy a mass
enhancement would be expect. This is exactly what the modification of κ does. Using
the definition of the relativistic mass in free space, M0 in 4.69, the momentum vector
κ can be rewritten as:

κ =

√
ε+

ε2

c2
=
√

2M0E

In the non-relativistic limit c→∞, κ =
√
E, which agrees to the definition in case of

the Schrödinger equation.

calculated using equation 4.78:

F 0
l (r) =

1[
1 + 1

c2
ε
] ( ∂

∂r
− 1

r

)
P 0
l (r) (4.82)

=
1[

1 + 1
c2
ε
] ( ∂

∂r
− 1

r

)
r fl(κ r) (4.83)

=
r[

1 + 1
c2
ε
] ∂
∂r

fl(κ r) (4.84)

=


1

[1+ 1
c2
ε]

[κrfl−1(κ r)− (l + 1)fl(κ r)] , l ≥ 1

1

[1+ 1
c2
ε]

[−κrf1(κ r)], l = 0
(4.85)

In the last step, it has been used that for fl(κ r) being the Bessel or Hankel functions
the following propriety is fulfilled:

∂

∂x
fl(x) =

{
x fl−1(x)− (l + 1)fl(x), l ≥ 1

−f1(x), l = 0
(4.86)
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Adjoint operator

Suppose we want to solve the left solution differential equation for Green function:

G(r, r′)L = δ(r − r′)

Then, using this equation one implicitly assumes that at some point an integration
over a test function is performed:∫

dr′G(r, r′)Lu(r′) = u(r)

The differential operator can now be substituted by another operator L∗ which acts
on the first function without changing properties of the equation.∫

dr′ L∗G(r, r′)u(r′) = u(r)

The operator L∗ is called the adjoint operator of L. A back-transformation to an
differential equation, then, leads to:

L∗G(r, r′) = δ(r − r′)

The Hamiltonian to the Schrödinger equation is self-adjoint (meaning L∗ = L)
since the second order differential operator is self-adjoint. This can be proven
by a partial integration of the integral equation above. However, since the
scalar-relativistic equations are a set of first order differential equations, they are not
self-adjoint. The adjoint operator of the first order differential operator is its negative
((d/dx)† = −d/dx) resulting in a different form of the left solution, as shown in this
section.

Potential-free left-hand side solution

The left-hand side solution of the SR equations is defined by a 1x2 matrix entering
the differential operators from the left. All operators which appear in the equations
are to be understood such that they act to the left side.

(
P̄ 0
l , F̄ 0

l

)( 0 d
dr

+ 1
r

d
dr
− 1

r
0

)
=
(
P̄ 0
l , F̄ 0

l

)( 1
2M(r)

l(l+1)
r2
− ε 0

0 2M(r)

)
(4.87)

The matrix equation can be transformed into a form which resembles a right-hand
side equation. To do so, the adjoint operator (see excursion on page 61) needs to be
calculated, which can modify non-local operators and matrix indices. The differential
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operator d/dr will change its sign. A numerical interpretation is given by a matrix
transposition of an infinite matrix in (r, L) which is explained on page 61 in more
detail. The left-hand side equation for the potential-free SR equation, then, reads:

(
0 d

dr
+ 1

r
d
dr
− 1

r
0

)(
P̄ 0
l

F̄ 0
l

)
= −

(
1

2M0

l(l+1)
r2
− ε 0

0 2M0

)(
P̄ 0
l

F̄ 0
l

)
The solution can be determined by inserting the first into the second equation, which
leads to a second order equation identical to equation 4.80

[
∂2

∂r2
+
l(l + 1)

r2
−
(

1 +
ε

c2

)
ε

]
P̄ 0
l (r) = 0 (4.88)

The left- and right-hand side equations for the big component are identical resulting
in the solutions for P 0

l (r) and P̄ 0
l (r):

P̄ 0
l (r) = r fl(κ r) =

{
r jl(κ r)

r hl(κ r)
with κ =

√
ε+

ε2

c2
(4.89)

However, the small component differs by a factor −1, according to:

F̄ 0
l (r) = − 1[

1 + 1
c2
ε
] ( ∂

∂r
− 1

r

)
c P̄ 0

l (r) (4.90)

= − 1[
1 + 1

c2
ε
] ( ∂

∂r
− 1

r

)
r fl(κ r) (4.91)

= − r

2Mo

∂

∂r
fl(κ r) (4.92)

=

{
− 1

2Mo
[κrfl−1(κ r)− (l + 1)fl(κ r)] , l ≥ 1

− 1
2Mo

[−κrf1(κ r)], l = 0
(4.93)

Summing up, the regular and irregular left- and right-hand side potential free-solutions
are given by:

R0
l(r) = r

(
jl(κr)

1
2M0

∂rjl(κr)

)
, R̄

0
l (r) = r

(
jl(κr), − 1

2M0

∂rjl(κr)

)
S0
l(r) = r

(
hl(κr)

1
2M0

∂rhl(κr)

)
, S̄

0
l (r) = r

(
hl(κr), − 1

2M0

∂rhl(κr)

)
(4.94)
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Numerical argument for the left solution

The differential equation
G(r, r′)D(r) = δ(r − r′)

can be numerically treated by discretization of the radial part to an equidistant grid
with a gridspacing of ∆x. Then the differential equation is transformed to a matrix
equation where each entry (i, j) in the matrix corresponds to the value of the function
i.e. M(ri, rj)

G ·D = 11×1

The differential operator d/dx can, then, be expressed as a matrix operator, where
the first derivative can be written as:

Dd/dx =
1

2 ∆x


0 1 0 0 · · ·
−1 0 1 0
0 −1 0 1
0 0 1 0
...

. . .


Transposition of the matrix equation above leads to

(G ·Dd/dx)T = (Dd/dx)T ·GT = −Dd/dx ·GT

A transformation back from the discretized matrix equation to an analytical equation
then gives:

− d

dx
G(r′, r) = δ(r − r′)

Note that the arguments of the Green function have been swapped. Following exactly
the same arguments, it can also be easily shown that second derivative operator does
not change at all.

Prefactor of the free-space Green function

Since the Green function for the Schrödinger equation is analytically known, the
expansion coefficient are easy to calculate. This is different for the SR equation, where
the Green function, expanded in spherical harmonics needs to be explicitly calculated
by means of the regular and irregular solution, which have been calculated in the
previous paragraph. However, one still has the freedom of choosing a constant while
determining the potential-free solutions.

As discussed in Chapter 3 the Green function can be separated into a semi-separable
form. In case of the scalar-relativistic formulation the wave function consists of a two
component vector, which contains the so-called big and small component. Thus, the
Green function will be a 2× 2 object:
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G(r, r′) = Θ(r′ − r)CR(r)S̄(r′) + Θ(r − r′)C S(r)R̄(r′) (4.95)

= Θ(r′ − r)C
(
R1(r)S̄1(r′) R1(r)S̄2(r′)
R2(r)S̄1(r′) R2(r)S̄2(r′)

)
(4.96)

+ Θ(r − r′)C
(
S1(r)R̄1(r′) S1(r)R̄2(r′)
S2(r)R̄1(r′) S2(r)R̄2(r′)

)
(4.97)

Here, the underline indicates a two by one vector for the right-hand side solutions and
a one by two vector for the left-hand side solutions. A bold character {R}LL′ = R

LL′

characterizes a matrix in the index L,L′ and C is constant matrix, which remains to
be calculated. The potential-free Green function is given by

G0

l
(r, r′) = Θ(r′ − r)ClR0

l(r)S̄
0
l(r
′) + Θ(r − r′)Cl S0

l(r)R̄
0
l(r
′) (4.98)

where C reduces to Cl. This constant can be calculated by obeying the correct

boundary conditions at r = r′. Here, the radial free-space Green function G0

LL′(r, r
′)

is discontinuous for the off-diagonal blocks. This can be shown by an integration of
both sides over an interval of 2η centered at r′ and taking the limit of the interval
size to zero. The Green function is continuous for the diagonal subblock elements and
discontinuous for the off-diagonal blocks:

lim
η→0

∫ r′+η

r′−η
dr

(
ε− 1

2M0

l(l+1)
r2

d
dr

+ 1
r

d
dr
− 1

r
−2M0

)
G0

l
(r, r′) = − lim

η→0

∫ r′+η

r′−η
dr δ(r − r′)

(
0 1
1 0

)

=⇒ lim
η→0

G0

l
(r, r′)

∣∣∣r′+η
r′−η

= −1

(
0 1
1 0

)
(4.99)

The condition can be used to determine the remaining constant Cl by insertion of the
potential-free solutions 4.94 in 4.98:

(
jl

2M0∂rjl

)(
hl, −2M0∂rh

)
−
(

hl
1

2M0
∂rhl

)(
jl, − 1

2M0
∂rj
)

= − 1

Clr2

(
0 1
1 0

)
(4.100)

Here, the Bessel jl(κr) and Hankel hl(κr) function carry argument κr which have been
dropped. This jump can be used to determine this constant. Using the potential-free
solutions 4.94 and the Wronski relation

∂hl(κr)

∂r
jl(κr)−

∂jl(kr)

∂r
hl(κr) =

1

κ
(4.101)

62



4.3 Scalar-relativistic approximation Single site problem in KKR

∂hl(κr)

∂r
jl(κr)−

∂jl(κr)

∂r
hl(κr) =

i

κ
(4.102)

for spherical Bessel and Hankel functions in equation (4.99) the constant C can be
determined as

Cl = 2M0κ (4.103)

independently of l. The potential-free Green function for the single-site scalar-
relativistic equations can, then, be written as:

Scalar-relativistic potential-free single-site Green function

G0

l
(r, r′) = 2M0κΘ(r′ − r)R 0

l (r)S̄
0
l (r
′) + 2M0κΘ(r − r′)S 0

l (r)R̄
0
l (r
′) (4.104)

The potential-free solutions are given by R0, S0, R̄
0
, S̄

0
defined in 4.94 and

κ =

√
ε+

ε2

c2
, M0 =

1

2

(
1 +

ε

c2

)
(4.105)

Lippmann-Schwinger-Equation

The differential equation can be transformed into an integral equation by making use
of the single-site potential-free Green functions, as described in section 3.4. By doing
so the solution already satisfies the correct boundary conditions for a semi-separable
expansion of the Green function. This will later on be of importance.

The scalar-relativistic equations are rewritten into a part which does not contain the
potential and an additive perturbation term containing the potential such that it
vanishes outside the cell. This requirement needs to be satisfied to be able to set
up the Lippmann-Schwinger equation with a finite integration interval. However,
the l(l + 1) term depends implicitly on the potential, since the relativistic mass is a
function of the potential. This term does not, for a vanishing potential outside the cell,
decay to zero, which is, however, required to set-up a Lippmann-Schwinger equation.

1

2M(r)

l(l + 1)

r2
−→

r>Rmax

1

2M0

l(l + 1)

r2
6= 0

The difference ( 1
2M(r)

− 1
2M0

) on the other hand satisfies this requirement and since

M(r) is equal to M0 outside the cell the whole term vanishes:

[
1

2M(r)
− 1

2M0(r)

]
l(l + 1)

r2
−→

r>Rmax
0
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Figure 4.2.: Contributing term l(l+1)
r2

in the scalar-relativistic equation with three
different prefactors. This term, with a prefactor of 1/M and 1/M0 does
not vanish outside the cell, which is required to use an integral equation
with finite integration intervals. However, the difference between both
does.

This is visualized in figure 4.2. Following the last argument, the scalar-relativistic
equations can be written as

(
ε− 1

2M0

l(l+1)
r2

d
dr

+ 1
r

d
dr
− 1

r
−2M0

)(
PLL′

FLL′

)
=
∑
L′′

∆V
LL′′

(
PL′′L′

FL′′L′

)
(4.106)

introducing a potential difference term which is defined by:

∆V
LL′ =

([
1

2M(r)
− 1

2M0

]
l(l+1)
r2

+ VLL′(r) 0

0 2M(r)− 2M0

)
(4.107)

The left-hand side of the equation is given by the potential-free scalar-relativistic
Hamiltonian and the right-hand side contains all contributions which contain the
potential term such that ∆VLL′ vanishes outside a sphere Rmax.

According to chapter 3, a Lippmann-Schwinger equation can be formulated by using
the Green function of the right-hand site of 4.106, which is the Green function of the
potential-free scalar-relativistic equations:

(
R1(r)
R2(r)

)
=

(
R0

1(r)
R0

2(r)

)
+

∫ Rmax

0

dr′
(
G11(r, r′) G12(r, r′)
G21(r, r′) G22(r, r′)

)(
∆V 11(r′) ∆V 12(r′)
∆V 21(r′) ∆V 22(r′)

)(
R1(r)
R2(r)

)

Bold symbols resemble a matrix in L and L′. The integral, here, is finite since ∆V
LL′

vanishes for r > R. The Lippmann-Schwinger equation for the left-hand side can
analogously be defined as:
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(
R̄1(r), R̄2(r)

)
=
(
R̄

0
1(r), R̄

0
2(r)

)
(4.108)

+

∫ R

0

dr′
(
R̄1(r), R̄2(r)

)(∆V 11(r′) ∆V 12(r′)
∆V 21(r′) ∆V 22(r′)

)(
G0

11(r′, r) G0
12(r′, r)

G0
21(r′, r) G0

22(r′, r)

)

Inserting the potential-free single-site Green function 4.104 results in the right-hand
side Lippmann-Schwinger equation in the Fredholm formulation for the regular solution

RLL′(r; ε) = R0
L(r; ε)δLL′

+ 2M0κR
0
L(r; ε)

∫ Rmax

r

dr′S̄
0
L(r; ε)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r′; ε)

+ 2M0κS
0
L(r; ε)

∫ r

0

dr′ R̄
0
L(r; ε)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r; ε) (4.109)

and

S LL′(r; ε) = S0
L(r; ε)βLL′

+ 2M0κR
0
L(r; ε)

∫ Rmax

r

dr ′S̄
0
L(r′; ε)

∑
L′′

∆V
LL′′(r

′)S L′′L′(r′; ε)

+ 2M0κS
0
L(r; ε)

∫ r

0

dr′R̄
0
L(r′; ε)

∑
L′′

∆V
LL′′(r

′)S L′′L′(r′; ε) (4.110)

for the irregular solution, where β is defined as:

βLL′ = 1 + 2M0 κ

∫ Rmax

0

dr′ R̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)S L′′L′(r′) (4.111)

As explained in 3, the matrix βLL′ is to be included in order to satisfy the correct
boundary condition for the Green function of a finite potential.

Volterra formulation

In section 5.2 a method is presented how to directly solve an integral equation by an
inversion of an integration kernel. However, the method requires both integrals to
have the same integration boundaries. This is not the case for the LS equation in
the Fredholm formulation, but can be overcome by a transformation to a Volterra
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equation. The Lippmann-Schwinger equations for the scalar-relativistic equations in
the Fredholm formulation can be more conveniently written as:

RLL′(r) = R0
L(r)ALL′ + S0

L(r)BLL′ (4.112)

where the functions ALL′(r, E) and BLL′(r, E) are defined according to

ALL′(r) = δLL′ + 2M0κ

∫ Rmax

r

dr′ S̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r′)

BLL′(r) = 2M0κ

∫ r

0

dr′ R̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r′) (4.113)

The first equation can be rewritten into two integrals where the first one runs over
the complete integration space and the second one up to r:

ALL′(r) = ALL′(0)

− 2M0κ

∫ r

0

dr′ S̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r′) (4.114)

Inserting the previous term into 4.112 and performing a matrix multiplication with
the inverse of the matrix ALL′(0) leads to a modified Lippmann-Schwinger equation:

U LL′(r; ε) = R0
L(r; ε)A′LL′ + S0

L(r; ε)B′LL′ (4.115)

A′LL′(r) = δLL′ − 2M0κ

∫ r

0

dr′ S̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)U L′′L′(r′) (4.116)

B′LL′(r) = 2M0κ

∫ r

0

dr′ R̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)U L′′L′(r′) (4.117)

Note that A′ has a minus sign instead of a plus sign and the integration regions have
changed. Here, a new variable U LL′(r) is introduced, describing the regular solution
of the LS equation in the Volterra formulation. Both are connected by the following
transformation

RLL′(r′) =
∑
L′′

U LL′′(r′) · αL′′L′ (4.118)

by defining the α matrix as αLL′ = ALL′(0). However, if the Volterra solution is known,
it is not possible to explicitly calculate the Fredholm solution since the transformation
matrix contains the Fredholm solution RLL′(r). By insertion of 4.118 in 4.116, ALL(0)
can be redefined as:

ALL′(0) = δLL′ + 2M0κ

∫ Rmax

0

dr′S̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)
∑
L′′′

U L′′L′′′(r′)AL′′′L′(0)

(4.119)
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The resulting matrix can be solved for ALL:

βLL′ = A−1
LL′(0) = δLL′ − 2M0κ

∫ Rmax

0

dr′S̄
0
L(r′)

∑
L′′

∆V
LL′′(r

′)U L′′L′(r′)

(4.120)

Finally, the regular solution can be determined by the Lippmann-Schwinger equation
in the Volterra formulation by the following procedure: First the Lippmann-Schwinger
equation in the Volterra formulation needs to be solved. By insertion of 4.116 and
4.117 in 4.115, it is given by:

U LL′(r; ε) = R0
L(r; ε)δLL′

− 2M0κR
0
L(r; ε)

∫ r

0

dr′S̄
0
L(r′; ε)

∑
L′′

∆V
LL′′(r

′)U L′′L′(r′; ε)

+ 2M0κS
0
L(r; ε)

∫ r

0

dr′R̄
0
L(r′; ε)

∑
L′′

∆V
LL′′(r

′)U L′′L′(r′; ε) (4.121)

Then the Volterra equation needs to be transformed in the Fredholm formulation by
the transformation matrix βLL′ :

U LL′(r′; ε) =
∑
L′′

RLL′′(r′; ε) · βL′′L′ (4.122)

The Volterra formulation makes it possible to use direct inversion methods which
are described in Chapter 5. The irregular solution is calculated accordingly by a
transformation of equation 4.108, following the same procedure.

The irregular Volterra-type Lippmann-Schwinger equation is given by:

S LL′(r; ε) = S0
L(r; ε)δLL′

− 2M0κR
0
L(r; ε)

∫ r

Rmax

dr′S̄
0
L(r′; ε)

∑
L′′

∆V
LL′′(r

′)S L′′L′(r′; ε)

+ 2M0κS
0
L(r; ε)

∫ r

Rmax

dr′R̄
0
L(r′; ε)

∑
L′′

∆V
LL′′(r

′)S L′′L′(r′; ε) (4.123)

To determine the left-hand side solution, the same procedure can be applied
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Ū LL′(r; ε) = R̄
0
L(r; ε)δLL′

− 2M0κ

∫ r

0

dr′
∑
L′′

Ū LL′′(r′; ε)∆V
L′′L′(r

′)S0
L′(r′; ε)R0

L′(r; ε)

+ 2M0κ

∫ r

0

dr′
∑
L′′

Ū LL′′(r′; ε)∆V
L′′L′(r

′)R0
L′(r′; ε)S0

L′(r; ε) (4.124)

S̄ LL′(r; ε) = S̄
0
L(r; ε)δLL′

− 2M0κ

∫ r

Rmax

dr′
∑
L′′

S̄ LL′′(r′; ε)∆V
L′′L′(r

′)S0
L′(r′; ε)R0

L′(r; ε)

+ 2M0κ

∫ r

Rmax

dr′
∑
L′′

S̄ LL′′(r′; ε)∆V
L′′L′(r

′)R0
L′(r′; ε)S0

L′(r; ε) (4.125)

resulting in the same structure as equation 4.121 and 4.123 except for a reversed
matrix multiplication in L and L′.

Numerical details

The solution of the Lippmann-Schwinger equation can be numerically demanding,
since a coupled system of integral equations is to be solved. It will be shown in chapter
5 that the effort of the solution scales with N3, where N is the number of coupled
equations, which depends on the expansion in L. In addition, for the scalar-relativistic
equations, a factor of 2 needs to be included, because two components need to be
solved, which are coupled by the integral equations. Because of the cubic power law,
the additional factor leads then to an increase of the computational time of a factor
of 8, which can be crucial in calculations. A method will be presented in the following
how to reduce this factor efficiently. This method is for simplicity shown for the
regular solution of the right-hand side Lippmann-Schwinger equation. It can as well be
applied for the irregular solution and all left solution Lippmann-Schwinger equations.

To do so, the potential matrix VLL′(r) is splitted into a part resulting from the
spherically averaged potential containing just diagonal elements in L and L′ and a
rest term containing also off-diagonal contributions:

VLL′(r) = δLL′ V sph
l (r) + [VLL′ − δLL′ V sph

l (r)] (4.126)

= δLL′ V sph
l (r) + V ns

LL′(r) (4.127)
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4.3 Scalar-relativistic approximation Single site problem in KKR

The SR differential equation 4.3 can, then, be rewritten such that V ns
LL′(r) is separated

on the right hand side of the equation.

(
ε− 1

2M
l(l+1)
r2
− V sph

l
d
dr

+ 1
r

d
dr
− 1

r
−2M

)
︸ ︷︷ ︸

Gsph
l

(r)

(
R1
LL′

R2
LL′

)
=
∑
L′′

(
V ns
LL′(r) 0

0 0

)
︸ ︷︷ ︸

∆V
LL′′

(
R1
L′′L′

R2
L′′L′

)
(4.128)

The idea is to set up a Lippmann-Schwinger equation using the right hand side as
the inhomogeneity. By doing so, the Green function for the operator on the left-hand
side needs to be determined, which is the Green function for a spherically symmetric
potential defined by

Gsph

l
(r, r′) = 2M0κ

(
Θ(r′ − r)Rsph

l (r)S̄
sph
l (r′) + Θ(r − r′)Ssph

l (r)R̄
sph
l (r′)

)
(4.129)

Here, the spherical solutions Rsph
l (r) and Ssph

l (r) are introduced and can be determined
by Lippmann-Schwinger equations of following type:

Rsph
l (r; ε) = R0

l(r; ε)

+ 2M0κR
0
l(r; ε)

∫ Rmax

r

dr ′S̄
0
l(r
′; ε)∆V sph

l
Rsph
l (r′; ε)

+ 2M0κS
0
l(r; ε)

∫ r

0

dr′ R̄
0
l(r
′; ε)∆V sph

l
Rsph
l (r′; ε) (4.130)

with

∆V sph

l
=

([
1

2M(r)
− 1

2M0

]
l(l+1)
r2

+ V sph
l (r) 0

0 2M − 2M0

)
(4.131)

This is a simplified version of equation 4.109 for a diagonal potential matrix VLL′(r).
Note that the summation over L′′ of equation 4.109 can be dropped leading to a
decoupling of the spin channels. Thus, the Lippmann-Schwinger equation can be
solved for each spin channel individually, leading to neglectable computational time
for this part. Having calculated the Green function for the spherical part, a Lippmann-
Schwinger equation of 4.128 can be set up describing the non-spherical solution in
terms of ∆V

LL′′ defined in equation 4.128 and the solutions of the spherical potential
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RLL′(r; ε) = Rsph
l (r; ε)

+ 2M0κR
sph
l (r; ε)

∫ Rmax

r

dr ′S̄
sph
l (r′; ε)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r′; ε)

+ 2M0κS
sph
l (r; ε)

∫ r

0

dr′ R̄
sph
l (r′; ε)

∑
L′′

∆V
LL′′(r

′)RL′′L′(r; ε) (4.132)

with

∆V
LL′ =

(
V ns
LL′(r) 0

0 0

)
(4.133)

This equation, due to the ∆V
LL′′(r

′) term, couples all L channels. However, since
just one block of ∆V

LL′′(r
′) is non-zero, the two components of the wave function are

decoupled and the later equation can be rewritten as:

(
R

(1)
LL′(r)

R
(2)
LL′(r)

)
=

(
R

(1) sph
L (r)

R
(2) sph
L (r)

)

+ 2M0κ

(
R

(1) sph
L (r)

∫ Rmax

r
S̄

(1) sph
L (r′)

∑
L′′ V ns

LL′′(r′)R
(1)
L′′L′(r′)

R
(2) sph
L (r)

∫ Rmax

r
S̄

(1) sph
L (r′)

∑
L′′ V ns

LL′′(r′)R
(1)
L′′L′(r′)

)

+ 2M0κ

(
S

(1) sph
L (r)

∫ Rmax

0
R̄

(1) sph
L (r′)

∑
L′′ V ns

LL′′(r′)R
(1)
L′′L′(r′)

S
(2) sph
L (r)

∫ Rmax

0
R̄

(1) sph
L (r′)

∑
L′′ V ns

LL′′(r′)R
(1)
L′′L′(r′)

)
(4.134)

where RLL′(r; ε) = (R
(1)
LL′(r), R

(2)
LL′(r))T respectively. The first row of this equation

does not depend on the second row and can, thus, be calculated independently. Since
the second equation is expressed by the solution of the first component it can be
determined by solving an integral in an negligible computational time compared to
the first row. Effectively, the number of coupled equations could be reduced from
4.132 to 4.134 by a factor of 2. Thus, the computational time can theoretically be
reduced by a factor of 8, leading to a comparable computational time compared to
the Schrödinger equation.

4.4. Spin-orbit coupling

The Schrödinger and the scalar-relativistic equation are suitable to describe a lot
of quantum-mechanical phenomena and are able to predict properties like binding
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energies, lattice constants, magnetic moments of individual atoms and simple magnetic
interactions, like exchange interactions which result in the formation of ferromagnetic
or anti-ferromagnetic ground states. However, as soon as it comes to complex magnetic
structures a description which decouples the spin degree of freedom from the real
space will fail. One reason is that it is not possible to determine the magnetic global
orientation of the magnetic moments, since the Hamiltonian is invariant under a global
orientation of all magnetic moments.

Magnetism in a solid is correctly described by the Dirac equation, which takes into
account relativistic effects. The most important interaction for magnetic effects,
there, is the so called spin-orbit interaction. Simply speaking, it couples the magnetic
moment of an electron to its orbital moment and, thus, couples the spin-space to
the real space. Due to this interaction, the time-reversal symmetry is broken and
new kind of interactions arise. The most important interaction in this thesis is
the Dzyaloshinskii-Moriya interaction which arises if the time- and space-inversion
symmetry is broken, which most prominently occurs on a surface. An approach to
solve the Dirac was implemented by Pascal Kordt, using the numerical technique
described in chapter 5, which was developed within this work.

In this thesis, an alternative approach is used which introduces a perturbation Hamil-
tonian which is suitable to describe spin-orbit (SO) effects. This is done by introducing
a spin-orbit coupling Hamiltonian to the Schrödinger or SR-equations. By doing so
the decoupling between the two spin-directions is repealed and a system of equations
(L,m, s) instead of (L,m) increasing the matrix dimensions by a factor of 2. This
philosophy was started by Swantje Heers, who was calculating spin lifetimes using the
single-site t-matrix. All wave functions have been calculated by solving a Lippmann-
Schwinger equation using the Born-iteration method described in 5.1. However, the
perturbative approach fails while treating the irregular solution. In this thesis, the
spin-orbit Hamiltonian is added to the Lippmann-Schwinger equation which is, then,
solved by direct inversion according to 5.2. This method is suitable to calculate the
irregular solution, which is needed to determine a self-consistent potential.

Classical motivation of spin-orbit coupling

Imagine an electron which is rotating around a nucleus. In the rest frame of the
electron, the nucleus is moving around the electron, due to the charge of the nucleus
an magnetic field ~B ∼ ~v × ~E is produced. In a spherically symmetric potential, the
angular momentum is conserved and the magnetic field can be rewritten as a quantity
which is proportional to the angular moment ~B ∼ ∂V

∂r
~L. The magnetic field, which is

produced by the motion of the electron can interact with the spin magnetic moment
resulting in a dot product between the orbital moment and the spin magnetic moment.

HSO ∼ ~B · ~µs ∼
∂V (r)

∂r
~L · ~S
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Single site problem in KKR 4.4 Spin-orbit coupling

Spin-orbit coupling Hamiltonian

The spin-orbit (SO) coupling Hamiltonian can be derived from the Dirac equation
by insertion of the small component into the big component, obtaining the so called
Pauli equation. In the non-relativistic limit (c → ∞) and non-magnetic limit one
term compared to the Schrödinger equation remains which can be identified as the
spin-orbit coupling Hamiltonian. This term is, then, added to either the Schrödinger
or the SR equations.

HSO = VSO =
1

M(r)2c2

1

r

∂V (r)

∂r︸ ︷︷ ︸
χ(r)

~L · ~S

The prefactor χ(r) depends on the relativistic mass M(r) and the derivative of the
potential with respect to radial part of ~r. The potential V (r) = 1/2 (V↑ + V↓), here, is
chosen as the average spin-up and spin-down potential. Most of the contribution to
the spin-orbit coupling comes from the region close to the origin which justifies the
approximation of a spherical potential here. Due to the derivative of the Z/r potential,
the part 1/rdV/dr will diverge like 1/r3. However, close the origin, this behavior will
partly be compensated by the relativistic mass resulting in an 1/r divergence of the
operator. Thus, the degree of divergence will be the same compared to the Coulomb
interaction. Since the SO coupling operator is proportional to the nuclear charge, one
can expect higher effects of spin-orbit coupling for heavy elements.
The spin-orbit coupling Hamiltonian is an additional term which needs to be added to
the Schrödinger or the scalar-relativistic equation. Formally, it has the same form as
the potential term and can, thus, be treated as an additional potential contribution:

(
V tot
↑↑ V tot

↑↓
V tot
↓↑ V tot

↓↓

)
=

(
V↑↑ 0
0 V↓↓

)
+

(
V SOC
↑↑ V SOC

↑↓
V SOC
↓↑ V SOC

↓↓

)
Using the approximation of collinear magnetization within one cell, the potential
can be chosen to be collinear in spin-space leading to a decoupling of the single-site
equation. This not possible anymore while introducing SO coupling. Therefore,
instead of two systems of equations with L = (l,m) indices, one needs to extend the
indexing to Λ = (l,m, s) and explicitly take the spin degree of freedom into account.

Evaluation of the SO potential

To determine the SO coupling operator, one needs to evaluate the ~L · ~S term and the
prefactor χ(r). The later can be calculated straightforwardly. The only difficulty is to
accurately calculate the derivative of the potential. This is done by separating the
−2Z/r term, which is analytically differentiated, from the rest of the potential.
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∂V (r)

∂r
=

2Z

r2
+
∂Ve−e(r)

∂r
(4.135)

The remaining part is numerically differentiated using Chebyshev polynomials. Further
details are explained in section 5.
Since all quantities of the single-site equations are expanded in real spherical harmonics,
the scalar product ~L · ~S needs to be transformed into the same basis.

(
V SOC
↑↑ V SOC

↑↓
V SOC
↓↑ V SOC

↓↓

)
= χ(r) 〈YL |L · S|YL〉 (4.136)

= χ(r)

〈
YL

∣∣∣∣( Lz Lx − iLy
Lx + iLy −Lz

)∣∣∣∣YL〉 (4.137)

These terms are simply calculated by using the ladder operators L± = Lx ± iLy in
terms of the complex spherical harmonics Ylm. It is known how the ladder operator
and Lz acts on the complex spherical harmonics:

Lz | Ylm 〉 = m | Ylm 〉 , L± | Ylm 〉 =
√
l(l + 1)−m(m+ 1) | Ylm 〉 (4.138)

Using the transformation from complex to real spherical harmonics, the matrix
elements can be re-expressed in the usual basis. An explicit derivation is given in [50].

Left solution

The drawback of using a spin-orbit coupling potential is that the resulting potential
will not be symmetric, in (l,m, s) space, which means that there will be no simple
relationship between the left and the right-hand side solution. Both, the left- and
right- hand side solutions need to be calculated independently. Both solutions are
needed to expand the Green function after solving the Dyson equation to calculate the
resulting electron density. Thus, if a self-consistent potential is to be calculated, both
the left- and right-hand side solutions need to be calculated independently leading to
an increase of the computational time for the single-site part by a factor of two.
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5 Numerical methods

In chapter 4, single-site problems have been discussed which describe the scattering
properties of a locally defined cell with a potential of finite range. The underlying
quantum mechanical equations can be either the Schrödinger, Dirac or the scalar-
relativistic equations and be expressed in a differential or integral form. Different
techniques can be used to numerically solve these equations. State-of-the-art methods
rely on a differential equation equation solver, whereas this work introduces a newly
developed integral solver for non-spherical potentials.

First of all, the state-of-the-art method is discussed for determining the wave functions
of a single-site problem for non-spherical potential, which is currently used in Jülich
KKR programs. This method, introduced by Drittler [41, 51], relies on a differential
equation solver for the spherical part of the potential and a perturbative approach
to solve for the non-spherical part that relies on a Lippmann-Schwinger equation.
Then, a new method is introduced which was developed and implemented within
this work. It uses an expansion of the radial functions in Chebyshev polynomials
and directly solves a Lippmann-Schwinger equation by a matrix inversion. For a
time-efficient treatment, a formalism is presented, which splits up the radial mesh
in sub-intervals. The Lippmann-Schwinger equation is solved independently in each
sub-interval, reducing the numerical effort drastically.

5.1. State of the art solver

The method that has been used so-far to treat single-site equations with a non-
spherical potential [41, 52] is based on the assumption that the off-diagonal elements
of the potential matrix VLL′(r), which is entering the differential equation, are small.
These describe the non-sphericity of the potential. The solution is computed in two
steps: First, the solution for the spherical part of the potential, which can be time-
efficiently calculated, is determined. Then, all off-diagonal components are treated in
a perturbative approach by a Lippmann-Schwinger equation, assuming that these are
small. A more detailed description is given in the following.

The potential VLL′(r), defined in equation 4.12, is first split into two parts:
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Numerical methods 5.1 State of the art solver

VLL′(r) = VLL′(r)δLL′ + (1− δLL′)VLL′(r) (5.1)

= V sph
l (r)δLL′ + ∆V ns

LL′(r) (5.2)

The first term on the right hand side describes the spherical contribution to the
potential, whereas the second term describes the non-spherical one.

Spherical solution

Then, the differential equation is set up which just contains the spherical part of the
potential. (

ε−H0 − V sph
l (r)

){ Rsph
l (r)

Ssph
l (r)

}
= 0 (5.3)

Here, H0 describes the radial potential free Hamiltonian. The resulting wave functions
are diagonal in L = (l,m) depending only on the quantum number l. By using a
differential equation solver, the regular solutions Rsph

l and the irregular solutions Ssph
l

are calculated, as are the left-hand solutions R̄sph
l and S̄sph

l . (The energy dependence
of the solutions is implied, but not written explicitly)

Non-spherical solution

Then, a Lippmann-Schwinger equation is set up, which relates the solution of the
spherical potential to the solution of the full non-spherical potential via the potential
matrix, defined in 5.2, containing the off-diagonal blocks ∆V ns

LL′

RLL′(r) = Rsph
l (r) + κSsph

l (r)

∫ r

0

dr′ R̄sph
l (r′)

∑
L′′

∆V ns
LL′′(r′)RL′′L′(r′)

+ κRsph
l (r)

∫ R

r

dr′ S̄sph
l (r′)

∑
L′′

∆V ns
LL′′(r′)RL′′L′(r′) (5.4)

This equation is solved iteratively. Assuming that ∆V ns
LL′′(r′) is small, the difference

between RLL′(r) and Rsph
l (r) is small and the later can be used as a starting solution.

The integral is calculated and the result is considered as the first order approximation to
the correct wave function (also known as the first distorted-wave Born-approximation).
This solution can again be inserted into the integral as the new starting solution to
determine the 2nd order approximation. This procedure is repeated until a convergence
criterion is fulfilled. Assuming that the off-diagonal elements are small, only a few
iterations will be needed to achieve convergence, practically less than 5 steps being
sufficient. The exact algorithm is explained in more details on page 77. It should
be noted, however, that this iterative series is not guaranteed to converge, if ∆VLL′

becomes large.
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Algorithm: Perturbative Lippmann-Schwinger approach

The regular solution for a non-spherical potential can be calculated as follows:

1. Divide the potential into a spherical and a non-spherical part:

VLL′ = δLL′V sph
l + ∆V ns

LL′

2. Calculate the solutions Rsph
l (r), Ssph

l (r) of the spherical part using a ordinary
differential equation solver.

3. Set up a Lippmann-Schwinger equation for the non-spherical part of the potential
and insert the spherical solution Rsph

l (r) into the integrand to get a first starting
solution:

R
(1)
LL′(r) = Rsph

l (r) + κSsph
l (r)

∫ r

0

dr′ R̄sph
l (r′)∆V ns

LL′(r′)R
sph
l′ (r′)

+ κRsph
l (r)

∫ R

r

dr′ S̄sph
l (r′)∆V ns

LL′(r′)R
sph
l′ (r′) (5.5)

4. Subsequently insert the new solution into the Lippmann-Schwinger equation

R
(n+1)
LL′ (r) = Rsph

l (r) + κSsph
l (r)

∫ r

0

dr′ R̄sph
l (r′)

∑
L′′

∆V ns
LL′′(r′)R

(n)
L′′L′(r

′)

+ κRsph
l (r)

∫ R

r

dr′ S̄sph
l (r′)

∑
L′′

∆V ns
LL′′(r′)R

(n)
L′′L′(r

′) (5.6)

5. Stop if a convergence criterion between R
(n+1)
LL′ (r) and R

(n)
LL′(r) is fulfilled

5.2. Direct inversion of the Lippmann-Schwinger

equation

Introduction

An alternative way to determine the single-site solutions relies on a direct solution
of the single-site Lippmann-Schwinger equation by an inversion of the integration
kernel. To achieve this task time-efficiently, techniques are introduced to reduce the
numerical effort. This method was first introduced by Gonzalez et al. [53] to solve
a Lippmann-Schwinger equation for a spherically symmetric potential. Based on a
proposal by Zeller [40], the present work extends the theory to treat non-spherical
potentials.
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The procedure is discussed in three steps:

• First, the Lippmann-Schwinger equation needs to be reformulated into a Volterra-
type integral equation. A Volterra-formulation for the different types of single-site
equations is presented in chapter 4.

• Then, the problem of solving a Lippmann-Schwinger equation is divided into M
independent problems of solving locally defined integral equations by dividing the
radial mesh into M subintervals. This step is needed to reduce the computational
time.

• Finally, a discretization method is presented, which transforms an integral
equation into a matrix equation by expanding all radial functions into Chebyshev
polynomials.

5.2.1. Subinterval technique

A method is presented how to reduce the numerical effort by transforming the problem
of solving one global into several locally defined Lippmann-Schwinger equations.
Each of these equations is defined on a subinterval of the radial variable and can be
solved independently. The Schrödinger equation is used as a prototype to explain the
formalism. The method can, however, be applied to all single-site equations, which
are presented in chapter 4, by merely changing the source terms, potential terms and
matrix sizes ((l,m) to (l,m, s)).

The Lippmann-Schwinger equation 4.51 in the Volterra formulation is given by:

ULL′(r) = Jl(r)δLL′ +κHl(r)

∫ r

0

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′)

−κJl(r)
∫ r

0

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′) (5.7)

ULL′(r) is the solution of the Volterra integral equation, which can be related to
the Fredholm solution RLL′(r) by the α-matrix according to equation 4.53. The
potential-free solutions are defined by Bessel and Hankel functions times r according
to equation 4.13. The upper integration limit r in 5.7 cannot exceed a predefined
radius Rmax, since the potential, by construction, vanishes for r > Rmax. The radial
interval [0, Rmax] is subdivided into M subintervals Im, where interval m is given by
Im = [rm, rm+1].

The Lippmann-Schwinger equation 5.7 for r ∈ Im can then be written as,
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ULL′(r) = Jl(r)ALL′(m) +Hl(r)BLL′(m)

+ κHl(r)

∫ r

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′)

− κJl(r)

∫ r

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′) (5.8)

where the matrices ALL′(m), and BLL′(m) are defined as:

ALL′(m) = δLL′ − κ
∫ rm

0

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′) (5.9)

BLL′(m) = κ

∫ rm

0

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′) (5.10)

These matrices contain integrals over the global wave functions ULL′(r) ranging from
the origin to the starting value of the interval Im. The last two integrals in 5.8, then,
contain the remaining parts with r ranging inside the cell Im.

On the other hand, two local Lippmann-Schwinger equations can be defined which
have a radial mesh r ∈ Im:

U
(j)
LL′(r;m) = Jl(r)δLL′+κHl(r)

∫ r

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)U
(j)
L′′L′(r

′;m)

−κJl(r)
∫ r

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)U
(j)
L′′L′(r

′;m) (5.11)

U
(h)
LL′(r;m) = Hl(r)δLL′+κHl(r)

∫ r

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)U
(h)
L′′L′(r

′;m)

−κJl(r)
∫ r

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)U
(h)
L′′L′(r

′;m) (5.12)

The indices j and h for the local solutions U
(j)
LL′(r;m) and U

(h)
LL′(r;m) refer to the source

term on the right hand side, whereas the index m labels the subinterval. A relation
between the global and the local solutions of the Lippmann-Schwinger equations is
to be found. Matrix matrix multiplication of the solutions U

(j)
LL′(r;m) and U

(h)
LL′(r;m)

with the coefficients ALL′(m) and BLL′(m) in L and L′ leads to:
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∑
L′′

[
U

(j)
LL′′(r;m)AL′′L′(m) + U

(h)
LL′′(r;m)BL′′L′(m)

]
= Jl(r)ALL′(m) +Hl(r)BLL′(m)

+ κHl(r)

∫ r

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)
∑
L′′′

[
U

(j)
L′′L′′′(r;m)AL′′′L′(m)

+ U
(h)
L′′L′′′(r;m)BL′′′L′(m)

]
− κJl(r)

∫ r

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)
∑
L′′′

[
U

(j)
L′′L′′′(r;m)AL′′′L′(m)

+ U
(h)
L′′L′′′(r;m)BL′′′L′(m)

]
(5.13)

Comparison with 5.8 shows that the following relationship between the global and the
local solution is fulfilled:

ULL′(r) =
∑
L′′

[
U

(j)
LL′′(r;m)AL′′L′(m) + U

(h)
LL′′(r;m)BL′′L′(m)

]
(5.14)

A mapping between the local solutions U
(j)
LL′(r;m) and U

(h)
LL′(r;m) and the global

solution ULL′(r) is given in terms of ALL′(m) and BLL′(m) matrices. This bears an
analogy to the solution of a differential equation where one starts with a boundary
condition at a point rm to integrate the differential equation in the interval Im. In case
of the integral equation, the matrices A and B, in analogy to a boundary condition,
give all information from the previous panels which is needed to obtain the global
solution out of the local ones. The great advantage is, however, that the local solutions
can be calculated independently, contrary to a differential equation solver, allowing
e.g. for parallelization.

It remains to be shown how to efficiently calculate the coefficients ALL′(m) and
BLL′(m), which still depend on the global solution. A recursive relationship can be
found for ALL′(m+ 1) and BLL′(m+ 1) by equation 5.9 and 5.10:

ALL′(m+ 1) = ALL′(m)− κ
∫ rm+1

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′;m) (5.15)

BLL′(m+ 1) = BLL′(m) + κ

∫ rm+1

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)UL′′L′(r′;m) (5.16)
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The global solution UL′′L(r′;m) can, again, be expressed in terms of the local solutions
using equation 5.14. Then equations 5.15, 5.16 become

ALL′(m+ 1) = ALL′(m)−
∑
L′′

M
(hj)
LL′′AL′′L′(m)−

∑
L′′

M
(hh)
LL′′BL′′L′(m) (5.17)

BLL′(m+ 1) = BLL′(m) +
∑
L′′

M
(jj)
LL′′AL′′L′(m) +

∑
L′′

M
(jh)
LL′′BL′′L′(m) (5.18)

where four matrices M
(xx)
LL′ , x ∈ {jj, jh, hj, hh} are defined by:

M
(hj)
LL′ = κ

∫ rm+1

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)U
(j)
L′′L′(r

′;m) (5.19)

M
(jj)
LL′ = κ

∫ rm+1

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)U
(j)
L′′L′(r

′;m) (5.20)

M
(hh)
LL′ = κ

∫ rm+1

rm

dr′H̄l(r
′)
∑
L′′

VLL′′(r′)U
(h)
L′′L′(r

′;m) (5.21)

M
(jh)
LL′ = κ

∫ rm+1

rm

dr′J̄l(r
′)
∑
L′′

VLL′′(r′)U
(h)
L′′L′(r

′;m) (5.22)

Everything is expressed in terms of the local solutions. By the knowledge of ALL′(m)
it is now possible to calculate the appropriate matrix for the interval m+ 1, where the
starting values ALL′(0) and BLL′(0) remain to be calculated. Assuming a fictitious
initial interval m = 0 ranging from 0 to δ, where δ is tending towards zero, all integrals
in equation 5.9 and 5.10 drop out resulting in:

AL′L(0) = δLL′ (5.23)

BL′L(0) = 0 (5.24)

Summing up all steps, the global solution can be calculated as follows:
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Algorithm of the subinterval technique

1. Calculate local solutions for all intervals using equation 5.11 and 5.12

2. Calculate matrices M
(xx)
LL′ for all intervals using equation 5.19 - 5.22

3. Subsequently, starting in the first panel, calculate ALL′(m) and BLL′(m) for all
panels using equation 5.17 and 5.18

4. Calculate the global solution using equation 5.14

The most time-consuming part here is the calculation of the local solutions, since
this step is related to a kernel inversion, which can, however, be computationally
performed in parallel, since all local solutions can be calculated independently.

5.2.2. Chebyshev polynomials

Motivation

In the preceding section, an analytic derivation was shown, which divides the problem
of solving one Lippmann-Schwinger equation into M smaller problems, the so called
local Lippmann-Schwinger equations, one for each subinterval. To find a numerical
solution, the radial part needs to be discretized by a radial mesh for each panel. The
question then arises, which radial mesh is most suitable for an accurate description.
The most natural choice is to take an polynomial interpolation f̃(x) on an equidistant
mesh. Figure 5.1 (green) shows the residual |f(x)− f̃(x)| between an exact function
f(x) = sinx and the interpolating function f̃(x) using an equidistant mesh.

It is evident that the numerical error is drastically increased at the boundaries of
the interval. An interpolation of each subinterval separately will, thus, lead to an
inhomogeneous distribution of the error for the global solution, which is to be avoided.
It is of interest to achieve an interpolation, which reduces the maximum error of the
interpolating function. This condition can be fulfilled using a mesh where interpolation
nodes are given by the roots of a series of functions called Chebyshev polynomials
[54]. These build up a complete set of orthogonal functions which are suitable for an
interpolation in a finite interval. The blue graph in figure 5.1 shows the residual of the
same interpolating function in Chebyshev polynomials. It becomes obvious that the
residual at each point is of the same order, making this interpolation most suitable
for the direct subinterval Lippmann-Schwinger solver.
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5.2 Direct inversion Numerical methods

Figure 5.1.: Absolute difference between an interpolating function f̃(x) up to a finite
polynomial degree of N = 10 and the actual function f(x) = sinx. For the
green solid line, equidistant nodes and for the blue dashed line, Chebyshev
nodes have been used to determine the interpolating function.

Definition and properties

The solution of the following differential equation leads to polynomials with a maximum
order of n.

(1− x2)y′′(x)− xy′(x) + n2y(x) = 0 (5.25)

These are called Chebyshev polynomials of the first kind Tn(x) and fulfill important
properties which make them suitable as a basis set for an expansion in a finite interval.
The functions themselves are defined in the interval [−1, 1]. An explicit solution of
the differential equation is, in terms of trigonometric functions, given by

Tn(x) = cos
(
n arccos(x)

)
= cosh

(
n arccosh (x)

)
. (5.26)

Even though it is not obvious from 5.26, Tn(x) are polynomials of order n. The
Chebyshev polynomials can be recursively defined by:

T0(x) = 1 (5.27)

T1(x) = x (5.28)

Tn+1(x) = 2xTn(x)− Tn−1(x) (5.29)

Further Chebyshev polynomials are explicitly
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Figure 5.2.: Visualization of the first five Chebyshev polynomials.

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1 (5.30)

and are visualized in figure 5.2, which are depending on the index n either even or
odd. By using equation 5.26 the n roots of the Chebyshev polynomials of order n can
be determined:

cos(
π

2
(2k + 1)) = 0 ⇒ xk = cos

(
π

2

2k + 1

n

)
(5.31)

These are referred to as the Chebyshev nodes xk and are used as mesh points for an
interpolation based on Chebyshev polynomials. There are other relations which are
helpful. The product of two Chebyshev polynomials can be expressed as the sum over
two different Chebyshev polynomials:

Tj(x)Tk(x) =
1

2

(
Tj+k(x) + T|j−k|(x)

)
, ∀j, k ≥ 0, (5.32)

and a scalar product can be found which makes the set of Chebyshev polynomials
orthogonal:

∫ 1

−1

dx
1√

1− x2
Tn(x)Tm(x) =


0 n 6= m

π n = m = 0

π/2 n = m 6= 0

(5.33)
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A discrete version exists namely:

N−1∑
k=0

Ti(xk)Tj(xk) =


0 i 6= j

N i = j = 0

N/2 i = j 6= 0

(5.34)

for i, j ≤ N , where xk are the Chebyshev nodes of TN(x).

Expansion

Consider a function f(x) defined on the interval x ∈ [−1, 1]. An interpolation of
the function with either Chebyshev polynomials or by other more simpler choices of
polynomials (i.e. {x, x2, .., xN}) up to a maximum order N needs to result in exactly
the same expansion, since both sets span the same vector space. The essential point,
which can lead to a reduction of the residual is the choice of the interpolating mesh
points. One can show that an interpolation with roots of the Chebyshev polynomial
of order N + 1 gives a good approximation to an the interpolating function, which
reduces the absolute numerical error between the expansion and the exact function.
The essential difference is, thus, not the choice of polynomial interpolation function,
but the interpolation mesh, which is used. A function f(x) can be approximated to a
finite order N by:

f(x) =
∞∑
j=0

αjTj(x) ≈
N∑
j=0

αjTj(x) = f̃(x) (5.35)

Since the Chebyshev polynomials form a complete set of orthogonal functions, any
continuous function can be expressed using Chebyshev polynomials. Given a set
of function values which are evaluated at the Chebyshev roots xk of TN+1(x), a
linear transformation between the coefficients of its expansion and the function values
themselves can be found: f̃(x0)

..

f̃(xN)

 = C

α0

..
αN

 , Ckj = Tj(xk), k, j = 0, .., N (5.36)

Equation 5.36 is just a reformulation of equation 5.35 for x = x0, x1, ...xN in matrix
notation. Given the vector of function values, the expansion coefficients can be
determined by using the inverse of matrix Cα0

..
αN

 = C−1

 f̃(x0)
..

f̃(xN)

 . (5.37)
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Reformulating equation 5.34 the following relationship can be found:

CTC = diag(N,
N

2
,
N

2
, ...,

N

2
) (5.38)

It immediately follows that the inverse is of C is given by:

C−1 = diag(
1

N
,

2

N
,

2

N
, ...,

2

N
)CT (5.39)

This can be generalized to an interpolation of a function f(r) in a finite range r ∈ [a, b]
with arbitrary bounds, by mapping the argument r of the function to an argument x
in an interval [−1, 1]. A linear transformation between the two is given by:

r(x) =
1

2
(b− a)x+

1

2
(a+ b) (5.40)

The roots of the Chebyshev polynomials are transformed in the same way leading to:

rk =
1

2
(b− a)xk +

1

2
(a+ b) (5.41)

Equation 5.36 and 5.37 are still valid, the transformation matrix C, however, has to
be evaluated at the arguments x(r) (inverse of equation 5.40).α0

..
αN

 = C−1

 f̃(r0)
..

f̃(rN)

 , Ckj = Tj(xk), k, j = 0, .., N (5.42)

Integration

An elegant way to calculate the integral of a function f(x) is to use its expansion
in Chebyshev polynomials, which can be integrated exactly since the integral of the
expansion functions is known analytically. Here, the derivation by Gonzales et al. [53]
is followed.

F̃ (x) =

∫ x

−1

f̃(x′)dx′ =

∫ x

−1

N∑
n=0

αnTn(x′)dx′ =
N∑
n=0

αn

∫ x

−1

Tn(x′)dx′ (5.43)

The integral over a single Chebyshev polynomial Tn can be exactly expressed by a
finite sum of Chebyshev polynomials up to the order N + 1. By differentiation of
equations 5.27 to 5.29 the following relation can be determined:
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T0(x) =
d

dx
T1(x) (5.44)

T1(x) =
1

4

d

dx
T2(x) (5.45)

2Tn(x) =
1

n+ 1

d

dx
Tn+1(x)− 1

n− 1
Tn−1(x), n > 1 (5.46)

This is used to determine the integral over a single Chebyshev polynomial. In this
way, the resulting function F̃ (x) can also be expressed in Chebyshev polynomials

F̃ (x) =
N+1∑
j=0

βjTj(x) ≈
N∑
j=0

βjTj(x) (5.47)

Due to the integration, the maximum order of the polynomial will be increased by
one. However, it is assumed that the highest expansion coefficients can be neglected
to a good approximation. This is reasonable since the expansion is assumed to be
sufficiently good leading to a rapid decrease of the expansion coefficients. The resulting
transformation matrices are, then, square matrices. In this work two definite integrals
are of importance, namely:

F̃L(x) =

∫ x

−1

dx′ f̃(x′) =
N∑
n=0

βL
n Tn(x) (5.48)

F̃R(x) =

∫ 1

x

dx′ f̃(x′) =
N∑
n=0

βR
n Tn(x) (5.49)

The first one represents an integration from the lower bound to a point x and the
second one an integration from x to the upper bound of the integral. The result is,
then, expressed in Chebyshev polynomials by the coefficients βL

n and βR
n .

Using equations 5.44 to 5.46, a transformation matrix between the coefficients αj of
the function f̃ and the coefficients βL

j (βR
j ) of the integrated function F̃L (F̃R) can be

found. Thus, the expansion coefficients can directly be converted to the expansion
coefficients of the integrated function by:


βL

0

βL
1
...
βL
N

 = S
L


α0

α1
...
αN

 ,


βR

0

βR
1
...
βR
N

 = S
R


α0

α1
...
αN

 (5.50)

The matrices S
L

and S
R

are defined by a combination of two matrices
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S
L

= L · S, S
R

= R · S (5.51)

where

S =



0 0 . . .
1 0 −1/2
0 1/4 0 −1/4
... 1/6 0

. . .
. . . . . . −1/(2(N − 1))

1/2N 0


,

and

L =



1 1 −1 1 −1 . . . (−1)N

1
1

1
1

. . .

1


, R =



1 1 1 1 1 . . . 1
1

1
1

1
. . .

1


depending on the type of integration boundary (omitted matrix elements are implied
to be zero). The matrix S carries of the transformation to the interpolation coefficients

representing the indefinite integral F̃(x), whereas the matrices L and R transform the

indefinite integral to F̃L(x) = F̃(x)− F̃(−1) and F̃R(x) = F̃(1)− F̃(x) respectively.

The integration interval can be generalized from an interval [−1, 1] to an interval with
arbitrary bounds [a, b] by applying the transformation 5.40:

F̃L(r) =

∫ r

a

dr′ f(r′), F̃R(r) =

∫ b

r

dr′ f(r′) (5.52)

Using equation 5.36 and 5.37, these integrals can be expressed as F̃L(r0)
..

F̃L(rN)

 =
b− a

2
C S

L
C−1

f(r0)
..

f(rN)

 (5.53)

and  F̃R(r0)
..

F̃R(rN)

 =
b− a

2
C S

R
C−1

f(r0)
..

f(rN)

 (5.54)

where a scaling factor (b− a)/2 has been included due to the transformation from dx
to dr in the integral.

88



5.2 Direct inversion Numerical methods

If the integral over the complete interval is of interest, the calculation can be accelerated,
since not all of the expansion coefficients are needed. Chebyshev polynomials of odd
order are anti-symmetric with respect to x = 0 and, thus, do not contribute to the
integral. The integration, then reduces to:∫ b

a

drf(r) = (b− a)

[
1

2
α0 −

1

3
α2 −

1

15
α4 − ...−

1

(2n− 1)(2n+ 1)
α2n − ...

]
(5.55)

This method is known as the Clenshaw-Curtis quadrature [54].

Differentiation

Similarly, the derivative f ′(x) with respect to x can be determined by making use of
expansion coefficients γn as:

f ′(x) ≈ d

dx
f̃(x) =

N∑
n=0

γnTn(x)

By using equations 5.27-5.29 the following recursive relationship can be found between
the expansion coefficients α and γ:

γn−1 = γn+1 + 2nαn, n > 2

This can explicitly be formulated by a matrix ∆ which gives the expansion coefficients
γn by a matrix multiplication with αn

γ0

..
γN

 = ∆ ·

α0

..
αN

 (5.56)

where ∆ is defined as:

∆
ij

=


1
2
j (1− (−1)j) , i = 0
j (1− (−1)i+j), j > i 6= 0

0, else

 (5.57)

For example, the explicit form of ∆ for N = 5 is:
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∆ =


0 1 0 3 0 5
0 0 4 0 8 0
0 0 0 6 0 10
0 0 0 0 8 0
0 0 0 0 0 10
0 0 0 0 0 0

 (5.58)

In combination with equation 5.41 and 5.42, the following equation can be found to
transform the function values

f ′(r0)
..

f ′(rN)

 =
2

b− a
C ∆C−1

f(r0)
..

f(rN)

 (5.59)

where a scaling factor of 2/(b− a) has been included.

5.2.3. Discretization of the Lippmann-Schwinger equation

For numerical purposes, the analytical Lippmann-Schwinger equation is transformed
into a matrix equation by applying a Chebyshev expansion. Therefore, all functions
and operators need to be transformed to appropriate vector and matrix representations.

Given a function f , an interpolation up to an order N can be expressed in terms of
the values of the function at the nodes rk of the Chebyshev polynomial N + 1. These
N values are given in vector representation by:

f(r) −→ f =


f(r0)
f(r1)

...
f(rN)


A linear operator acting on a function is expressed by a matrix-vector multiplication:

Df(r) −→ D


f(r0)
f(r1)

...
f(rN)


This can be any kind of differential or integral operator. According to equation 5.48,
the matrix representation of an integral operator is, for example, given by
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∫ r

a

f(r)dr −→ C S
L
C−1

f(r0)
...

f(rN)

 (5.60)

The multiplication of two functions can be expressed, using a finite Chebyshev
expansion, by:

g(r)f(r) −→

g(r0) 0
. . .

0 g(rN)


f(r0)

...
f(rN)

 (5.61)

For simplicity, a Lippmann-Schwinger equation for a spherical potential is discussed
first, namely:

Ul(r) = Jl(κr) + κHl(κr)

∫ r

0

dr′Jl(κr
′)Vl(r

′)Ul(r
′) (5.62)

− κJl(κr)

∫ r

0

dr′Hl(κr
′)Vl(r

′)Ul(r
′) (5.63)

which is the form of equation 5.7 for VLL′ = Vl δLL′ . By substituting all quantities in
the Lippmann-Schwinger equation with their appropriate discrete representation, the
following matrix equation can be set up.

U = J + kH I
L
J V U + kJ I

L
H V U = AU (5.64)

where I
L

= C S
L
C−1 and

V =

Vl(r0) 0
. . .

0 Vl(rN)

 J =

Jl(r0)
...

J(rN)

 (5.65)

H =

Hl(r0) 0
. . .

0 Hl(rN)

 J =

Jl(r0) 0
. . .

0 Jl(rN)

 (5.66)

U =

Ul(r0) 0
. . .

0 Ul(rN)

 (5.67)
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Since different l-values are decoupled for a spherical potential, equation 5.64 can be
solved individually for each value of l. The solution of this equation can be found by
solving the system of equations by a matrix inversion:

U =
(

1− kH I
L
J V + kJ I

L
H V

)−1

J = A−1 J (5.68)

The Lippmann-Schwinger equation for a non-spherical potential can also be solved
via a Chebyshev expansion. Since all angular momentum channels can be in principle
coupled, a matrix equation needs to be solved, which explicitly contains the contribu-
tions of all L-components. This is done by introducing a combined index of i = (n, L)
for all matrices. Equation 5.64 remains valid, the definition of the matrices, however,
changes as follows:

{I
L
}i,i′ = δLL′ {C S

L
C−1}nn′

{J}i,L = δLL′ Jl(rn)

{J}i,i′ = δii′ Jl(rn)

{H}i,i′ = δii′ Hl(rn)

{V }i,i′ = δnn′ VLL′(rn)

{U}i,L′ = ULL′(rn) (5.69)

Here, two underlines M represent a matrix in i = (n, L), i′ = (n′, L′) and one underline
M a matrix in i = (n, L), L′. Equation 5.64 can then be used to determine the solution
for the non-spherical potential.

This discretization technique suggests a method to solve a coupled set of Lippmann-
Schwinger equations, where most of the calculation time is consumed. The resulting
system of linear equations of dimension N can be solved numerically, scaling in a
cubic with the size of matrices O(N3). This would result in an enormous amount of
calculation time, if the Lippmann-Schwinger equation was solved by accounting for the
full radial mesh by applying this technique. It has been shown in subsection 5.2.1 that
the solution of the Lippmann-Schwinger equation can be determined by separating
the radial mesh into Npan panels, which each defines a local Lippmann-Schwinger
equations. The numerical effort can, thus, be reduced from N3 to N3/N2

pan making
the sub-panel method extremely efficient. Analyzing the structure of all matrices
appearing in equation 5.64, one observes that the matrices (e.g. J , H, V , ..), according
to definitions 5.69, are all sparse, which, however, results in a dense matrix A after
matrix multiplications. The structural form of equation 5.64 can be visualized by:
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( �
�

�

)
1

−
(
�

�
�

)
kH

(
� � �
� � �
� � �

)
I
L

(
�

�
�

)
J

(
�

�
�

)
V

+ ...

( �
�
�

)
U

=
(

�
�
�

)
J(

� � �
� � �
� � �

)
A

(
�
�
�

)
U

=
(

�
�
�

)
J

(5.70)

where the symbol ( � ) represents a dense matrix and ( � ) a diagonal matrix in L
and L′. Further improvement of the calculation time by explicitly making use of this
structural form could be realized by iterative solvers for linear differential equations
that utilize fast matrix-vector multiplications. This idea is to be tested in further
developments.
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6 Improvements to the KKR
Green function approach

6.1. Impurity calculations

6.1.1. Host Green function

In density functional theory infinitely extended lattice structures are calculated
by making use of band-structure methods, which are designed to treat the lattice
periodicity. In KKR Green function theory, a band structure calculation relies on a
Fourier transformation of the structural Green function. This is done as follows:

The structural Green function Gnµ,n′µ′

LL′ (E) (equation 3.72 ) is to be determined, which
depends on the site indices n, n′ containing an infinite number of atoms. By making
use of a Fourier transformation, the Green function can be transformed into ~k-space.

Gµµ′

LL′(~k; ε) =
∑
n′

Gnµ,n′µ′

LL′ (ε) e−i
~k(~Rn−~Rn′ )

assuming a Bravais lattice structure, where n labels the periodic lattice sites positioned
at ~Rn and µ one of a finite number of basis atoms at ~χµ. By transforming the
Green function into ~k-space and making use of the translational invariance, one has
transformed the complexity of two discrete lattice indices to a continuous variable
~k, defined inside the Brillouin zone. In ~k-space, a Dyson equation for the structural
Green function can be set up:

Gµµ′

LL′(~k; ε) = gµµ
′

LL′(~k; ε) +
∑

µ′′L′′L′′′

gµµ
′′

LL′′(~k; ε) tµ
′′

L′′L′′′ G
µ′′µ′

L′′′L′(~k; ε),

The resulting equation for a specific value of ~k has a finite number of indices (L, µ)
and the equation can be solved by a matrix inversion. The resulting structural
Green function in ~k-space can afterwards be back-transformed by an inverse Fourier
transformation
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Gn,µ,n′,µ′

LL′ (ε) =
1

VBZ

∫
BZ

d~k ei
~k(~Rn−~Rn′ ) Gµµ′

LL′(~k; ε),

which can, then, be used to determine charge densities and all other observables of
interest.

6.1.2. Impurity Green function

In many applications, it is of interest to understand the impact of defects on physical
properties of solids. These defects can have either structural nature, like lattice
distortions, or chemical nature, like impurity atoms, and are in many cases distributed
in a finite region of space, which is called the impurity region. Usually, calculations
involving impurities are based on band-structure codes, which rely on translational
invariance of the potential. Defects can, then, only be calculated using a supercell
approach which results in periodic images of the impurity region. Consequently, the
size of the supercell has to be chosen large enough in order to reduce the interaction
between the periodic images, leading to a high numerical effort.

The KKR impurity method is an alternative approach, which does not rely on a
supercell. It uses a Green function approach in real space to embed an impurity
region into a solid. This is done in two steps: First, the Green function of the solid is
calculated via the KKR band structure method in ~k-space. Then, impurity atoms
are embedded into the crystal structure in real space using a Dyson equation. More
details are given in the following.

Suppose a structural host Green function Gnn′

LL′ has been calculated for a lattice
structure with translational symmetry. The indices n, n′, here, describe the infinite
number of atoms in the system, with each having a potential V n

host. In a finite region
of space, the atoms are to be substituted by potentials V n

imp. This can be done via a
Dyson equation for the structural Green function

Gnn′

imp,LL′(ε) = Gnn′

host,LL′(ε) +
∞∑

n′′,L′′,L′′′

Gnn′′

host,L′L′′(ε)∆tn
′′

L′′L′′′(ε)Gn′′n′

imp,L′′′L′(ε) (6.1)

where ∆tn denotes the t-matrix difference between the t-matrix of the impurity
potential V n

imp(~r ) and the host potential V n
host(~r ). This equation can be written as a

matrix equation by using a combined index (L, n) as:

G
imp

= G
host

+G ∆t G
imp

(6.2)

One can formally solve the equation by a matrix inversion. However, the matrix has
an infinite dimension and one can, thus, not solve it. Keeping in mind that just a
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finite number of impurity atoms are introduced, only atoms inside a finite region of
space are practically influenced. Outside, the induced perturbation in the potential is
small and can, in a good approximation, be neglected, meaning that the potential
equals the host potential and the t-matrix difference in 6.1 will be zero.

Figure 6.1.: Sketch of the atomic structure of an impurity, embedded in an otherwise
perfect host. The blue square represents the impurity region (I). All
other atoms are contained in the remaining host region (R).

Equation 6.2 can be rewritten in a 2× 2 submatrix form

(
GII

imp
GIR

imp

GRI

imp
GRR

imp

)
=

(
GII

host
GIR

host

GRI

host
GRR

host

)
+

(
GII

host
GIR

host

GRI

host
GRR

host

)(
∆tII 0

0 0

)(
GII

imp
GIR

imp

GRI

imp
GRR

imp

)
(6.3)

separating all matrices in the impurity and host regions. According to figure 6.1,
label I groups all atoms inside the impurity region and label R all other atoms. For
the latter, the ∆t-matrix is assumed to be zero. Matrices with a label of I as the
first (second) index will have a finite number of rows (columns) whereas the label R
contains an infinite number of atomic sites. The solution of this equation is formally
given by:

(
GII

imp
GIR

imp

GRI

imp
GRR

imp

)
=

(
1−GII

host
∆tII 0

−GRI

host
∆tII 1

)−1(
GII

host
GIR

host

GRI

host
GRR

host

)
(6.4)

=

(
(1−GII

host
∆tII)−1 0

GRI

host
∆tII(1−GII

host
∆tII)−1 1

)(
GII

host
GIR

host

GRI

host
GRR

host

)
(6.5)

Here, use has been made of the special structure of equation 6.4. Changing the
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notation G
imp

:= GII and G
host

:= GII

host
the Green function describing the impurity

region can be extracted from the (1, 1) block in equation 6.5:

G
imp

= (1−G
host

∆t)−1 G
host

The resulting equation purely depends on impurity sites. In index notation, the
impurity Dyson equation reads

Gnn′

imp,LL′(ε) = Gnn′

host,LL′(ε) +
∑

n′′,L′′,L′′′

Gnn′′

host,LL′′(ε) ∆tn
′′

L′′L′′′(ε)Gn′′n′

imp,L′′′L′(ε),

where all site indices n, n′, n′′ are confined in the impurity region I. All matrices
are finite in size and the Green function for the impurity region can be determined
numerically by a matrix inversion.

The following picture shows a sketch of the KKR impurity self-consistency cycle

�
�

�
�Ghost,LL′(~k)

���� ��Ghostnn′,LL′

��

�� ��Vhost

uu�� ��V n → ∆tLL′

���
�

�


G =
G

host
+G

host
∆tG

���
�

�
�Gon-site → ρ

��

�
�

�


V n+1 =
mix(V 1, .., V n)

aa

�� ��ρ→ V out

55
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Algorithm
1. Determine host Green and t-matrix function for all atoms in the impurity region
2. Assume initial input potentials Vin = Vinit

3. Calculate t-matrix for all input potentials
4. Calculate ∆t-matrix
5. Solve impurity Dyson equation
6. Calculate density and output potential Vout

7. Mix output and input potential Vmix

8. Use mixed potential as new input potential and continue with (3) if not converged

6.2. Structural relaxations

By the introduction of impurities into a lattice, the atomic positions of the surrounding
atoms get distorted and relaxations of the atomic sites become important. In this
section, methods are presented to treat impurity sites, which are shifted from their
actual host sites. In KKR theory a nuclear position needs always to coincide with an
expansion center, leading to a fast convergence of the potential in spherical harmonics.
Thus, methods need to be found to shift the expansion centers in order to be able to
describe relaxations. The Green function of the lattice structure of an ideal host is
expanded in scattering solutions as:

Ghost(~r+ ~Rn, ~r ′+ ~Rn′
; ε) = δnn′Ghost

s (~r, ~r ′; ε)+
∑
LL′

Rn
L(~r; ε)Ghost,nn′

LL′ (ε) R̄n′

L′(~r ′; ε) (6.6)

The expansion coefficients are given by the structural Green function Gnn′

LL′ , which

refers to an interaction between an atom positioned at ~Rn with an atom positioned at
~Rn′

.

The Green function of an impurity cluster, in which atoms are replaced at ideal lattice
positions can as well be expanded in scattering solutions resulting in

G(~r + ~Rn, ~r ′ + ~Rn′
) = δnn′Gs(~r, ~r

′ ) +
∑
LL′

Rn
L(~r )Gnn′

LL′ R̄n′

L′(~r ′ ) (6.7)

dropping dependence on E here and in the following equations for simplicity. According
to the last section the Green function of the impurity region can be calculated by a
structural Dyson equation, connecting the structural Green function of the host and
the impurity, because the centers of expansion in both Green functions are equal.

If, however, the atomic positions of the impurity atoms are to be shifted from the
actual lattice site ~Rn to a new site at ~U n = ~Rn + ~sn (see figure 6.2), the Green
function has to be expanded around the new impurity positions
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Figure 6.2.: Expansion vectors around two different centers of a cell. The left cell
is expanded around the regular center ~Rn, whereas the right center is
shifted by a vector ~sn to a new expansion center ~Un = ~Rn + ~sn

G̃(~r + ~Un, ~r ′ + ~Un′
) = δnn′G̃s(~r, ~r

′ ) +
∑
LL′

Rn
L(~r ) G̃nn′

LL′ R̄n′

L′(~r ′ ) (6.8)

resulting in a different structural Green function. In order to use a structural Dyson
equation, the structural Green function of the host and of the impurity region needs
to be expanded around the same centers. Two different approaches are discussed in
the following to resolve this issue.

The first method is based on a transformation of the structural Green function from
the host to the new impurity center, resulting in an approximated structural Green
function, which is assumed to be sufficiently accurate for small displacements. The
second method introduces so called virtual atoms, which describe scattering-free lattice
sites. These do not influence the actual system, but provide an expansion around sites
that are later used for an impurity calculation.

6.2.1. U-transformation

For small deviations of the impurity from the lattice site, the structural Green
function can be expanded around new centers by making use of a transformation
matrix ULL′(~sn). This method was first discussed by Lodder [55]. Later Stefanou et al.
[56] applied the method to study the influence of lattice relaxations on local magnetic
moments in different compounds. The most important results of this work are briefly
summarized. The host Green function with shifted lattice positions ~U n = ~Rn + ~sn is
given by:

G̃r(~r + ~Un, ~r ′ + ~Un′
) = δnn′G̃r

s(~r, ~r
′) +

∑
LL′

Rr n
L (~r) G̃r nn′

LL′ R̄r n′

L′ (~r ′) (6.9)
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The structural Green function for the shifted positions can be calculated by the struc-
tural Green function of equation 6.6 by applying a transformation matrix ULL′′(~s n).

G̃nn′

LL′′ =
∑
L′′L′′′

ULL′′(~s n)Gnn′

L′′L′′′ U−1
L′′′L′(~s

n′
) (6.10)

The transformation coefficients ULL′(~s; ε) for a displacement vector ~s are given by:

ULL′(~s; ε) = 4π
∑
L′′

il
′+l′′−l CLL′L′′jl′′(s)YL′′(~s ) (6.11)

The inverse of U , as a matrix in L and L′, is given by the transposed matrix:

U−1
LL′(~s) = U−1

LL′(−~sn) = UL′L(ŝn) (6.12)

A Dyson equation for the structural Green function of an impurity cluster can be set
up, containing only objects which refer to the shifted coordinate system:

G̃ = G̃
host

+ G̃
host

(̃t− t̃host
)G̃

In analogy to equation 6.10, the t-matrices need to be converted to the shifted positions
as well:

t̃nLL′′ =
∑
L′′L′′′

ULL′′(~sn) tnL′′L′′′ U−1
L′′′L′(~s

n′
) (6.13)

From equation 6.11, expanded up to the first order, it follows that due to selection
rules of CLL′L′′ off-diagonal elements are non-zero if |l− l′ | = 1. Thus, Green function
elements of angular momentum l are connected to Green function elements of l ± 1
while transforming to the new lattice expansion. To achieve the same accuracy, the
maximum value of l should be increased by 1.

6.2.2. Concept of virtual atoms

Approximating the structural Green function around the new center by the U -trans-
formation will fail if the displacement vector ~sn becomes too large. In addition, the
U -transformation cannot be used, if the number of impurity atoms does not coincide
with the number of host sites. A different technique to treat impurity atoms positioned
at non-crystal sites, which is based on the concept of virtual atoms by H. Höhler [57],
is introduced in the following.
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The idea of this method is to add additional crystal sites in the host system at the
position, where the impurity atom will be centered later. The potential at these sites
is chosen to be zero, so that the t-matrices vanish. These cells are called virtual cells
or virtual atoms.

A Green function can be set up, which is to include all crystal sites, the real and the
virtual sites. The Green function, as well as the structural Dyson equation in ~k-space
can be written as a matrix equation using two sub-blocks, which contain purely virtual
(index v) and purely real atoms (index r) as well as cross-terms on the off-diagonal
blocks:

(
Grr Grv

Gvr Gvv

)
=

(
grr grv

gvr gvv

)
+

(
grr grv

gvr gvv

)(
∆t 0
0 0

)(
Grr Grv

Gvr Gvv

)
(6.14)

=

(
(1− grr ∆t)−1 0

gvr∆t(1− grr ∆t)−1 1

)(
grr grv

gvr gvv

)
(6.15)

Here, a small g corresponds to the potential-free Green function and the indices ~k and

E are dropped. All matrices (e.g. Grr ) have a combined index (µ, L), corresponding to
a basis atom µ, and the L-expansion index. An analogy to section 6.1.2 the solution of
the Dyson equation can be simplified, since just the (r, r) sub-block of t, corresponding
to the sites with real atoms, is non-zero. The time-consuming part of the matrix
inversion just needs to be done for the block Grr, resulting in computational time
comparable to a calculation without virtual atoms. It is clear from equation 6.15 that
the virtual site do not influence the electronic structure at all, which is to be expected.
Thus, it is sufficient to introduce the virtual sites after the last self-consistency step.

The following steps are used to perform an impurity calculation using virtual sites:

• Calculate the structural Green function Gnn′

LL′ for all real and virtual sites of
interest (Fig. 6.3a)

• Solve a Dyson equation using the negative of all host t-matrices.

G
void

= G
host

+G
host

(−t
host

)G
void

The resulting Green function is called the void Green function and describes a
potential-less cavity in an otherwise perfect host (Fig. 6.3b).

• Select the part if interest of the Green function cutting out all terms, which are
not supposed to be used for placing a nuclei in the impurity system.

• Use the resulting void Green function to do the usual self-constency steps.

G
void

= G
host

+G
host

t
imp

G
void
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a) b) c)

Figure 6.3.: Visualization of the virtual sites technique. Black spheres correspond to
atoms which are occupied by a host potential, white spheres correspond
to atomic sites with a vanishing potential and red spheres to atomic
positions in an impurity calculation. (a) Lattice and virtual lattice sites
are calculated by a host KKR Green function code. (b) The impurity
region is calculated for a potential cavity by a void Dyson equation. (c)
Positions in the void Green function are used for an impurity Green
function, where atoms can be placed at non-crystal positions.

It needs to be kept in mind that the resulting Dyson equation uses the t-matrix
and not a t-matrix difference (Fig. 6.3c), since the void Green function is used
as a reference.

Numerical tricks

By introducing virtual atomic sites, one is able to calculate the expansion of the Green
function around an arbitrary point in space. Analytically, the Green function between
two real sites is exactly the same, no matter if a virtual site is introduced. However,
numerical difficulties can emerge if two sites come too close. This might occur e.g. if
a virtual site is positioned close to a nucleus. The value of the resulting potential-free
Green function can experience extremely high values, as can be seen by the formula:

gnn
′

LL′ = 4πiκ (δnn′ − 1)
∑
L′′

il−l
′+l′′CLL′L′′hL′′(~Rn − ~Rn′

;E) (6.16)

For small values of |~Rn− ~Rn′ | the Hankel function diverges with a power law according

to hl(r → 0) ∼ 1/rl+1. For typical values E = 1 Ryd, |~Rn − ~Rn′| = 0.01 a.u. and an
angular momentum value of l = 3 the Green function already increases by about a
factor of 108. This, then, leads to instabilities when solving the Dyson equation.

Höhler [57] realized that these numerical instabilities can be overcome by omitting parts
of the potential-free structural Green function which diverge, but do not contribute to
the resulting Green function of interest in the impurity calculation. In fact, the parts
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of the potential-free Green function, which connect a virtual atom to an atomic site or
to another virtual atom, can be neglected, provided that in the impurity calculation,
the connecting vector between the particular sites does not occur. This is practically
the case for small displacements.

This is, in more detail, explained in the following. The Green function can be divided
into three parts

G =

G11
G

12
G

13

G
21

G
22

G
23

G
31

G
32

G
33

 , (6.17)

where the three sub-systems are given by:

• System 1: All sites which are present in all calculations

• System 2: Atomic sites which are used in the host calculation, but are later
removed in the impurity calculation

• System 3: Sites which are treated as virtual atoms and, then, used as impurity
atomic sites in the impurity calculation.

Parts which connect e.g. system 1 and 2 are indicated as G12. On the one hand, the
host Green function can be set up by solving the following Dyson equation

◦
G =

g11
g

12
g

13

g
21

g
22

g
23

g
31

g
32

g
33

+

g11
g

12
g

13

g
21

g
22

g
23

g
31

g
32

g
33



◦
t 1 0 0

0
◦
t 2 0

0 0 0

 ◦
G (6.18)

Then, the impurity Green function is calculated by:

G
imp

=
◦
G+

◦
G

timp
1
−
◦
t 1 0 0

0 −
◦
t 2 0

0 0 timp
3

G
imp

(6.19)

On the other hand, one can calculate the scattering path operator

τ = t
[
1− g t

]−1

,

which can be subdivided into the three regions by:

104



6.2 Structural relaxations Improvements to KKR

τ =

t1 0 0

0 0 0
0 0 t

3


1−

g11
g

12
g

13

g
21

g
22

g
23

g
31

g
32

g
33


t1 0 0

0 0 0
0 0 t

3



−1

=

τ 11
0 τ

13

0 0 0
τ

31
0 τ

33

 (6.20)

There, the components of the scattering path operators τ2i and τi2 for i ∈ {1, 2, 3}
vanish. The Green function can be, according to equation 3.11 expressed in terms of
the scattering path operator by:

G
ij

= g
ij

+
∑
hh′

g
ih
τ
hh′
g
h′j
,

where i,j,h and h′ label the different regions. This can, again, be in matrix form
visualized by:

G
imp

=

g11
g

12
g

13

g
21

g
22

g
23

g
31

g
32

g
33

+

g11
g

12
g

13

g
21

g
22

g
23

g
31

g
32

g
33


τ 11

0 τ
13

0 0 0
τ

31
0 τ

33


g11

g
12

g
13

g
21

g
22

g
23

g
31

g
32

g
33


(6.21)

Here, the sub-block containing the index 1 and 3 is of interest, since it describes the
sites, which are contained in the impurity calculation. By analyzing the formula, it
gets obvious that the Green function elements containing i ∈ {1, 3} do not contain
contributions from g

23
, since τ

2j
and τ

j2
vanish for j = {1, 2, 3}. Because both

equation 6.19 and 6.21 describe the same Green function also the first version of the
Green function is independent on g

i2
. Thus, the exact value of g

i2
can be modified

without any physical value which is of interest. In the present work g
i2

= 0 is assumed,

which reduces numerical instabilities and complexity.

Numerical trick:
The free-space Green function between a real and a virtual site can be set to zero
without influencing the Green function, which is physically of interest, if one of the
sites has a vanishing Green function.

Intercell potential for relaxed sites

The Coulomb potential for a cell n is separated in a local intracell and an intercell
contribution.
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V n
Coulb(~r) = V n

intra(~r ) + V n
inter(~r ) (6.22)

=

∫
~r′ ∈cell(n)

d~r′
2ρ(~r ′ )

|~r − ~r ′ |
+
∑
n′ 6=n

∫
~r′ ∈cell(n′)

d~r′
2ρ(~r ′ )

|~r − ~r ′ |
(6.23)

The intercell potential V n
Inter(r) defined in a cell n refers to the Coulomb potential,

which is created by charges of all nuclei and densities outside the cell n:

V n
Inter(~r) =

∑
n′ 6=n

∫
~r∈cell(n′)

d~r
2

|~r − ~r ′ |

This is calculated by making use of the charge density ρn(~r ) =
∑

L ρ
n
L(r)YL(r̂), which

is locally expanded in spherical harmonics around each individual cell center. Also
the intercell potential is expanded in spherical harmonics around the center of cell n,
resulting in the following formula to calculate the intercell potential:

V n,L
Inter(r) = 2(−r)l

∑
n′ 6=n

(
−Bnn′

L Zn′
+
∑
L′

Ann
′

LL′

∑
L′′L′′′

CL′L′′L′′′

∫
dr′r′l

′+2Θn′

L′′(r′)ρn
′

L′′′(r′)

)
= (−r)l · vnL (6.24)

where the structure coefficients are defined as:

Ann
′

L =
(4π)2

(2l + 1)!!(2l′ + 1)!!

∑
L′′

δl+l′,l′′CLL′L′′
(2l′′ − 1)!!

|~Rn − ~Rn′|l′′+1
YL′′(~Rn − ~Rn′

) (6.25)

Bnn′

L =
4π

2l + 1

1

|~Rn − ~Rn′ |l+1
YL(~Rn − ~Rn′

) (6.26)

Here, the double exclamation mark is defined by n!! = n · (n− 2) · (n− 4) · .... The
intercell potential of the host system is provided by the host KKR calculation via vnL,
which are independent of r. These can conveniently be used in the KKR impurity code
to calculate the intercell potential, since, there, the density of just a finite number of
cells changes. The intercell contributions of these sites are, then, substituted by the
appropriate impurity density contributions. However, if relaxed impurity positions
are used, then, the expansion centers do not match the atomic impurity centers.
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Small displacement method for the intercell potential

Suppose coefficients vnL′ in equation 6.24 belonging to a cell n is expanded around

the origin at ~Rn. If the center is to be shifted by a vector ~sn, the intercell potential
is to be expanded around a different center ~Rn + ~sn. The following relationship for
spherical harmonics can be used

|~r+~s |lYL(~r+~s ) = 4π
∑
L′L′′

δl+l′′,l′
(2l′ + 1)!!

(2l + 1)!!(2l′′ + 1)!!
CLL′L′′ r l sl

′′
YL′(~r )YL′′(~s ) (6.27)

for a transformation to the new centers of expansion. Assuming that the displacement
vector is small, the sum over infinite many expansion coefficients can be approximated
by a finite sum. By doing so, the following relation is found:

V n,L
Inter(|~̃r + ~sn|) = (−|~̃r + ~sn|)l · ṽnL (6.28)

to express the expansion around the new centers. The expansion coefficients for the
intercell potential ṽnL and vnL (Eq. 6.24) fulfill the following relationship:

ṽnL =
∑
L′L′′

(−1)l
′−lδl+l′′,l′

(2l′ + 1)!!

(2l + 1)!!(2l′′ + 1)!!
CLL′L′′ vnL′ sl

′′
YL′′(~sn) (6.29)

where the new expansion coefficients approximate the intercell potential for the shifted
positions. If the vector ~sn is small, then, the intercell potential coefficients ṽnL provide
an accurate description.

Displacement method for virtual sites

The intercell potential is implicitly calculated for each real and virtual site, which
already provide the intercell potential for possible impurity centers. However, the
intercell potential will increase drastically, if the expansion center of a virtual site
is close to a real site. This results from the nuclei Coulomb potential, which is
positioned close to a center of expansion . However, since there, the distance is small,
the expansion method, which was previously discussed can be used. In practice, a
threshhold vector scut is defined. If the displacement vector is smaller than scut, the
intercell potential is calculated by the displacement method, otherwise, the intercell
potential by the virtual method site is used.
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6.3. Non-collinear magnetism

In the previous discussion, it was implicitly assumed that all magnetic moments have
a collinear formation, resulting in a decoupling of the spin-up and spin-down channels.
Considering a magnetization that is not necessarily collinear leads to a coupling of
these channels and the Hamiltonian has off-diagonal components in spin space. The
spin-dependent Hamiltonian, for the Schrödinger and the scalar-relativistic equations,
can be written in the following form:

[(
H0
↑↑ 0

0 H0
↓↓

)
+

(
V↑↑ V↑↓
V↓↑ V↓↓

)](
ψ↑
ψ↓

)
= E

(
ψ↑
ψ↓

)
(6.30)

Here, H0
↑↑ and H0

↓↓ describe the potential-free Hamiltonian. In a short form, it is

denoted as (H0 + V )ψ = E ψ, where double underlined variables represent a 2 × 2
matrix in spin space and single underlined a spinor. The spin-dependend potential in
equation 6.30 can be decomposed into a scalar potential field V (~r ) and a term acting

like a magnetic field ~B(~r ),

V (~r ) = 1 · V (~r ) + ~σ · ~B(~r ) (6.31)

V (~r ) = 1/2 Trs V (~r ) and ~σ = (σ
x
, σ

y
, σ

z
) is given in terms of the Pauli matrices. In

practice, the following definition is used

σ
x

=

(
0 1
1 0

)
, σ

y
=

(
0 i
−i 0

)
, σ

z
=

(
−1 0
0 1

)
,

which deviates from the common definition [58] by a permutation of the row and
columns in spin-space. This is consistent with the convention used in the regular
collinear implementations of the KKR method. If the magnetization is chosen along
the z-directions it is directly obvious that the 2 × 2 potential becomes diagonal in
spin space and the differential equation decouples.

Since the Hamiltonian is a 2× 2 object in spin space, also the Green function has a
2× 2 structure:(

H↑↑ H↑↓
H↓↑ H↓↓

)(
G↑↑(~r − ~r ′;E) G↑↓(~r − ~r ′;E)
G↓↑(~r − ~r ′;E) G↓↓(~r − ~r ′;E)

)
= 1(~r − ~r ′ )

The expectation value of an operator A can be, according to 3.3, calculated via the
trace over the operator times the Green function 〈A〉 = −(1/π) Im Tr

∫ EF dE[AG].
Thus, the electronic density is given by
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ρ(~r) = − 1

π
Im Trs

∫ EF

dE G(~r, ~r;E) (6.32)

The magnetization density ~m(~r ) is calculated by the expectation value of the Pauli
matrices:

mα(~r ) = − 1

π
Im Trs

∫ EF

dE σ αG(~r, ~r;E) (6.33)

For the description of the magnetization, different reference frames are used in
practice. The global frame of reference is chosen such that the spinor ψ

glob
describes

the magnetization according to the ~z-axis. However, the components ψ
loc

of the spinor
can also be expressed in terms of a unit vector ~es, which is referred to as the local
spin-frame of reference. The direction of ~es can uniquely be defined by the two angles
θ and φ in spherical coordinates.

~m = |~m|

sin θ cosϕ
sin θ sinϕ

cos θ

 (6.34)

The two reference systems can be transformed into each other by a unitary transfor-
mation matrix U(θ, φ)

ψ
glob

(~r) = U(θ, φ)ψ
loc

(~r)

which is given by:

U(θ, φ) =

(
cos( θ

2
)e−

i
2
φ − sin( θ

2
)e−

i
2
φ

sin( θ
2
)e

i
2
φ cos( θ

2
)e

i
2
φ

)
(6.35)

The corresponding transformation of operators is:

Aglob = UAlocU
†

It has to be kept in mind that the matrix U just influences the spin-space, keeping
the real-space unaffected.

Non-collinear magnetism in KKR

In the KKR theory, the structural Green function describes the interaction between
different cells. For non-collinear spin alignments and in accordance to the Green
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Figure 6.4.: Non-collinear magnetism: The magnetic moment in each cell is assumed
to be collinear. Between the cells, a non-collinear alignment is allowed.

function, this is a 2 × 2 object in spin space and can be calculated via the Dyson
equation. There, the single-site scattering properties enter as well via the 2×2 t-matrix
in spin-space.

Gnn′

LL′ = gnn
′

LL′
+

∑
n′′L′′L′′′

gnn
′′

LL′′
tn

′′

L′′L′′′G
n′′n′

L′′′L′ , Gnn′

LL′ =

(
Gnn′↑↑
LL′ Gnn′↑↓

LL′

Gnn′↓↑
LL′ Gnn′↓↓

LL′

)
(6.36)

In this formulation, the global spin-frame of reference has been applied. The magne-
tization direction between different atoms, in complex magnetic structures, can be
highly non-collinear. However, it is a good approximation to treat the magnetic field
~B(~r ) as collinear inside each cell, since in many cases the local atomic magnetization
is nearly collinear.

Within this approximation, a spin-frame of reference for each cell can be found, in
which the magnetic field is pointing along the local z-direction. By applying the
rotation matrices (equation 6.35) the local single-site equation 6.30 can be written as:

[(
∂2

∂r2
+ l(l+1)

r2
− E 0

0 ∂2

∂r2
+ l(l+1)

r2
− E

)
+

(
V↑(~r ) 0

0 V↓(~r )

)
loc

](
R↑↑L (~r ) 0

0 R↓↓L (~r )

)
loc

= 0

(6.37)

In this local spin-frame of reference, the potential matrix is diagonal in spin-space,
resulting in a decoupling of the two spin-channels. The resulting single-site problem
can, thus, be calculated using the same methods which were used for a collinear
alignment. The resulting t-matrix in the local spin-frame of reference is given by a
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diagonal matrix in spin-space

t
loc

=

(
t↑ 0
0 t↓

)
(6.38)

and can afterwards be transferred to the global spin-frame of reference.

t
glob

= U(θ, φ) t
loc
U †(θ, φ)

This is used to solve the Dyson equation 6.36 in the global spin-frame of reference.
Here, the explicit angles of the spin-frame of reference have never been used. It has
been assumed that a local spin-up and spin-down potential is given according to V↑, V↓.
After calculating the t-matrix in the local spin-frame of reference, a specific spin-frame
defined by angles θ and φ is needed allowing a transformation to the global spin-frame
of reference.

SOC in non-collinear magnetism

As shown in section 4.4 spin-orbit coupling can be introduced, which can be treated
as an additional term to the Hamiltonian. This term can be added resulting in an
effective potential, which couples the spin- to the real-space:

V tot

glob
= V

glob
+ V SOC

glob

A transformation of the single-site equation into the local spin-frame of reference
leads to a potential term, which is not spin-diagonal, due to the spin-orbit coupling
contribution.

V tot

loc
= V

loc
+ U †(θ, φ)V SOC

glob
U(θ, φ)

The first part is diagonal in spin-space, whereas the second term is not. Again, a
rotation in spin-space is applied to the SOC potential, which is not affecting the real
space. The resulting single-site equations are:

[(
∂2

∂r2
+ l(l+1)

r2
− E 0

0 ∂2

∂r2
+ l(l+1)

r2
− E

)
+

(
V tot
↑↑ (r) V tot

↑↓ (r)
V tot
↓↑ (r) V tot

↓↓ (r)

)
loc

](
R↑↑LL′ R↑↓LL′

R↓↑LL′ R↓↓LL′

)
loc

= 0

The single-site wave functions will carry off-diagonal contribution in the spin-frame of
reference. Since the angle of the rotated spin-frame enters explicitly in the single-site
equation, the resulting t-matrix is no longer rotationally invariant with respect to a
rotation of the magnetic field. This is expected, since the real-space and the spin-space
are coupled via the SOC potential.
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6.3.1. Density

By the knowledge of the Green function, the charge and magnetization density can
be calculated using equation 6.32 and 6.33. This can be most conveniently done by
defining the complex density as:

ρc(~r ) = − 1

π

∫ EF

dE G(~r, ~r;E)

The resulting 2×2 object in spin space is energy independent retaining all information
for calculating the charge density and magnetization density

ρ = Im Trs

∫
d~r ρc(~r ), (6.39)

~m = Im Trs

∫
d~r ~σ ρc(~r ) (6.40)

and can as well be transformed to different spin frames using the rotation matrices U .

This leads to a non-collinear alignment of the magnetization density ~m(~r) within each
cell. However, this effect is considered to be small and the magnetization direction is
approximated to be collinear in the construction of the self-consistent potential. This
is done in the following way: First the average magnetization density

~mi =

∫
~r∈ cell(i)

d~r ~m(~r)

is calculated for each cell. The direction of the average magnetization vector defines
the new spin-frame of reference for each cell. Then, the on-site Green function is
rotated to the new local spin-frame of reference by the rotation matrices U . All
off-diagonal elements in spin-space of the resulting Green function are neglected while
calculating the magnetization density. By doing so, local purely spin-up and spin-down
densities are defined, to which the standard KKR procedure to construct the resulting
potential in collinear magnetism can be applied.

Convergence of the magnetic moments in self-consistency steps

In collinear calculations, starting from an initial guess for the potential, the self-
consistency steps are used to find the ground state potential. This is done by a
mixing of output and input potentials to find the new input potential for the next
iteration. This is retained in non-collinear magnetism by mixing the local spin-up
and spin-down densities of the appropriate spin-frames by simple mixing, Broyden
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or Anderson schemes in the appropriate local-spin frame of references. While doing
so, only the magnitudes of the spin-up and spin-down densities are mixed and a new
mixing scheme to converge the direction of the spin-frame needs to be found. The
most natural way to take the output angle as an initial angle for the next iteration.
This method has been applied successfully. However, the speed of convergence is quite
slow, especially if a magnetic state is reached, where the total energy with respect to
rotations of the magnetic moment is energetically flat. Hence, there is a need to find
more sophisticated convergence schemes.

Method of scattering induced magnetization directions

After each iteration, a new non-collinear 2x2 density matrix, is calculated which is
used to determine the magnitude and direction of the magnetic moment averaged
in each cell. The complex charge density is (in case of the Schrödinger equation)
calculated by

ρc(~r ) = − 1

π

∫ EF

dE

κRL
(~r;E)S̄

L
(~r;E)︸ ︷︷ ︸

on-site

+
∑
LL′

R
L
(~r;E)G

LL′(E)R̄
L′(~r;E)︸ ︷︷ ︸

multiple scattering


(6.41)

where for simplicity the cell index is omitted. Equation 6.41 is used to determine the
charge and the magnetization density by applying equation 6.39 and 6.40. Equation
6.41 can naturally be decomposed into two contributions: The on-site term and the
multiple scattering contribution. The magnetization density can then be written as:

~m(~r ) = ~mon-site(~r ) + ~mmsc(~r )

The on-site term is a local property and can be calculated by the knowledge of the
single-site potentials in the local spin-up and spin-down directions. The density
resulting from the on-site term will, by construction, always be pointing towards the
local spin-frame of reference, which has been chosen to be along the effective magnetic
field ~B and will, thus, not lead to a rotation of the magnetic moment. It is, for
magnetic atoms having an intrinsic magnetization, the dominating contribution to the
magnetic moment (figure 6.5) and often reaches 90% of the total contribution to ~m.

The multiple scattering contribution sums all the contributions to the magnetic moment
which result from the interaction to all the other sites and is, thus, responsible for
the rotation of the magnetic moment. For a site with almost no intrinsic magnetic
moment, where the magnetization is induced by neighboring atomic moments, it will
be the dominating part and a fast rotation of the magnetization to the ground state
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Figure 6.5.: An Fe dimer in embedded in a Cu host. The radial magnetization density
of one Fe atom, decomposed in scattering and on-site magnetization
contributions is shown.

is expected. However, for sites with strong magnetic moments, the on-site term will
dominate, leading to a slow rotation of the spin-frame.

The convergence of the directions of the magnetic moments during iterations can be
improved by not calculating the new spin frame of reference by the full magnetization
vector ~m, but instead, taking into account just the multiple scattering contribution of
the magnetic moment:

~mmsc −→ θnew, φnew

By doing so, all contributions of the magnetic moment in a cell i,which are parallel
to the magnetic field ~Bi are neglected in the output. This leads to a major speed-up
of the convergence. In figure 6.6, an Fe cluster has been deposited on an Ir(111)
surface. The convergence of the θ angle of the magnetic moment of a particular atom
is shown. After iteration 160, the new convergence scheme, taking into account just
the multiple-scattering contribution in the output direction has been applied. A major
speed-up of the convergence can be observed.

Sophisticated determination of energy minima

Close to an energy minimum, a slowing down of the convergence can be observed
which is not related to mon-site. If the magnetization direction reaches a local minima
the energy landscape in spin-space becomes flat. The rotation vector in each iteration
is proportional to the gradient of the potential in spin space and, thus, will drastically
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decrease while approaching the energy minimum. This slowing down cannot be avoided
by the method which was presented above.

Figure 6.6.: The θ convergence of one specific atomic moment in an 7 Fe island on
Ir(111). Up to iteration 160, the full magnetic moment has been used to
determine the new spin-frame of reference. From iteration 160 on, just
the scattering part of the magnetic moment is used.

The dependence of the total energy with respect to local spin frames can be written
as a function E(ê1, ..ên) which depends on the direction of the individual magnetic
moments only. However, this function is not known. One can, on the one hand,
approximate the function by a model Hamiltonian. Since the complexity is drastically
reduced, these functions can be minimized easily. The accuracy of the result depends
on the complexity of the model and it is not guaranteed that the correct energy
minimum is found, but gives physical insights to the different magnetic coupling
mechanisms.

On the other hand, by methods explained in section 6.3.3 the first and second variation
of the function with respect to the moment direction can be calculated and used for
an iterative minimization. One useful minimization technique is the Newton-Raphson
method which makes use of the gradient and the Hessian matrix. Then, the following
series should converge to an extremal point (which is not necessarily a minimum):

x(i+1) = H−1(x(i))∇E(x(i))

Here, all moment directions of allN sites are combined into one vector x = (ex1 , e
y
1, e

z
1, ..e

z
N ).

H(x(i)) is to be the Hessian with the elements Hij = ∂2E
∂ni∂nj

evaluated at the vector

x(i). It has been reported [59] that such a method is efficient.

Another method is to approximate the Hessian, leading to Broyden’s method which
was implemented for the mixing of the spin frame. This has been tested for simple
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magnetic islands of a few atoms successfully. It was, however, not converging to the
correct global minimum for larger systems with a complex magnetic structure.

6.3.2. Magnetic model Hamiltonian

To get an intuitive understanding of the physics of magnetic systems, one can decouple
the magnetic properties from the electronic properties by mapping the magnetic
degrees of freedom onto an effective spin Hamiltonian. There, the atomic magnetic
moments occur as expectation values of the spin operator, i.e. as classical quantities.
More precisely, the spin-density is integrated to an effective classical spin ~Si for each
atom, resulting in a spin Hamiltonian H(~S1, ..~Sn), where the {~Si} are considered as
degrees of freedom.

To determine the effective atomistic spin Hamiltonian for a particular system, the
Hamiltonian can be mapped to a total energy calculation by a constrained DFT
calculation [60], where the direction of the magnetic moment is fixed for each atom.
The calculation of such a Hamiltonian is computationally extensive. Another way is to
formally expand H(~S1, ..~Sn) resulting in different order terms, which describe one-spin,
two-spin and higher order couplings. By doing so one can set-up a model Hamiltonian,
containing a finite number of parameters. The physically most important terms are
described and discussed in the following.

The most prominent model Hamiltonian is the Heisenberg Hamiltonian, which can
describe the formation of ferromagnetic and antiferromagnetic spins, depending on
the sign of the parameter, which are entering the model. However, this simple model
cannot describe complex magnetic structures. Especially systems with a strong spin-
orbit coupling and a lack of inversion symmetry need a more sophisticated treatment.
Depending on the system, a model Hamiltonian can get rather complex. All important
terms for an accurate description of the system, which are studied in this work are
discussed in the following. The resulting model Hamiltonian is given in terms of
a unit vector ê describing the direction of each magnetic moment. Effects of their
magnitude are implicitly contained in the coupling constants. The Heisenberg model
Hex(~Si, ~Sj) = Ĵij ~Si · ~Sj , for example, will be referred to as Hex(êi, êj) = Jij êi · êj
where the exchange parameters fulfill the relation Jij = Ĵij|~Si||~Sj|. This results in
units of energy for all coupling constants, which are presented in this section.

One-spin couplings: anisotropy

The single ion anisotropy term has the form

Hani(ê) = ê A ê (6.42)

with a 3 × 3 coupling tensor. Its origin arises from the coupling of the spin to its
orbital moment and is, thus, strong for atoms, which have a large spin-orbit coupling.
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In most magnetic systems, anisotropy has a uniaxial type which can be described by

Hani(ê) = A e2
z (6.43)

For a negative constant A, the spin will align parallel or anti-parallel to the z-axis,
while for a positive constant, the minimum energy lies in the xy-plane.

Two-spin couplings: generalized Heisenberg model

Spin couplings, where two spin degrees of freedom are considered, are described within
the generalized Heisenberg Hamiltonian, which couples the directions of two spins êi
and êj via a 3× 3 exchange coupling tensor.

H(êi, êj) = êi J êj = êi

Jxxij Jxyij Jxzij
Jyxij Jyyij Jyzij
Jzxij Jzyij Jzzij

 êj (6.44)

The coupling matrix J can be decomposed into three parts:

J = J tr + Jantisymm + J symm

The first part, the exchange interaction, is defined by J tr = J ·1 describing the average

diagonal value J = 1
3
Tr(J) of J . The second part, the anisotropic exchange interaction

contains the anti-symmetric and the last term is given by the remaining symmetric
traceless contributions. The latter turns out to be small and is not considered in the
present work involving the model calculations. All other terms are explained in more
detail in the following:

Exchange interaction The Heisenberg [61] Hamiltonian can, in a classical approx-
imation, be written as a dot product between the unit vectors of the atomic spins
times a constant J

Hex(êi, êj) = êi J
tr êj = J êi · êj, J =

1

3
Tr J, (6.45)

where J is given by the mean value of the diagonal elements of the coupling tensor
J . Hex is invariant under a global rotation of all spins. Depending on the sign
of J , the two interacting spins will either align ferro- or anti-ferromagnetically. A
nearest neighbor model is often not sufficient for an accurate distribution and more
neighboring shells need to be included.
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Dzyaloshinskii-Moriya The anti-symmetric exchange contribution can be written
as

Jantisymm = J − JT =

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

 ,

defining the three components of a Cartesian vector ~D = (Dx
ij, D

y
ij, D

z
ij) by:

Dx
ij =

1

2
(Jyzij − J

zy
ij ), Dy

ij =
1

2
(Jzxij − Jxzij ), Dz

ij =
1

2
(Jxyij − J

yx
ij ) (6.46)

The antisymmetric part of equation 6.44 can, then, be reformulated into a vector
product by:

HDM(êi, êj) = ~Dij · (êi × êj)

This Hamiltonian is known as the Dzyaloshinskii-Moriya interaction. Reformulating
the vector product in spherical coordinates gives a term which is proportional to
sin(θ), where θ is the rotation angle around the vector ~D. The magnetic moments
minimizing the DM interaction align in a plane defined by a normal vector given by
~D, where the spins align under an angle of ±90 degrees, depending on the direction
of ~D. This is referred to as a clockwise or anti-clockwise orientation of the magnetic
moment. Contrary to the exchange interaction, the DM interaction is not rotationally
invariant under a global rotation.

This term is non-zero, if the space and the time-inversion symmetry is broken. Spin-
orbit coupling can be considered as the driving mechanism for the appearance of the
DM-interaction and can be estimated to be linear in the spin-orbit coupling strength.
Space inversion symmetry can either be broken by a chemical or structural missmatch.
Thus, strong DM effects are to be expected at surfaces.

Four-spin couplings

Driving the expansion further, one can derive fourth order interaction terms. In
perturbation theory of the Hubbard model [62], these can be described as contributions
to the Hamiltonian which arise from a hopping of electrons between 4 sites. If two
of these sites are the same, then, the resulting interaction term is known as the
bi-quadratic interaction:

Hbi = Bij(êi · êj)2
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This corresponds to hoppings according to i→ j → i→ j → i. A hopping between
four different sites is known as the four-spin interaction:

H4-spin(~ei, êj, êk, êl) = Kijkl [(êiêj)(êkêl) + (êiêl)(êkêj)− (êiêk)(êj êl)]

describing hoppings between the sites by i→ j → k → l→ i. Due to the multiplication
of four spins, the resulting energy landscape is rather flat around a collinear state,
resulting in a Θ4 behavior for small angular rotations around the collinear state.

6.3.3. Model parameters by infinitesimal rotations

In the following chapter, a method is presented on how to extract parameters for the
extended Heisenberg model from ab initio calculations. These coupling parameters
can be related to the change of the DFT total energy with respect to a rotation of the
magnetic moment. This can be described by a spin-dependent perturbative potential
in a linear response approach. The KKR Green function approach can ideally be used,
since one has a direct access to the Green function. In the following, it will be shown
how an on-site perturbation can be described by a variation δt in the t-matrix and it
will be explained how to calculate the change in the single particle energy. The original
idea goes back to Lichtenstein [63], who set up a Green function-based equation to
directly calculate the Heisenberg exchange coupling constant. Udvardi et al. [64]
and Ebert et al. [65] extended this work to calculate the additional contributions to
the extended Heisenberg model. Both describe how the change in the magnetization
affects the total energy, but different coordinate systems are used.

Difference in the single particle energy

It has been shown by Oswald et al. [66] that a change in the total energy induced
by a variation of the potential can be approximated in first order by a change in the
single particle energy:

∆Esp =

∫ EF

dE(E − EF ) ∆n(E)

The single particle energy can, employing Lloyd’s formula [67], be written as:

Esp = − 1

π
Im

∫ EF

dE Tr ln τ(E) (6.47)

Here, the double underline describes a matrix with the combined index (n, L, s),
defining the atomic site, spherical harmonic expansion and the spin index. The
scattering path operator
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τ(E) = [m(E)− g(E)]−1

is given in terms of the m-matrix, which is defined as the inverse m = t−1 of the
t-matrix and g(E) the usual Green function. Using the relation Tr lnM = ln detM

for an arbitrary matrix M , equation 6.47 can be rewritten as:

Esp = − 1

π
Im

∫ EF

dE ln det τ(E) (6.48)

=
1

π
Im

∫ EF

dE ln det τ−1(E) (6.49)

Assuming that the direction of a magnetic moment is characterized by the unit vector
êi, the variation of the inverse scattering path operator with respect to a change in
the components α ∈ {x, y, z} of êi can be expressed as:

∂

∂eαi
τ−1 =

∂

∂eαi
(m− g) =

∂

∂eαi
m =̂ mα

i

By applying ∂(ln detM) = Tr(M−1∂M) to equation 6.49, the variation of the single
particle energy with respect to the spin direction can be written as:

Eα
i =

∂

∂eαi
Esp =

1

π
Im

∫ EF

dE Tr τ mα

i
(6.50)

a second differentiation with respect to a site at j 6= i results in:

Eαβ
ij =

∂

∂eαi

∂

∂eβj
Esp = − 1

π
Im

∫ EF

dE Tr τ mα

i
τ mβ

j
(6.51)

This expression explicitly depends on all atomic sites. The formula can be simplified, as
described in the appendix A, by introducing the structural Green function G

ij
= {G}ij

as the component of G connecting the sites i and j. Further on, the double-underline
is to be understood as indicating a matrix in spin ( boldface script indicates matrix in
(l,m)). One obtains

∂

∂eαi

∂

∂eβj
Esp = − 1

π
Im

∫ EF

dE TrG
ij
tα
j
G
ji
tβ
i

(6.52)

Thus, the change in the energy between two sites can be expressed by the change in
the t-matrices tα

i
= ∂

∂eαi
t, and the Green functions G

ij
and G

ji
connecting those sites.
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a) b)

Figure 6.7.: Single particle energy shift, which occurs due to (a) an infinitesimal
rotation of two magnetic moments simultaneously and (b) the rotation of
a single magnetic moment

The change in the energy with respect to an infinitesimal change in the t-matrix is in
the following written as:

δE
(1)
i = − 1

π
Im

∫
dE Tr δt

i
G

ii
(6.53)

δE
(2)
ij = − 1

π
Im

∫
dE Tr δt

i
G

ij
δt
j
G
ji
, i 6= j (6.54)

It remains to be shown how δt
i

is to be calculated.

Single-site t-matrix difference

The difference between t-matrices resulting from a potential V and a potential V +δV
can be in first order calculated by

δt
i

=

∫
dr R̄(r) δV

i
R(r) (6.55)

where R(~r) represent the wave functions resulting from a potential V . Recalling
equation 6.31 expanded in spherical harmonics

V
i
(r) = 12×2 · V (r) + ~σ · ê(0)

i B i(r)
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the potential1 can be decomposed into a scalar potential V (r) and a part which acts
like a magnetic field B(r) = V ↑(r)− V ↓(r). The potential terms V ↑(r) and V ↓(r),

the local up and down potential in the frame of reference, point in the direction ê
(0)
i ,

and ~σ is a vector containing the Pauli matrices. Here, it has been assumed that the

magnetic field is collinear in one cell pointing into direction ê
(i)
0 . This vector is to be

rotated such that the resulting magnetic field is pointing along the unit vector ê(i).
The potential difference between both is, then, given by:

δV
i
(r) = ([êi − ê(0)

i ] · ~σ)Bi(r) (6.56)

= (δ~ei · ~σ)Bi(r) (6.57)

Here, δ~e is given by the difference between the unit vectors in both frames, defining
the magnetic field directions. The later must be small in order that equation 6.55 is
valid.

By insertion of equation 6.57, equation 6.55 can be written as:

δt i =

∫
drR̄(r) [~σ · δ~ei]Bi(r)R(r) (6.58)

= δ~ei ·
(∫

drR̄(r)~σB(r)R(r)

)
(6.59)

= δ~ei ·

δt xiδt yi
δt zi

 (6.60)

= (δt xi , δt
y
i , δt

z
i ) · δ~ei (6.61)

with:

δt αi =

∫
drR̄(r)σαBi(r)R(r), α = (x, y, z)

Inserting expression 6.60 for index i and 6.61 for index j into equation 6.54 leads to

δEij = (δexi , δe
y
i , δe

z
i )

Jxxij Jxyij Jxzij
Jyxij Jyyij Jyzij
Jzxij Jzyij Jzzij

δexjδeyj
δezj

 (6.62)

= δ~eTi J ij
· δ~e j (6.63)

where the 3× 3 matrix J
ij

is defined as:

{J
ij
}α,β = − 1

π
Im

∫
dE Tr δt αi Gij

δt βjGji

1note here that for a multiplication, first the vector multiplication ( ~O) is carried out, then, the
matrix multiplication (O) and then the matrix multiplication (O)
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6.3 Non-collinear magnetism Improvements to KKR

The resulting coupling matrix has units of energy, since the difference vectors are
unitless. Using equation 6.62 one can describe the energy change due to a small
variation of the initial magnetization directions ê

(0)
i and ê

(0)
j . This can be compared

to the appropriate energy difference in the generalized Heisenberg Hamiltonian 6.44
to evaluate the coupling terms. However one has to keep in mind that only rotations
are allowed, which keep the magnitude of ê constant. This is due to the assumption
that the magnitude of the spin is constant in the model spin Hamiltonian. Thus, for
ê

(0)
i = ê

(0)
j = ẑ, just the xy-subblock.

J{x,y}
ij

=

(
Jxxij Jxyij
Jyxij Jyyij

)
(6.64)

can be determined. Other parameters need to be calculated by different spin states.
Thus, from a spin-formation, where all magnetic moments point along the z-direction,
only the z-component of the Dzyaloshinskii-Moriya vector can be determined.

Jij =
1

2
(Jxxij + Jyyij ), Dz

ij =
1

2
(Jxyij − J

yx
ij ),

To determine the additional components, two additional calculations need to be done,
where all magnetic moments are pointing along the x- and the y-direction.

Test calculation of an Fe dimer on Ir(111)

Figure 6.8: Finite angle displace-
ment to determine the
y-component of the DM
interaction. Other com-
ponents are calculated
accordingly by different
spin-configurations.

A system of two Fe atoms deposited on the Ir(111) surface has been used to test this
rotation method. The DM vector components Dx, Dy, Dz have been calculated by
three different spin configurations, where all spins are pointing along the ~ex, ~ey and
~ez direction. This result has been compared to the one obtained by estimating the
DM vector components from a finite angle. This can only be applied, if two magnetic
moments are present, and is shortly explained: To calculate Dy the single particle
energies have been calculated for two different spin-configurations by applying the
force theorem to approximate the total energy. There, the spins have been chosen to
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Improvements to KKR 6.3 Non-collinear magnetism

point along the z-direction, tilting one angle by an angle θ = 1◦ deg and the other
spin by an angle θ = −1◦ deg around the y-axis. The difference in the single particle
energies can be used to estimate Dy according to:

∆Esp = 2Dy sin(2◦)

This method has been applied as well for the other components. The results are
displayed in the following table:

finite angle displacement method of infinitesimal rotations
[eV] x y z
Dx - 0.00 0.00
Dy 8.92 - 10.44
Dz 1.25 2.33 -

[eV] x y z
Dx 0.00 - -
Dy - 10.24 -
Dz - - 1.99

Columns label with x, y and z correspond to initial spin-configurations, where all
magnetic moments align along these directions. It has to be kept in mind that with
the method of infinitesimal rotations, the DM component parallel to the magnetic
moment can be determined, while the orthogonal components can be determined
with a finite displacements of the atomic moments. The resulting coupling constants
agree with an error of about 10%. This has two reasons: In the latter method, the
derivative with respect to an angle has been approximated by a rotation of the spins
using a finite angle, which introduces an error. In addition, this method, in the
single-particle energies of the total cluster including a surrounding shell of atoms
have been calculated. Thus, effects due to the induced magnetic moments of the
surrounding Ir atoms have been included in the single-particle energies. Overall this
comparison shows the validity of the implementation of the infinitesimal rotation
method.
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7 Atomistic spin-dynamics

Nowadays it is possible to calculate thousands of atoms using massively parallel
computer systems. However, computer power is still not sufficient to calculate the
time-evolution of the atomic moment fully quantum-mechanically, for a long period of
time. One, therefore, still relies on approximations, which capture the most important
physics and still make simulations feasible for the present computational facilities.
A standard technique to separate the electronic motion from the nuclei vibrations,
the Born-Oppenheimer approximation relies on the fact that time-scales of the two
subsystems differ drastically. A Hamiltonian for the nuclei can be set up, where the
influence of the electrons on the nuclei can be treated by an additional potential
term. The electrons are, so to say, instantly react on the motion of the nuclei. A
similar approach can be used between the spin- and the electronic sub-system. By
assuming a slowly varying magnetic moment compared to other electronic degrees
of freedom, Antropov et al. [28, 68, 69] derived a classical equation of motion for
the expectation value of individual atomistic spins. In addition, they introduced an
stochastic temperature model to be able to calculate the motion of spins at a finite
temperature. This is done by including two phenomenological terms into the equation
of motion describing damping and excitation effects.

Landau-Lifschitz equation

The motion of a classical atomistic spin can be described by the following differential
equation:

d~Si
dt

= ~Hi × ~Si (7.1)

The term ~Hi describes the effective field (or effective spin splitting field) acting on an

atomic spin ~Si. It can be calculated by the spin-gradient of a spin Hamiltonian by

~Hi = − ∂

∂~Si
Hspin(~S1, ~S2, .., ~SN) (7.2)
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and describes a ’spin force’ which tries to drive the spin to the local minimum. It
captures on-site effects as well as interaction of the spin ~Si with the surrounding atoms
and can be described in terms of a model Hamiltonian. This method is used in chapter
8 to predict possible magnetic ground states and to get a fundamental understanding
of the physical mechanisms of spin-structures.

By decoupling the spin from the electronic degree of freedom, one neglects all damping
and excitation effects, which can be reintroduced by coupling to an external thermal
bath. There, temperature effects are included by a stochastic approach in analogy to
the Langevin equation by including two additional terms to the equation of motion.
This results in the Landau-Lifschitz equation

d~Si
dt

= ~Hi × ~Si − λ( ~Hi × ~Si)× ~Si + ~fi × ~Si (7.3)

including two additional terms. The second term in equation 7.3 is a damping term,
which, by construction, drives the spin Hamiltonian to its local minimum, capturing
damping effects between the spin degree of freedom and the electronic as well as the
lattice subsystem. The strength of the damping term is described by a parameter λ,
which can be determined from experiments. However, there are also attempts [70, 71]
to calculate this parameter from ab initio . The third term is given by a cross product
between the spin and a fluctuating field ~fi and captures spin excitation effects due to
temperature. The fluctuating field is given by white noise defined by

〈
fαi (t)fβj (t′)

〉
= ε2δαβ δij δ(t− t′), ε2 = 2λT, (7.4)

where T describes the temperature. Its meaning is that random variables are not
correlated in time, space and Cartesian components. The strength of the fluctuations ε
are chosen such that a Boltzmann-like distribution is fulfilled. The resulting equation
of motion preserves each individual magnetic moment. This can be shown by a scalar

multiplication of equation 7.3 with ~S resulting in d|~S|
dt

= 0. Equation 7.4 is a stochastic
differential equation including white noise. A general expression is given by:

X(t) = a(X(t), t)dt+ b (X(t), t) W (t), (7.5)

where the resulting integration is to be interpreted in the Stratonovich sense. More
information about stochastic differential equation and different interpretation types
can be found in the literature [72, 73].
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Figure 7.1.: (left) Visualization of a spin (green) in a constant effective field (red).
The different contributions to the vector of motion, the deterministic part
(blue), the damping term (orange) and the fluctuating force (yellow) are
displayed.
(right) The trajectory of a single spin in a constant effective field is
displayed for a small temperature. The small random motions can clearly
be distinguished from the deterministic relaxation.

Implementation

Subject of the author’s diploma thesis [74] was the development and implementation
of an atomistic spin-dynamics code. The resulting juSpinX program is able to treat
periodic as well as finite spin systems of arbitrary shape. It uses a weak Runge-
Kutta (4th order) method [68] for stochastic differential equations with small noise.
The program has been extended in this thesis to treat complex model Hamiltonians
including the Heisenberg interaction for arbitrary neighbor shells as well as the
Dzyaloshinskii-Moriya , the four-spin and the bi-quadratic interaction. This turned
out to be essential to describe the magnetic systems, which are studied in chapter 8.
In this work, juSpinX is used to find energy minima of complex model Hamiltonians to
predict possible ground state structures for a fully ab initio minimization. In addition,
in collaboration with Nicolai Kieselev, a new integration method [75] and a Monte
Carlo algorithm have been implemented into the program.

Energy minimization of a model Hamiltonian

The ground state structure a classical model Hamiltonian can be found by an energy
minimization. The most simplest approach is to use a gradient descent methods with
a boundary conditions, keeping the absolute value of each atomistic spins constant.
This method can successfully be applied for simple systems, where no local minima
are present. However, for complex magnetic structures, the method often converge to
a local instead of finding the global minimum. One way to improve the algorithm is
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Atomistic spin-dynamics

Figure 7.2.: Schematic visualization of the energy landscape in a complex magnetic
system. A conjugate gradient method will converge to a local minimum
which is close to the initial starting conditions (right). By the introduction
of an artificial temperature (left), the energy barrier between the minima
can be overcome, resulting in a convergence of the spin structure to
the global minimum, for a sufficiently long time, if the temperature is
decreased to zero.

to introduce an artificial temperature. Due to the influence of the temperature bath,
the spin system can gain energy to overcome the energy barrier separating two local
minima (see figure 7.2). During the simulation, the temperature is cooled down to
zero, resulting in a steepest descent algorithm. Assuming a sufficiently long simulation
time, this algorithm is able to finding the global minimum.

Spin-spiral calculation fit to determine the Heisenberg coupling

constants

Heisenberg parameters can be extracted from conventional DFT band-structure
methods by using spin-spiral calculations. There, the atomistic magnetic moment of
each individual atom is restricted to form a spiral, which is defined by a wave vector ~q.
This results in a wave vector dependent function EDFT(~q ) describing the total energy.
One way to obtain the Heisenberg coupling constants is via a Fourier transformation
of EDFT(~q ). Further information can be found in [76, 77, 78].

Another method to extract Heisenberg coupling parameters is by a least square fit
of a Heisenberg model to a DFT total energy calculation, which is explained in the
following. The Heisenberg Hamiltonian H is defined by
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Figure 7.3: Different shells of
a hexagonal two-
dimensional lattice.
Atoms with the same
distance to the central
atom (blue) define a
shell.

H =
∑
i,j

Jij ~Si · ~Sj

and can be rewritten as

H =
∑
i

Hi, Hi =
∑
j

Jij ~Si · ~Sj, (7.6)

Assuming an rapid decrease of the coupling constants with the distance, a Heisenberg
model with a finite number of neighbors is taken into account that just depends on
the distance between the spins (J = J(|~r|)). All surrounding atoms with the same
distance are, according to figure 7.3, grouped in shells. Then, equation 7.6 can be
written as:

Hi =
∑

n∈shells

Jn
∑

m∈shell(n)

~Si · ~Sm (7.7)

A spin-spiral depending on the wave vector ~q can be defined by

~Si = S(~ri) = Sz · ẑ + Sxy · û (7.8)

where the scalars Sz and Sxy contain the magnitudes of the spin in the z- and in
the xy-plane and are assumed to be constant. The vector ẑ is a unit vector in the
z-direction and û is a unit vector rotating in the xy-plane according to ~q:

ẑ =

0
0
1

 , û = Re

1
i
0

 exp(i~q · ~r), |~S| = S2
z + S2

xy (7.9)

Insertion of equation 7.8 into equation 7.7 leads to the following expression:
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H(~q ) =
∑

n∈NShells

Jn
∑

m∈Shell(n)

(
S2
z + S2

xy cos(~q · ~rm)
)

(7.10)

A constant potential is added such that zero energy corresponds to a ferromagnetic
state:

Eex(~q ) = H(~q )−H(0) =
∑

n∈NShells

Jn
∑

m∈Shell(n)

S2
xy (1− cos(~q · ~rm))︸ ︷︷ ︸
Dn(~q)

The resulting term can be compared to a total energy spin-spiral DFT calculation
EDFT(~q ) . The coupling constants J1, J2, ..Jn can be determined by minimizing the
difference ||EDFT(~q )− Eex(~q )||.


EDFT(q1)
EDFT(q2)

...
EDFT(qk)

 =


D1(~q1) D2(~q1) · · · Dn(~q1)
D1(~q2) D2(~q2) · · · Dn(~q2)

...
...

. . .
...

D1(~qk) D2(~qk) · · · Dn(~qk)

 ·

J1

J2
...
Jn

 ,

which is an overdetermined system of linear equations. This is to be used to determine
J1, .., Jn by a least square fit (||A·~x−~b|| → min). Depending on the number of different
shells, which are included, these values for J can differ and are to be understood as
coupling constants, which effectively capture additional contributions (e.g. couplings
to a substrate).
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8 Applications

In this chapter, the magnetic properties of Fe atoms on the Ir(111) surface are discussed.
First, experimental and theoretical investigations of a single monolayer of Fe on Ir(111)
are introduced, finding a two-dimensional magnetic structure consisting of skyrmions,
which motivate further investigations. Then, energy minimizations to find the ground
state structure (Illustrated in figure 8.1) based on atomistic spin-dynamics using a
classical model Hamiltonian are presented. The main part of this chapter consists
of calculations based on the KKR impurity Green function method, which is used
to study the non-collinear magnetic structure of different sized nano-islands of Fe
on Ir(111) from first principles. Interesting textures have been found which strongly
depend on structural relaxations. The results are compared to model Hamiltonian
minimizations using realistic model parameters extracted from ab initio calculations.

8.1. Monolayer Fe on Ir(111)

Motivation

The magnetic properties of a single Fe monolayer on the Ir(111) surface are discussed in
this section. Interest in this system rose with the work by Kirsten von Bergmann and co-
workers [79], who carried out spin-polarized scanning-tunneling-microscope (SP-STM)
experiments. While standard STM uses a non-magnetic tip, SP-STM experiments
are carried out by spin-polarized tips, here Fe coated W, to obtain information about
the magnetic structure of the surface. Intrinsically the magnetization of this tip is
perpendicular to the tip direction, making SP-STM measurements sensitive to the
in-plane component of the magnetization with respect to the surface. However, by
applying an external magnetic field one can rotate the magnetization of the tip to
probe the out-of-plane direction of the sample magnetization. Thus, experiments are
capable of extracting information on different magnetization directions.

The results show a two-dimensional, almost square-like magnetic pattern on a larger
scale than the inter-atomic distance (figure 8.2c), which is incommensurate to the
hexagonal atomic surface lattice. As no contrast was found with in-plane magnetized
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Applications 8.1 Monolayer Fe on Ir(111)

Figure 8.1.: Spin structure of an Fe monolayer on Ir(111), obtained by atomistic
spin-dynamic minimizations of a classical Hamiltonian. The z-component
of the spin is color-coded with red pointing in +z- and green in the
−z-direction.

tips, it was suggested [79] at first that this structure corresponds to a collinear
formation of ferro- and anti-ferromagnetic spins according to this pattern. However,
further experiments, probing the in-plane component of the magnetization with SP-
STM, showed a strong signal, indicating a non-collinear spin formation. However, the
exact structure could not be revealed unambiguously by experiments.

Ab initio analysis by S. Heinze et al. [8] could show that the experimentally observed
signal corresponds to a two-dimensional non-collinear magnetic lattice. A spin structure
was suggested, according to figure 8.2a. This two-dimensional magnetic structure
is formed on an atomistic scale and has similarities to Skyrmions (named after
T. H. R. Skyrme [13]).

Skyrmions are topologically protected objects in field theory which can nowadays be
found in various fields of condensed matter physics e.g. chiral liquid crystals, ferro-
electrics, and multiferroics [80]. In the majority of nonlinear field models, skyrmionic
states appear only as dynamic excitations. In magnetism, skyrmions have long ago
been predicted to exist in a large group of noncentrosymmetric magnetic crystals [81].
In such materials with broken chiral symmetry the structural handedness induces chiral
Dzyaloshinskii-Moriya (DM) couplings which stabilize two- and three-dimensional
localized structures with a fixed rotation sense of the magnetization on a nanometer
scale [81]. Under certain conditions isolated skyrmions may condense into a skyrmion
lattice. Recently, isolated skyrmions and hexagonal skyrmion lattices have been
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8.1 Monolayer Fe on Ir(111) Applications

Figure 8.2.: a) Nano-skyrmion spin structure from [8]. b) The resulting simulated SP-
STM picture. c) The results are in a good agreement to the experimental
SP-STM picture. The right inset shows the Fourier transform and the
left inset the simulated SP-STM pattern. (Figure from reference [8])

directly observed in nanolayers of cubic helimagnets FeGe [11] and FeCoSi [10]. Earlier
skyrmion lattices have also been found with neutron scattering in bulk MnSi [9]. The
period of modulation in these systems is ∼ 70nm in FeGe [10], ∼ 90nm in FeCoSi [10]
and ∼ 17.5nm in MnSi [9], which is about two orders of magnitude larger than the
period length (∼ 5 nearest-neighbor distances) observed in Fe on Ir(111). Continuum
approaches for modelling the skyrmionic behavior fails in this case and theoretical
description requires more insightful atomistic approaches. The resulting magnetic
structure in Fe on Ir(111) has been named nano-skyrmion lattice to distinguish it
from the skyrmions stabilized in cubic helimagnets.

Theoretical insights have been obtained through the DFT calculations [8] of S. Heinze
et al. First, the lattice structure was relaxed finding a reduction of the Fe-Ir interlayer
distance by 7.7% compared to the Ir-Ir interlayer distance. Then, to obtain the
Heisenberg exchange coupling constants, calculations were performed where the
directions of the magnetic moments have been constrained such that the magnetic
moments form a spin spiral defined a wave vector ~q. The total energy values EDFT(~q )
have been determined for high symmetry lines in the Brillouin zone and parameters
for the exchange interaction for 12 neighboring shells of atoms were obtained by
a Fourier transformation. These terms are, however, not sufficient to accurately
describe the magnetic structure via a model Hamiltonian. Thus, in addition to the
exchange couplings, the Dzyaloshinskii-Moriya interaction was considered, where the
Levy-Fert (LF) [82, 83] interpretation for the direction of the ~D-vector was applied.
This describes the coupling by an interaction of two Fe sites with an underlying Ir
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site, resulting in a DM vector which is supposed to be orthogonal to the plane defined
by the three sites. Furthermore, the magnetocrystalline anisotropy constant as well as
bi-quadratic and 4-spin interaction terms (defined in subsection 6.3.2) in a nearest
neighbor approximation were calculated [84]. Different spin-structures were suggested
and the total energies were calculated via DFT as well as a model Hamiltonian for
these selected spin structures. From all magnetic structures, the nano-skyrmionic spin-
structure was found by Heinze et al. [8] to be lowest in energy, which is commensurate
on a 15 atomic unit cell (see figure 8.4b or figure 8.2a). A period of the spin-structure
very close to the experimentally observed one was found, even though the long-range
order determining the incommensurablility to the 15-atomic unit cell was not yet
investigated. The nano-skyrmionic spin-structure was used to perform a simulated
STM picture, which is shown in figure 8.2b. The comparison of the experimental
(colored) to the simulated STM map (gray inset) of figure 8.2c (gray inset), shows good
agreement between model and experiment, concluding that there is strong evidence
that the correct spin-structure was found.

a) b)

Figure 8.3.: Energy values of spin-spirals along the high-symmetry line Γ̄-M̄ -K̄. In
green the ab initio values are displayed and in blue to the energy value
corresponding to a model fit are shown. b) Fitted exchange parameters,
for each neighboring shell

Atomistic spin-dynamic model calculations

In this section, the magnetic properties of a single monolayer of Fe on Ir(111) based on
a classical model Hamiltonian are discussed, including realistic coupling parameters,
which are obtained by band-structure calculations [84]. Motivated by the previous
results, the question arises if a classical model can be found, that repreduces the
spin-structure found in experiments better compared to the results of [8]. Therefore,
the following model Hamiltonian is taken:
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8.1 Monolayer Fe on Ir(111) Applications

Hmodel =
∑
ij

Jij (êi · êj)−
∑
ij

~Dij · (êi × êj)−
∑
ij

Bij (êi · êj)2 +
∑
i

K⊥(êzi )
2

−
∑
ijkl

Kijkl

[
(êi · êj)(êk · êl) + (êi · êl)(êk · êj)− (êi · êk)(êj · êl)

]
(8.1)

The resulting Hamiltonian only takes into account the Fe sites. The induced magnetic
moments for the underlying Ir atoms are small [8, 84] and the influence of the Ir sites,
can be treated by an effective interaction between the Fe atoms. All parameters were
extracted from ab initio calculations by S. Heinze et al [84]. The energy of this model
Hamiltonian is to be minimized to find the ground state structure. The Hamiltonian,
however, turns out to be complicated, resulting in a rich energy landscape with many
local energy minima. Therefore, sophisticated minimization techniques have been
used to overcome this barrier. To find the global minimum, atomistic spin-dynamics
calculations based on simulated annealing have been carried out. This method was
introduced in chapter 7 and factors in temperature to overcome energy barriers, where
conventional steepest descent methods fail. The energy minimization method itself
turns out to be reliable. However, the desired nano-skyrmion structure could not be
found and the ground state turns out to be ferromagnetic.

Rethinking the spin model, a different method to determine the Heisenberg exchange
parameters was used which is assumed to give a better description. So far the exchange
coupling constants were calculated by a Fourier transformation. Instead a least square
fitting procedure is used to determine the exchange coupling constants, as explained
in chapter 7 on page 128.

a) ASD structure b) Nano-skyrmion

Figure 8.4.: a) Spin structure obtained by a classical model Hamiltonian within ASD
in a 60 atomic unit cell. Red-color represents a positive and green a
negative z-component of the spin. b) Nano-skyrmionic spin structure of
figure 8.2a commensurate on a 15 atomic unit cell. The unit cell (intensely
colored region) has been repeated 4 times in a region containing 60 atomic
for a better comparison to the ASD structure.
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The procedure is summarized as follows: A Heisenberg model is assumed, where a
finite number of couplings to magnetic moments of neighboring shells are included. All
other exchange couplings are assumed to be zero. The coupling constants themselves
are treated as variational degrees of freedom and are determined by a least square fit
to the constrained DFT spin-spiral energy calculations EDFT(~q). The method maps
the infinite number of exchange coupling parameters to a finite number of effective
exchange interactions, assuming that these decay rapidly with distance. In practice, 6
neighboring shells have been included. Figure 8.3a shows the total energy values of a
DFT calculation for a spin-spiral, compared to the energies obtained by a least square
fitted model Hamiltonian and figure 8.3b the corresponding exchange couplings. The
resulting values for the Heisenberg exchange interaction are shown in the first row of
table 8.1. All other parameters besides the Heisenberg exchange interaction are taken
from [8].

[meV] 1st 2nd 3rd 4th 5th 6th 7th 8th neighbor shell

Jij(least-sq) -5.45 1.065 1.325 -0.085 -0.27 -0.19 - -

| ~Dij| -1.8
Bij -0.2

Kijkl -1.05
K⊥ -0.8

Jij [8] -5.7 0.84 1.45 0.06 -0.2 -0.2 0.2 -0.5

Table 8.1.: Coupling constants of the classical magnetic model Hamiltonian of equation
8.1.

The comparison between exchange coupling constants obtained by a least square fit
and a Fourier transformation shows differences in the coupling constants of up to 0.5
meV. This particular magnetic structure turns out to be sensitive to variations of
the coupling constants, which are crucial for the formation of the skyrmion. Small
differences in the coupling constants are essential for the description of non-collinear
structures.

Magnetic texture on a local scale

By applying the new set of parameters, an energy minimum has, for the first time,
been found on the basis of a model Hamiltonian which qualitatively resembles the
magnetic structure proposed by Heinze et al. independent of the initial magnetic
configuration. The resulting structure is shown in figure 8.4a and will further on
be referred to as the ASD minimum (or ASD structure). The overall structure is
in a qualitative agreement to the structure of [8] (displayed in figure 8.4b, which is
in the following referred to as the nano-skyrmion). The skyrmionic signature of the
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ASD structure can be observed for the nearest neighbors of the central pin (figure
8.4a, red spin), which rotate outwards. However, these are not any more rotationally
invariant as observed for the nano-skyrmion of figure 8.4b. The 15 atomic supercell
(highlighted in figure 8.4b), which was used for the DFT calculations of Heinze et al.
is not sufficient to reproduce the minimum-energy structure of the ASD solution. A
larger supercell had to be used to describe the local spin formation sufficiently well.
Figure 8.4a shows the commensurate spin-formation for a supercell of 60 atoms. This
supercell is considered to lead to a good approximation to the ideal theoretical energy
minimum spin-structure in the limit of an infinitely large supercell, which follows a
slightly different period length.

a) b)

Figure 8.5.: a) Energy per atom depending on the supercell size, which is n × n in
15-atom units. For the ASD simulation a 15 atom unit cell is used as
a basis and is extended in the two in-plane directions. b) Resulting
structure for n2 = 16 is dispayed. The color, here, is used to distinguish
the different unit cells.

The need for a 60 atoms unit cell becomes obvious by analyzing the dependence of the
energy on the supercell size. In figure 8.5a, the energy has been plotted, depending on
the n× n supercell in units of 15-atoms. As an illustration, figure 8.5b shows a 4× 4
supercell, in which the 1× 1 blocks are differently colored. Here (figure 8.5), an even
odd effect can be observed. For an even number of unit cells, the energy is almost
independent of the size, whereas for an odd number, the energy decreases. Overall
this result shows that the short-range order is sufficiently well described for a 2× 2
supercell consisting of 60 atoms. One has to keep in mind that the long range order is
not repreduced correctly meaning that the real global minimum is incommensurate to
this supercell. However, it reproduces the short range order correctly and can thus be
used to determine properties where a calculation with ab initio methods is numerically
expensive e.g. simulation of STM pictures, where taking a small unit cell is essential
for time-efficient computation.
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Figure 8.6: Simulated SP-STM
map for the ASD spin-
structure, obtained for
4 different orientations
of the magnetic mo-
ment of the tip. The
gray-scale corresponds
to the magnetic signal
along the different tip
directions.

In collaboration with S. Heinze, SP-STM maps have been simulated corresponding to
the ASD spin-structure (figure 8.4a). Figure 8.6 presents the simulated STM maps,
showing the magnetic signal for different tip directions. These are in a good agreement
with the experimental results [8, 84] and the simulated STM pictures (figure 8.2b) of
the nano-skyrmion structure. This shows that the tiny differences in figure 8.4a and
8.4b cannot be distinguished via STM measurements.

Energy comparison

One way to analyze the influence of the different couplings is by an energy comparison.
Minimizing all parts of the Hamiltonian in equation 8.1 separately will lead to
different spin-structures. Thus, the minimum for the full Hamiltonian will be a
compromise between the minima of all single terms. By comparing the different energy
contributions, one can learn which terms in the Hamiltonian are responsible for the
formation of the spin-textures.

The spin-structures of figure 8.4a and 8.4b have been used to determine the energy
resulting from the model Hamiltonian of equation 8.1 with the parameters of table
8.1. Table 8.2 shows the energy values, decomposed into the different contributions,
which are namely the exchange, the bi-quadratic, the Dzyaloshinskii-Moriya, the
4-spin-interaction and an anisotropy term.

First of all, it can be observed that, within the approximation of a model Hamiltonian,
the energy for the full Hamiltonian is lowered by 2.2 meV for the ASD minimum
compared to the nano-skyrmion. This shows that, based on the current model, the
ASD minimum is energetically favored. Comparing the contributions of the Heisenberg
exchange interaction shows that the values are slightly lower for the ASD structure.
This is partly compensated by the DM-interaction, which is favored by the nano-
skyrmionic structure. However, the major difference between the two structures is
found in the 4-spin interaction term, which is lowered by about 3 meV, meaning that
the deviations of the two spin structures mainly results from lowering the energy of
the 4-spin interaction. This leads to the conclusion that the 4-spin interaction is the
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[meV] ASD minimization (fig. 8.4a) nano-skyrmion (fig. 8.4b)
exchange -15.02 -14.29

bi-quadratic 0.37 0.37
DM -3.15 -4.47

4-spin 0.25 3.07
anisotropy -0.18 -0.20

total -17.72 -15.51

Table 8.2.: Calculated energy contribution according to equation 8.1 with coupling
constants of table 8.1 resulting from the ASD minimum (figure 8.4a) and
the nano-skyrmion (figure 8.4b).

main reason the ASD structure is lower in energy.

Figure 8.7.: Magnetic structure structure from a large supercell. Red vectors corre-
spond to an alignment parallel and green to an alignment anti-parallel to
the z-direction. This structure reproduces the long-range order correctly.
It can be observed that the spin-structure is not commensurate to the
underlying hexagonal lattice, by taking a closer look at the central spins
(red) of each single skyrmion which slightly deviate from each other.

Long range order

The long range order can most conveniently be observed by a Fourier transformation
(FT). Analyzing the long-range order is more cumbersome, since the choice of the
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boundary condition is crucial to obtain correct results. It is not trivial to find the
correct boundary condition for this complex magnetic structure, since the atomic
and the spin-structure follow different periodicities. The atomic positions form a
hexagonal lattice with a short period length and a three-fold symmetry, whereas
the magnetic pattern forms a square-like magnetic structure with a larger period,
which is not commensurate to the hexagonal structure. To find a suitable boundary
condition both size and shape of the cell are important. The Fourier transformation
the two cases shows 4 peaks, which correspond to the period length of the magnetic
super-structure. Since a two-dimensional magnetic structure is observed in real space,
also 4 peaks in a square-like shape are expected for the Fourier transformation. The
exact peak-position, however, can vary, depending on the applied boundary condition.
Changing the size of the supercell will influence the distance of the positions of the
peaks from the Brillouin center, whereas changing the shape influences the direction of
the peak positions. Drastically increasing the supercell size will reduce the dependence
on the boundary condition, it will be, however, a lot more cumbersome to find the
global energy minimum. For large supercells, domain walls between different skyrmion
states will form, which drastically slow down the convergence. The boundary condition
has been optimized by calculating different sized supercells. Finally, a supercell has
been found which optimizes the geometry, such that finite-size supercell effects do not
influence the minimization.

a) b)

Figure 8.8.: Fourier transformation of the z-component of two different magnetic
structures. a) shows the rectangular FT peaks corresponding to an ASD
simulation (figure 8.7) using an appropriate large supercell and b) shows
the square formation of the FT peaks of the skyrmionic structure (figure
8.4a).

Figure 8.8a shows the Fourier transformation of the z-component for the ASD minimum
(figure 8.8a) and is compared to the Fourier transformation peak of the nano-skyrmion
(figure 8.8b). Two effects can be observed: The x-component of the position of
the Fourier peaks in real-space is almost identical in the two figures. However, the
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Figure 8.9: Magnetic texture
resulting from a
reduced 4-spin in-
teraction. Contrary
to the square-like
nano-skyrmionic struc-
ture, the magnetic
pattern forms a hexag-
onal alignment of
skyrmions. Red color
represents a positive
and green a negative
z-component.

y-component is reduced for the ASD structure. This means that the period length in
the y-direction in real-space agrees between the two structures and the period length
in the x-direction is stretched in the case of the ASD structure. The resulting peaks
form a more rectangular-like structure, which can also be observed in the experimental
Fourier transformation picture of figure 8.2c and correctly reproduces this behavior,
contrary to the FT of the nano-skyrmionic structure, which favors a more square-like
alignment of the spins. A second effect which can be observed is that the rectangle
spanned by the 4 Fourier peaks is slightly rotated by a few degrees, such that it is not
parallel to the x- and y-axis. This refers to a global rotation of the spin-texture (in
real space). It could also be observed in ASD simulations that the magnetic state is
weakly bound to the underlying lattice, while rotation of all spins in real space just
leads to a small variation in energy.

Summary and Outlook

A combined DFT and model Hamiltonian approach was successfully applied to study
the complex magnetism of a single monolayer of Fe on Ir(111). This could be
accomplished by extracting parameters for a classical Heisenberg model containing
the exchange-, the DM-, the bi-quadratic as well as the 4-spin interaction from ab
initio calculations. The resulting Hamiltonian has been minimized using the atomistic
spin-dynamics method and the resulting minimum structure was found to be in a
good with previous theoretical considerations as well as experiments. The atomistic
spin-dynamics method has proven to be a powerful tool to investigate magnetic
structures on the basis of a realistic classical model Hamiltonian, since it is able to
find the global minimum, even for complex magnetic structures. By this multiscale
approach, spin systems become accessable, which cannot be examined with ab initio
methods, since such calculations would require too much computational time.
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Using this technique, one gains access to the rich physical properties of a monolayer Fe
on Ir(111), a non-trivial magnetic system. An interesting two-dimensional magnetic
structure has been found with a unique topology. However, also different magnetic
structures can be stabilized for this system. Preliminary calculations show that the
application of temperature or magnetic fields or a slight variation of coupling constants
can lead to a new phase with a hexagonal super-structure. Figure 8.9 shows the
ground state structure resulting from a model Hamiltonian using the parameters of
table 8.1, where the 4-spin interaction has been reduced. Contrary to the square-like
nano-skyrmion structure, this texture shows a hexagonal alignment. Depending on
the applied magnetic field, this structure can have a different topology, leading to
a high energy barrier and strong hysteresis effects between the two structures. On
the one hand, this makes the determination of the statistical properties cumbersome,
since an extremely long computational time is needed to scan the configuration space.
On the other hand, the rich magnetic structure provides a unique playground to study
magnetic phenomena resulting in different phases for a real material, which can be
measured experimentally. A phase diagram is in preparation, which includes different
texture on temperature and applied magnetic field which can hopefully be verified
from experiment.

8.2. Nano-islands of 7 Fe atoms on Ir(111)

Motivated by the two-dimensional nano-skyrmionic spin-structure, which has been
found in a monolayer of Fe on the Ir(111) surface, the interest arises to analyze the
magnetic properties of single isolated nano-islands. To do so, the KKR impurity
method has been chosen to calculate the properties of nano-islands of 7 and 19 Fe
atoms deposited on the Ir(111) surface. Relativistic effects are included by the SR-
approximation and spin-orbit coupling effects are captured by an additive perturbation
Hamiltonian. Since the symmetry at the surface is highly reduced, a spherical
approximation of the potential is expected to result in a poor description of the
surface properties. Therefore a non-spherical treatment of the potential at the surface
is essential and adopted in all calculations. The magnetic properties are analyzed
by studying collinear and non-collinear magnetic structures. Starting from collinear
magnetic calculations, coupling parameters for the exchange and the DM interaction
are extracted, which are then analyzed by a model Hamiltonian. The atomistic
spin-dynamic method has been chosen to obtain the ground state structure resulting
from a model Hamiltonian. Besides that, non-collinear magnetic density-functional
calculations have been performed to find the ground state from ab initio calculations.
This two-way approach is expected to help significantly to understand the non-collinear
configuration of spins, which can be found in such systems.
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Iridium slab

Impurity calculations in KKR are, according to section 6.3, performed in two steps:
First the Ir slab is calculated, excluding the impurity atoms. This provides a host
Green function including all sites that are later considered in the impurity calculation.
Iridium crystallizes in the face-centered cubic (FCC) structure. The Ir surface, oriented
in the (111)-direction, is approximated by a two-dimensional slab with a finite thickness
along the z-direction. By a rotation of the FCC structure, the Bravais vectors can
be oriented such that the FCC structure can be represented by a two-dimensional
hexagonal lattice in the xy-plane and a basis representing an ABC stacking in the
z-direction. A finite thickness of 34 monolayers has been found to be sufficiently large
to accurately describe the surface properties. This has been verified by comparing
the results to thinner slabs, considering the difference in magnetic coupling constants.
The density decays exponentially at the surface into the vacuum region. To capture
the exponential tail accurately, three layers of so-called empty cells are considered
at both ends of the slab. These cells are treated as atomic positions, where, in the
DFT calculation, no atomic nuclei are placed at the center. All KKR calculations are
performed using the LDA exchange-correlation potential. In addition, the experimental
Ir lattice parameter of 3.82 Å has been used in all calculations, except when considering
the possibility of relaxation of the Fe island in the z-direction. It has been shown for a
monolayer of Fe on Ir(111) that spin-orbit coupling effects are essential for an accurate
description, making it necessary to include these effects in the calculation. Due to
restrictions of the existing surface code, it was not possible to treat the Ir surface with
spin-orbit coupling and full-potential simultaneously. Therefore, a full-potential SR
treatment was chosen for the slab in order to capture the surface asymmetry of the
potential accurately. However, the treatment of SO coupling for a full non-spherical
potential has been included in the newly developed KKR impurity program within
this work, making it possible to include this effect for all sites in the perturbed region.
It will later be shown that the most important effect of spin-orbit coupling on the
impurity atoms can be captured by including the Ir atoms surrounding the Fe atoms
into the impurity calculation, for which an explicit treatment of spin-orbit coupling
effects is used. All calculations to obtain the real-space host Green function for the Ir
slab have been carried out using a 100× 100 mesh of k-points in the surface Brillouin
zone.

8.2.1. Unrelaxed atomic positions

First, impurity calculations were carried out for 7 Fe atoms deposited on the Ir(111)
surface. These Fe atoms have been positioned such that they occupy the lattice sites
of the first vacuum layer according to the ABC stacking of the Ir(111) surface. In
the xy-plane, the Fe atoms are positioned according to figure 8.10a, where the Fe
atoms have been labeled from 1 to 7, with the central Fe atom 1 surrounded by six Fe
atoms. Motivated by the Fe monolayer results [8], it is expected that a non-collinear
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nano-skyrmion-like structure is formed, where the central spin is pointing in the
z-direction and all other magnetic moments are rotated in a star-like structure.

a) b)

Figure 8.10.: a) Real space structure of a monolayer of Fe on an Ir(111). The gray
shaded Fe atoms are labeled from 1 to 7 and the underlying Ir layer is
displayed. b) The magnetic moments of the Fe and the underlying Ir
atoms.

First, restricting the atomic moments to point along the z-direction, calculations
have been carried out excluding spin-orbit coupling effects. The resulting values for
the magnetic moment, including one neighboring shell of Ir atoms surrounding the
Fe nano-island, are shown in figure 8.10. Here, gray shaded circles represent the Fe
sites in the first vacuum layer and the smaller white circles the Ir sites in the first
layer underneath. One can observe that the central Fe atom has a reduced atomic
moment of 2.85µB compared to the magnetic moment of 3.12µB for the outer Fe atoms.
This can be explained by the increased coordination number and stronger d-state
hybridization compared to the outer atoms. Due to the influence of the Fe atoms a
small magnetic moment has been induced in the Ir atoms. To analyze the dependence
on the number of nearest neighboring shells, additional calculations including up to 3
neighboring shells have been carried out, where just the number of Ir atoms has been
increased. The number of vacuum cells has been kept constant, covering all Fe atoms
with only one vacuum shell. This results in a total of 49, 76, and 158 impurity sites,
for one, two and three surrounding shells. The magnetic moments changed only by
±0.01µB, making the use of one surrounding shell sufficient for these calculations.

Spin-orbit coupling calculation

It is expected that Ir, due to its large atomic number, induces a strong spin-orbit
coupling field, which makes the explicit treatment of SOC effects essential. Including
a spin-orbit coupling Hamiltonian to the scalar-relativistic equations, self-consistent
collinear magnetic calculations have been carried out, fixing the magnetization vector
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Figure 8.11: Visualization of the DM

vectors ~D1i, projected
onto the xy-plane.
These are connected
by symmetry using the
mirror planes E1 and
E2, as well as the 120◦

rotations around the
z-axis.

along the z-direction. The resulting magnetic moments of the Fe atoms remain
around the same values, changing only on the order of 1%. By the method of
infinitesimal rotations the exchange coupling constants as well as the Dzyaloshinskii-
Moriya couplings have been extracted from the ab initio calculation. According to
section 6.3.3, the DM component Dα can only be determined if the magnetic moments
are oriented along a unit vector ~eα. Therefore, to determine Dy and Dz, the magnetic
spin-frame of reference has been rotated to ~ex and ~ey to determine the appropriate
DM-vector components, resulting in three independent calculations, one for each
spin-frame. The resulting values are presented in table 8.3.

There, a strong ferromagnetic nearest neighbor exchange coupling can be observed
by the inspection of the values of J. The next nearest neighbor coupling changes its
magnitude, favoring an anti-ferromagnetic alignment of next nearest neighboring spins.
These are, however, reduced by one order of magnitude. A relatively strong DM
interaction can be observed, which has a strong out-of-plane component. Analyzing
the symmetry of all coupling constants, it can be observed that these follow a 3-fold
symmetry (corresponding to a 120◦ rotation) with respect to the central atom around
the z-axis. This is expected, since the lattice structure follows the same symmetry.
Nevertheless, couplings of the central atom 1 to all other Fe atoms seem to follow a
6-fold symmetry, since all couplings J1i agree. This behavior can be explained by an
additional mirror plane symmetry E1 (or E2) in figure 8.11, which projects e.g. J14

onto J15. In other words, the exchange coupling seems to depend not explicitly on the
positions of the surrounding atoms, but on the distance between them, which agrees
for all sites.

The projection of the Dzyaloshinskii-Moriya couplings on the xy-plane is presented in
figure 8.11. There, the corresponding ~D1j vectors are plotted such that they correspond

to the Hamiltonian ~D1j·(~S1×~Sj). The behavior is compared to the exchange interaction,
different, since the vectorial coupling constant is strongly influenced by the actual
position of the underlying Ir atoms. This is shortly explained considering DM couplings
between site 1 to all surrounding sites 2 to 6, but applies as well to couplings between
other sites. There, the magnitude of the DM vector equals and just the direction
of the vector changes. The DM vectors ~D13, ~D16 and ~D14 are symmetry related by
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i j J Dx Dy Dz | ~D| i j J Dx Dy Dz | ~D|
1 2 -42.17 1.40 0.40 2.47 2.87 4 5 -56.86 -0.00 2.93 -3.66 4.69
1 3 -42.17 1.40 -0.40 -2.47 2.87 4 6 2.15 -1.56 -0.27 -0.09 1.59
1 4 -42.17 -1.08 -0.99 -2.47 2.88 4 7 7.70 -0.93 0.54 0.49 1.19
1 5 -42.17 -1.08 0.99 2.47 2.88 5 1 -42.17 1.08 -0.99 -2.47 2.88
1 6 -42.17 -0.35 1.45 -2.47 2.89 5 2 2.15 -1.01 -1.20 -0.09 1.57
1 7 -42.17 -0.35 -1.45 2.47 2.89 5 3 -37.90 -2.12 1.21 0.23 2.45
2 1 -42.17 -1.40 -0.40 -2.47 2.87 5 4 -56.86 0.00 -2.93 3.66 4.69
2 3 7.70 -0.00 1.07 -0.49 1.18 5 6 7.70 -0.93 -0.54 -0.49 1.19
2 4 -37.90 2.12 1.21 0.23 2.45 5 7 2.15 -1.56 0.26 0.09 1.59
2 5 2.15 1.01 1.20 0.09 1.57 6 1 -42.17 0.35 -1.45 2.47 2.89
2 6 -56.86 -2.55 1.49 3.66 4.70 6 2 -56.86 2.55 -1.49 -3.66 4.70
2 7 2.15 -0.53 1.49 -0.09 1.59 6 3 2.15 0.53 1.49 -0.09 1.59
3 1 -42.17 -1.40 0.40 2.47 2.87 6 4 2.15 1.56 0.27 0.09 1.59
3 2 7.70 0.00 -1.07 0.49 1.18 6 5 7.70 0.93 0.54 0.49 1.19
3 4 2.15 1.01 -1.20 -0.09 1.57 6 7 -37.90 0.00 2.47 -0.23 2.48
3 5 -37.90 2.12 -1.21 -0.23 2.45 7 1 -42.17 0.35 1.45 -2.47 2.89
3 6 2.15 -0.53 -1.49 0.09 1.59 7 2 2.15 0.53 -1.49 0.09 1.59
3 7 -56.86 -2.55 -1.49 -3.66 4.70 7 3 -56.86 2.55 1.49 3.66 4.70
4 1 -42.17 1.08 0.99 2.47 2.88 7 4 7.70 0.93 -0.54 -0.49 1.19
4 2 -37.90 -2.12 -1.21 -0.23 2.45 7 5 2.15 1.56 -0.26 -0.09 1.59
4 3 2.15 -1.01 1.20 0.09 1.57 7 6 -37.90 -0.00 -2.47 0.23 2.48

Table 8.3.: Coupling constants in meV for a cluster of 7 Fe atoms on Ir(111). Labels i
and j refer to the atomic positions as shown in figure 8.10.

a rotation around the z-axis by 120◦. The same holds for ~D12, ~D17 and ~D15, ending
up in just two different couplings. The two are, however, also coupled by mirror
symmetries according to the mirror plane E1 and E2 in figure 8.11. Transforming
these vectors, one needs to keep in mind that the magnetic moment, as well as the
DM vector, are axial vectors or pseudo vectors, which, compared to a polar (or co-
variant) vector, transform differently under a mirror operation. Considering the mirror
symmetry defined by E1, the component orthogonal to E1 does not change, whereas
the component in the plane and ~D changes its sign. Thus, considering the mirror plane
E1, the x-component remains unchanged, while the yz-component of the magnetic
moment changes its sign. Overall, all vectors ~D1i, i ∈ {2, 3, 4, 5, 6} are coupled by
symmetry relations. The presented results, however, show a slight deviation between
the magnitude |D1i|, i ∈ {2, 3, 4, 5, 6} of around 1%. This deviation is related to the
method which has been used to determine the DM vectors. As explained earlier, the
x,y and z-components have been determined by three different calculations, where
the spin-frame of reference has been chosen to point along the x,y and z-direction
accordingly. Positioning the spins along the x or y direction breakes the symmetry
leading to this deviation, which is, however, small and disregarded in our analysis.

The dependence of the coupling constants on the number of neighboring shells, which
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1 shell 2 shells 3 shells
i j J Dz J Dz J Dz

2 1 -42.179 -2.476 -41.078 -2.123 -41.14 2.36
2 3 7.705 -0.495 7.677 0.086 7.82 0.39
2 4 -37.902 0.239 -37.726 -1.050 -36.92 0.26
2 5 2.156 0.091 2.039 -0.380 1.77 -0.21
2 6 -56.869 3.660 -56.140 3.306 -55.59 -2.99
2 7 2.156 -0.091 2.039 0.380 1.77 0.21

Table 8.4.: Coupling constants for a cluster of 7 Fe atoms on Ir(111) in meV, depending
on 1-3 nearest neighbor shells, which have been accounted for in the
impurity calculation.

are included in the self-consistent impurity calculation, is displayed in table 8.4. There,
only couplings including site 2 are displayed, since all other couplings are symmetry-
related to this one. The nearest-neighbor exchange coupling is not so much affected,
leading to a deviation of around 3%. Here, only the stronger couplings are considered
in the comparison, since only these are responsible for the spin-structure formation.
The deviation is slightly higher leading to deviation of around 10%, which is still in
a reasonable agreement, considering all other approximations in a magnetic model
Hamiltonian treatment.

a) b)

Figure 8.12.: Visualization of the spin-structure by non-collinear magnetic relaxations.
In a) the projected magnetic moments in the xy-plane are displayed and
rotation angles are defined by the angle φ. In b), the spin-structure is
shown with respect to the xz-plane.

The resulting coupling constants are in many respects different to the result obtained
for a monolayer of Fe on Ir(111). The coupling between Fe atoms can be broken

down into a component Dz
ij parallel to z, a component D

‖
ij parallel and a component

D⊥ij orthogonal to the connection line ~dij between the sites i and j in the xy-plane.

For a monolayer calculation, the component D
‖
ij is zero. This can be explained by
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mirror plane symmetries between the sites, where the mirror plane is orthogonal to
the connection line ~dij . This symmetry is, in most cases, broken for a finite-size nano-

island, leading to non-zero contributions of D
‖
ij. For some couplings this mirror plane

can still exists, resulting in e.g. D
‖
23=0, D

‖
45=0, according to table 8.4. It can also be

observed that the z-component of the DM vector in general is dominating, contrary
to the monolayer case. This can be explained by employing the Levy-Fert model (LF)
[82, 83]. Within this model, the DM interaction is explained by hopping of electrons to
a neighboring site k. The resulting DM vector is then assumed to be orthogonal to the
plane which is spanned by the sites i, j and k. The dominating contribution is to be
expected from sites k. For a monolayer calculation, hoppings between Fe-Fe-Fe atoms
are not influencing the z-component of ~D, since always another symmetric hopping
path Fe-Fe-Fe can be found which fully compensates the interaction. This can e.g.
be observed for Dz

12, where the contribution from the hopping 1-4-2 should partly be
compensated by the hopping between 1-6-2. The situation is different for the coupling
between site 4 and 5, since the counterpart of the hopping 4-1-5 is missing, resulting in
a strongly enhanced coupling of Dz

45 compared to Dz
12, which can be observed in table

8.3. According to the LF interpretation, Fe-Fe-Fe hoppings can only influence the
out-of-plane component. Thus, the in-plane components should mainly be influenced
by hopping over the underlying Ir atoms. This is discussed later.

Figure 8.13.: Relaxation of θ and φ angles of the magnetic moment for the unrelaxed
structure of the 7-Fe-atom nano-island on Ir(111). After iteration 250
new initial angles θ have been used to speed up convergence.

Non-collinear ab initio energy minimization

Non-collinear calculations have been carried out using the techniques explained in
section 6.3. A collinear formation of the spin-directions along the z-axis has been
chosen as an initial magnetic configuration for non-collinear magnetic relaxations.
Figure 8.13 shows the relaxations for the θ angle (angle between the magnetic moment
and the z-axis) and the φ angle (angle between the x-axis and the xy-component of
the magnetic moment) as a function of the number of self-consistency iterations. The
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φ angle shows a fast convergence, whereas at least 100 iterations are needed for the
θ angle to converge. Taking into account the results obtained for a monolayer of Fe
on Ir(111), a star-like structure is expected to be formed. The resulting structure is
indeed star-like, where the magnetic moments are canted by only about 10 degrees
with respect to the z-axis. The exact angles are displayed in figure 8.14a. Taking
a closer look at the relaxed structure, one can observe that the magnetic moments
at site i > 1 in the xy-plane do not exactly align collinearly to connection vector ~d1i

between the site 1 and i. For ~m3 in figure 8.14a, for example, one can observe that
the magnetic moment has an angle of 1.50 degrees to the connection line, whereas ~m7

is canted by −1.50 degrees.

a) b)

i θ [deg] φ [deg] i θ [deg] φ [deg]
1 0.00 0.00
2 10.10 -178.52 5 10.10 -58.52
3 10.10 -1.50 6 10.10 118.49
4 10.10 -121.50 7 10.10 61.47

Figure 8.14.: a) Angles of the magnetic ground state structure. b) Projection of the
spin structure in the xy-plane. Here, the deviation from the connection
line ~d1i has been artificially increased with respect to the calculated
angles in order to make the direction of deviation visible.

Thus, the nearest neighbor magnetic moments tends to rotate away or towards each
other in the xy-plane, depending on the position of the underlying Ir atoms. A sketch
of the resulting structure is given in figure 8.14b, where the deviations have been
artificially increased. The resulting spin formation is in agreement with all symmetry
relations, which have been considered before. Comparing to the monolayer calculation,
a similar behavior can be observed analyzing the minimum of the model calculation,
where this effect is even more pronounced. There, canting angles deviate from the
connection line by about 18 degrees.

8.2.2. Relaxed atomic positions

The influence of relaxation of the nano-islands towards the Ir slab on the magnetic
ground state and other magnetic properties is discussed in the following. Calculations
of an Fe monolayer on Ir(111) by Heinze et. al. [8] have shown that significant
relaxation effects are to be expected. Assuming that lattice relaxations of the Fe
nano-islands are comparable to the relaxation of the Fe monolayer calculated in [8],
the z-component of the Fe atom positions has been relaxed by 7.7% towards the Ir
atoms (compared to the interlayer distance between the Ir atoms). In addition, it has
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Figure 8.15.: Visualization of the non-collinear spin-structure of a 7 Fe nano-island
deposed on Ir(111). (without structural relaxations)

been assumed that there are no major relaxation effects in the xy-plane, which pull
the Fe atoms together or push them apart.

a) b)

Figure 8.16.: a) Magnetic moment of a 7 Fe cluster on Ir(111), where the interlayer
distance has been relaxed by 7.7%. b) Atomic structure of the relaxed
cluster, where the Fe atoms are labeled 1-7. The projected DM vectors
~D1i onto the xy-plane are shown as red arrows.

All previous quantities have been recalculated here including relaxation effects. The
magnetic moments are presented in figure 8.16a. On the one hand, it can be observed
that the magnetic moment of all Fe atoms is reduced by around 0.1µB. On the other
hand, the induced magnetic moments of the Ir atoms are increased. This can have
two reasons: First, hybridization effects between the Fe and the underlying Ir atoms
become more pronounced. Secondly, the size of the atomic cells change somewhat due
to lattice relaxations. This can lead to a decrease of the moment of the Fe atom since
the boundary between the Fe and Ir cells changes, such that a part of magnetization
density is referred to the Ir cell. However, this effect is rather small, since the d-orbitals
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that carry most of the moment are well localized within the cell.

Coupling constants

The coupling constants are calculated as for the unrelaxed positions and are displayed
in table 8.5. The projection of the DM vectors into the xy-plane is displayed in figure
8.16b. Here, it can be observed that the exchange couplings are reduced by about 25%
compared to the unrelaxed case. The D⊥ij component of the DM vector is strongly
enhanced, whereas minor changes for Dz

ij components can be observed. This is to
be expected, considering the previous discussion by the LF interpretation of the DM
vectors. It has been assumed there that the strength of the z-component is strongly
affected by hoppings between three Fe sites. Since the distance between these sites
does not change during the lattice relaxation, no major changes are expected for
Dz
ij. D

⊥
ij , within the LF interpretation, is strongly affected by the underlying Ir layer,

which, due to structural relaxations, moves closer to the Fe layer. This leads to a
stronger interaction of the sites and, thus, to an increased contribution to D⊥ij .

i j J Dx Dy Dz | ~D| i j J Dx Dy Dz | ~D|
1 2 -30.15 1.55 -2.65 1.70 3.51 4 5 -33.99 -0.00 7.47 -3.30 8.16
1 3 -30.15 1.55 2.65 -1.70 3.51 4 6 2.53 -1.11 -0.45 -0.09 1.20
1 4 -30.15 1.48 -2.61 -1.70 3.45 4 7 7.06 -0.65 0.39 1.01 1.26
1 5 -30.15 1.48 2.61 1.70 3.45 5 1 -30.15 -1.48 -2.61 -1.70 3.45
1 6 -30.15 -3.04 0.08 -1.70 3.49 5 2 2.53 -0.94 -0.70 -0.09 1.18
1 7 -30.15 -3.04 -0.08 1.70 3.49 5 3 -19.05 -4.44 2.51 -0.18 5.11
2 1 -30.15 -1.55 2.65 -1.70 3.51 5 4 -33.99 0.00 -7.47 3.30 8.16
2 3 7.06 -0.00 0.73 -1.01 1.25 5 6 7.06 -0.65 -0.39 -1.01 1.26
2 4 -19.05 4.44 2.51 -0.18 5.11 5 7 2.53 -1.11 0.45 0.09 1.20
2 5 2.53 0.94 0.70 0.09 1.18 6 1 -30.15 3.04 -0.08 1.70 3.49
2 6 -33.99 -6.47 3.75 3.30 8.18 6 2 -33.99 6.47 -3.75 -3.30 8.18
2 7 2.53 -0.13 1.19 -0.09 1.21 6 3 2.53 0.13 1.19 -0.09 1.21
3 1 -30.15 -1.55 -2.65 1.70 3.51 6 4 2.53 1.11 0.45 0.09 1.20
3 2 7.06 0.00 -0.73 1.01 1.25 6 5 7.06 0.65 0.39 1.01 1.26
3 4 2.53 0.94 -0.70 -0.09 1.18 6 7 -19.05 -0.00 5.18 0.18 5.18
3 5 -19.05 4.44 -2.51 0.18 5.11 7 1 -30.15 3.04 0.08 -1.70 3.49
3 6 2.53 -0.13 -1.19 0.09 1.21 7 2 2.53 0.13 -1.19 0.09 1.21
3 7 -33.99 -6.47 -3.75 -3.30 8.18 7 3 -33.99 6.47 3.75 3.30 8.18
4 1 -30.15 -1.48 2.61 1.70 3.45 7 4 7.06 0.65 -0.39 -1.01 1.26
4 2 -19.05 -4.44 -2.51 0.18 5.11 7 5 2.53 1.11 -0.45 -0.09 1.20
4 3 2.53 -0.94 0.70 0.09 1.18 7 6 -19.05 0.00 -5.18 -0.18 5.18

Table 8.5.: Coupling constants for the relaxed 7 Fe cluster on Ir(111) in meV. The
atomic labels i and j are given by figure 8.16

D⊥ij is mainly responsible for the rotation of the magnetic moments out of the fer-
romagnetic configuration. Therefore, a larger canting angle θ is to be expected. In
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addition, the exchange coupling is reduced, weakening the effect of a ferromagnetic
alignment of the spins, which additionally supports a non-collinear formation of spins.

Figure 8.17.: Relaxation of the spin-structure for a 7 Fe island on Ir(111) (relaxed
atomic positions). The convergence of a) the φ and b) the θ angle are
shown. In b), just the atomic sites 2-7 are taken into account, since the
θ angle of atom 1 did not change.

Non-collinear density-functional calculation

Since an increase of the non-collinearity is expected a magnetic starting configuration
has been chosen as follows: Taking the magnetic configuration of the unrelaxed
positions, all φ angles have been kept the same, whereas the θ angle has been increased
to a value of θ = 26◦. The resulting DFT iterations are shown in figure 8.17. There a
further increase of the θ angle can be observed converging at an angle of 36.96◦. The
φ angle hardly changes, keeping the star-like structure. The resulting spin structure
is shown in figure 8.18. The angles of the resulting spin frames are given by:

i θ [deg] φ [deg] i θ [deg] φ [deg]
1 0.00 101.97
2 36.96 -2.98 5 36.96 117.01
3 36.96 -177.04 6 36.96 -57.04
4 36.96 62.95 7 36.96 -122.98

Here, the same effect which has been observed for the unrelaxed cluster can still be
seen. The angles for an exact star-like structure are formed by a multiple of 60◦, where
the results of the non-collinear minimization deviate by about ±3◦.

8.3. 19 Fe nano-island on Ir(111)

Having in mind the results of the previous section, the interest arises to study the
magnetic structure of larger nano-islands. Introducing a second ring of 12 Fe atoms
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Figure 8.18.: Visualization of the non-collinear spin-structure of a 7 Fe nano-island
deposed on Ir(111) for relaxed Fe sites

around the 7 Fe nano-island, a circular shaped nano-island of 19 Fe can be formed,
which is displayed in figure 8.19a. The resulting nano-island is expected to have a
more complex magnetic structure compared 7 Fe nano-island, since the number of
irreducible (by symmetry) couplings is increased. Calculations have been carried out
analogously to the last section, where again one surrounding shell of host sites around
all 19 Fe has been included to the impurity calculation, increasing the total number
of sites to 91.

a) b)

Figure 8.19.: a) Lattice structure and b) magnetic moments of an 19 Fe cluster on
Ir(111).

8.3.1. Unrelaxed atomic positions

First, calculations were performed by fixing the magnetic moments to a collinear
alignment. The magnetic moments were obtained as displayed in figure 8.19b. Com-
paring these with the unrelaxed 7 Fe cluster (figure 8.10b), one observes that these
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Figure 8.20: 19 Fe nano-island on
Ir(111). A projection of
the nearest neighbor DM
vectors onto the surface
plane for sites i < j are
displayed as red vectors.

agree up to the first digit after the decimal point, depending on the coordination
number, showing that the magnetic moment is mostly a local quantity, which is mainly
influenced by the coordination number.

During self-consistency, all magnetic moments were fixed along the z-direction. As
discussed before, the resulting self-consistent potential has been used to calculate the
coupling constants Dx, Dy, Dz, where for each an independent non self-consistent
calculation has been applied, where all spins point along either the x, y or z-direction.
The obtained coupling constants are displayed in table 8.6. Here, only the couplings
are displayed between sites 1, 5, 12 and 17. All other interactions can be determined
using symmetry relations. In addition, only nearest neighbor couplings are displayed
in table 8.6. The exchange couplings between edge atoms are on the same order as
the couplings in the 7 Fe nano-island. Couplings in the center of the cluster, however,
are reduced to a value of 14.51 meV, having a trend towards the bulk value of 5.7
meV (see [84]), which is the nearest neighbor Fe monolayer exchange interaction. The
z-component of the DM vector is, similarly to the 7 Fe nano-island, dominating. The
components in the xy-plane are displayed in figure 8.20. Again, the corresponding
~Dij vector is oriented such that it corresponds to the DM Hamiltonian ~Dij(~Si × ~Sj),
where i < j.

i j J Dx Dy Dz | ~D| i j J Dx Dy Dz | ~D|
5 1 -14.51 0.88 -0.70 2.78 3.00 17 5 -42.00 -1.36 -1.00 3.03 3.47
5 3 -10.27 0.91 -0.50 -2.44 2.65 17 10 -19.94 1.07 -1.30 0.19 1.69
5 7 -16.93 0.88 0.54 -2.14 2.37 17 12 -36.93 0.18 -1.21 -4.26 4.43
5 10 -39.94 0.19 1.19 2.71 2.96 12 5 -31.85 0.92 -0.47 -2.98 3.15
5 12 -31.85 -0.92 0.47 2.98 3.15 12 7 -31.85 -0.04 -1.03 2.98 3.15
5 17 -42.00 1.36 1.00 -3.03 3.47 12 17 -36.93 -0.18 1.21 4.26 4.43

12 19 -36.94 -0.95 0.77 -4.26 4.43

Table 8.6.: Nearest neighbor coupling constants for 19 Fe cluster on Ir(111) in meV.
Only sites are displayed, which cannot be reduced due to symmetry
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Figure 8.21.: Convergence of the θ and φ angles as a function of iterations for a 19 Fe
island on Ir(111) with unrelaxed impurity positions structure

Non-collinear energy minimization

In a second step, starting from a ferromagnetic spin-formation, the magnetic structure
has been relaxed by a DFT calculation. Here, strong relaxation angles θ have been
observed during the first relaxation steps, whereas a similar star-like structure has
been observed while analyzing the φ angle. During the iterations, the φ angle hardly
changed.

Therefore, a second calculation has been started, where a star-like structure in the
xy-plane (according to the φ angles of the first calculation) and a larger θ angle of
around 116 degrees has been chosen as an initial condition. Figure 8.21 shows the
relaxation of the θ and φ angles, with respect to the iterations. It can be observed
from figure 8.21 that the φ angles only slightly change, whereas the θ angle converges
to about 110 degrees. The resulting magnetic structure is displayed in more detail in
figure 8.22. A fascinating result has been found, where all spins, expect for the central
spin, almost lie in the xy-plane, forming a star-like structure. A strong variation of
the θ angles to about 110 degrees, compared to the 7 Fe nano-island is observed. This
is not expected and the reason for this behavior is to be found. The following table
shows the angles that have been found after the density-functional minimization.

i θ [deg] φ [deg] i θ [deg] φ [deg]

1 1.71 -87.74
2 110.35 64.90 11 118.30 -29.51
3 110.29 115.01 12 118.17 -150.63
4 112.27 -4.47 13 119.60 -90.07
5 112.10 -175.64 14 117.48 73.50
6 113.84 -54.96 15 117.46 106.42
7 113.77 -125.16 16 119.70 -13.18
8 115.46 89.96 17 119.52 -166.95
9 116.65 30.36 18 120.79 -45.99

10 116.51 149.55 19 120.72 -134.14
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Figure 8.22.: Magnetic structure of a 19 Fe nano-island on Ir(111) by ab initio
minimization.

It can also be observed that the central spin is canted by 1.7 degrees. Analyzing the
structure in more detail, it seems that the complete magnetic structure is rotated with
respect to the y-axis. Since the rotation angle is small, it is hard to pinpoint its origin.

In order to understand better the origin of the pronounced non-collinearity, magnetic
model calculations were carried out using the atomistic spin-dynamics method as an
energy minimization technique.

Model calculations

A model Hamiltonian has been used, where just the magnetic moments of the Fe atoms
are considered. The influence of the induced magnetic moment in the Ir atoms is
assumed to be small and neglected in all model calculations. In the model Hamiltonian

H =
19∑

i,j=1

Jij~ei · ~ej +
19∑

i,j=1

~Dij · (~ei × ~ej),

the exchange interaction and the DM interaction have been included. All (∼ 400)
couplings which have been extracted from collinear DFT calculations and which have
partly been presented in table 8.6 are used. Magnetocrystalline anisotropy effects
are neglected. The resulting energy minimum is shown in figure 8.23a, forming a
star-like structure, in which the φ angles agree roughly to the results of the ab initio
minimization. However, the θ angles range from only 14 to 20 degrees drastically
underestimating the tilting angle. Since the ab initio minimization and the model
calculation differ strongly the model does not describe the spin interactions accurate
enough and the reason for that is to be found. To this end it is observed that results
obtained from a monolayer of Fe on Ir(111) showed that the 4-spin interaction
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H4-spin(êi, êj, êk, êl) = Kijkl [(êiêj)(êkêl) + (êiêl)(êkêj)− (êiêk)(êj êl)]

is necessary to describe the magnetic structure. There, it was not possible to stabi-
lize the skyrmionic-like structure without explicitly taking into account the 4-spin
interaction. Thus, additional model calculations have been carried out, where the
4-spin interaction parameter of the monolayer calculation has been assumed as a good
approximation for finite nano-island calculations. This is certainly a rough approxi-
mation, keeping in mind the strong variation of the exchange coupling parameters
between the monolayer and nano-island parameters. Nevertheless, by including this
term a magnetic structure can be found, which captures the essential details of the ab
initio minimization. These details are presented in figure 8.23b. The angles θ might
not agree between ab initio and model quantitatively, however, qualitatively one can
explain the almost anti-ferromagnetic alignment of the central spin to the others by
4-spin interaction effects.

a) b)

Figure 8.23.: a) Atomistic spin-dynamic simulations if a 19 Fe nano-island on Ir(111).

The model parameters Jij and ~Dij have been calculated by ab initio . b)
In addition, a four-spin interaction term with K = 1.25meV has been
assumed.

The question arises, why this behavior cannot be observed for nano-island with 7 Fe
atoms. The 4-spin interaction couples, in a nearest neighbor approximation, 4 atomic
sites in a diamond formation. Counting all diamond formations, which include the
central spin 1, one can verify that just 6 couplings appear for the 7 Fe nano-island .
This differs for the 19 Fe nano-islands, where twice as many diamonds can be found
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Figure 8.24: Visualization of the
structure for the re-
laxed 19 Fe nano-
island. Magnetic mo-
ments are displayed
for the Fe and the
underlying Ir atoms
(calculation neglect-
ing SOC).

counting 12 couplings. This leads, so to say, to an effective doubling of the strength
of the 4-spin interaction, making an explicit treatment necessary.

It has been shown that a strong non-collinear formation of the spins arises. This can
mainly be understood by considering three different interaction terms: the exchange,
the DM and the 4-spin interaction, where the first two coupling constants could
be extracted from the ab initio calculation. These coupling constants have been
analyzed and used to understand the complex magnetism arising in such systems. A
strong non-collinear structure has been found by ab initio minimizations and there are
indications that the resulting magnetic structure refers to the ground state structure.
Here, however, it is not intended to verify that this is the actual ground state structure.
The purpose of the analysis was to get a understanding of the complex magnetism,
which arises in the 19 Fe cluster. A more careful study of the actual energy minimum
has been performed for the 19 Fe cluster, including structural relaxation effects of the
Fe sites, which is presented in the following section.

8.3.2. Relaxed atomic positions

First of all, collinear magnetic properties have been obtained excluding spin-orbit
coupling effects, where the same discussion as for the unrelaxed positions applies
and just a brief summary is given. Here, the same relaxation procedure as for the
7 Fe island was used, by relaxing the z-component of the Fe layer by 7.7% towards
the Ir atoms (compared to the Ir interlayer distance). The magnetic moments are
displayed in figure 8.24, where it can be observed that they are slightly decreased for
all Fe sites. The induced magnetic moment of the underlying Ir sites are, however,
slightly increased, compared to the unrelaxed structure, which is due to the increased
proximity of the Fe atoms and in agreement to the relaxation effects of the 7 Fe
nano-island.
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Non-collinear calculation

The previous discussion, analyzing the unrelaxed 19 Fe nano-island, shows that a
complex magnetic structure is to be expected with a rich energy landscape with
respect to the rotational degrees of freedom of all atomic moments. In addition, the
landscape is expected to be flat for various spin-configurations, resulting from the
4-spin interaction, which is expected to be strong. Ab initio calculations have been
carried out to find the global energy minimum. To be able to distinguish global
from local minima, these calculations have been performed from different starting
spin configurations. Three independent calculations are shown in figure 8.25, which
essentially converge to the same result. Two of these show exactly the same θ and φ
angles after convergence, whereas one differs just by a global rotation of all magnetic
moments. A careful analysis shows, that the relative angles between all three minima
agree. This effect most probably results from a flat energy surface with respect
to a global rotation of all magnetic moments leading to a drastically slowed down
convergence towards this direction. This effect is, however, small and the total energies
between these structures cannot be distinguished, as will be shown in the following.

Figure 8.25.: Non-collinear relaxation of the θ and φ angles for a 19 Fe nano-island on
Ir(111). Three ab initio relaxations of the magnetic moments, starting
from different initial conditions are shown, which are distinguished by
color.

The spin configuration is shown in figure 8.26 and will be referred to as structure A and
is the most promising candidate for the magnetic ground state global minimum. This
is, however, not the only converged magnetic structure obtained from ab initio energy
minimization. By using different magnetic initial states, other magnetic structures
can be found. One example, referred to as structure B, is shown in figure 8.29 in the
second column. It has similarities to structure A, with the major difference that the
z-component of the central spin is flipped. This, however, refers to a local minimum,
as will be shown in later discussions. Analyzing structure A in more detail, it can
be observed that the θ angles have a similar formation compared to the unrelaxed
cluster. Thus, all discussions related to the strong canting angle θ, which are induced
by the 4-spin coupling, are still valid for relaxed atomic positions. The spin-formation
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in the xy-plane, however, differs strongly and does not resemble the expected star-like
structure. An even stronger non-collinear formation is observed, whereas in the
star-like structure, neighboring spins are (except for the central spin) aligned roughly
collinearly. Analyzing the coupling constants, the origin of this effect is to be found.

Figure 8.26.: Magnetic structure of an 19 Fe nano-island on Ir(111) by ab initio energy
minimization for relaxed atomic positions.

i j J Dx Dy Dz | ~D| i j J Dx Dy Dz | ~D|
5 1 -0.92 0.82 -3.71 1.70 4.17 12 7 -17.98 0.42 -4.18 2.08 4.69
5 3 3.63 3.35 -1.91 -1.67 4.20 12 17 -17.06 3.18 3.70 3.55 6.04
5 7 -4.80 -1.50 -0.85 -1.23 2.11 12 19 -17.06 -4.79 -0.92 -3.55 6.03
5 10 -25.91 2.80 3.56 2.31 5.09 13 6 -25.91 4.53 -0.64 -2.31 5.13
5 12 -17.98 -3.43 2.45 2.08 4.70 13 7 -25.91 4.53 0.64 2.31 5.13
5 17 -27.64 1.78 4.19 -2.30 5.10 13 18 -5.09 -0.75 -4.54 -0.19 4.61
7 1 -0.92 2.78 -2.57 -1.70 4.15 13 19 -5.09 -0.75 4.54 0.19 4.61
7 5 -4.80 1.50 0.85 1.23 2.11 17 5 -27.64 -1.78 -4.19 2.30 5.10
7 6 3.63 -0.00 -3.89 1.67 4.24 17 10 -5.09 3.54 -2.91 0.19 4.59
7 12 -17.98 -0.42 4.18 -2.08 4.69 17 12 -17.06 -3.18 -3.70 -3.55 6.04
7 13 -25.91 -4.53 -0.64 -2.31 5.13 19 7 -27.64 4.52 -0.50 -2.30 5.09
7 19 -27.64 -4.52 0.50 2.30 5.09 19 12 -17.06 4.79 0.92 3.55 6.03

12 5 -17.98 3.43 -2.45 -2.08 4.70 19 13 -5.09 0.75 -4.54 -0.19 4.61

Table 8.7.: Nearest neighbor coupling constants for the relaxed 19 Fe cluster on Ir(111)
in meV. Only sites are displayed, which cannot be reduced due to symmetry.

In table 8.7 the exchange and the DM coupling constants are shown between nearest
neighbors. Here, only those couplings are presented, which are not identical due
to symmetry relations. The couplings follow the general trends, which have been
observed in the previous discussion on the 7-atom cluster: Relaxing the position of
the island atoms towards the substrate leads to a weakening of the exchange coupling
as well as an increased DM interaction. Increasing the cluster size, the exchange
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a) b)

Figure 8.27.: 19 Fe nano-island on Ir(111): a) A projection of the nearest neighbor
DM vectors for sites i < j are displayed as red vectors and b) the relative
angles between neigherst neighboring spins is shown.

coupling constants are reduced for the inner atomic sites. It can be also observed that,
compared to the unrelaxed geometry, the exchange coupling constants are reduced
by a factor of 2 for the outer moments. For atomic sites inside the nano-island,
the coupling constants almost vanish, leading to a nearest neighbor coupling of the
central spin of only J = −0.92 meV. This is highly unexpected and leads to an almost
vanishing ferromagnetic coupling inside the nano-island.

A general trend towards a weakened Heisenberg exchange interaction was expected,
keeping in mind the results of the 7 Fe nano-island. However, it is unresolved why
the reduction of the coupling constant for the 19 Fe island is so large and is to be
investigated in more detail. In the following, an explanation of the exchange coupling
by considering hybridization effects between different orbitals of nearest neighboring
Fe atoms is given. The total density of states (DOS) is plotted in figure 8.30a and
8.30b for the central atom (atom 1 of figure 8.19a) and one nearest neighbor (Atom 2
of figure 8.19b) for the relaxed and unrelaxed positions. The plots show a shift of the
bands upwards for the relaxed atomic positions. This effect is due to hybridization
of the Fe atoms with the substrate. The resulting energy resolved nearest neighbor
Heisenberg coupling density j(E) (by considering the integrand of equation 6.54)

as well as the integrated value J(E) =
∫ E

dE ′j(E ′) are shown in figure 8.30c. The
values for J(EF ) correspond to the Heisenberg coupling constants, which have been
analyzed in the previous discussions. It can be observed that a strong slope is present
for J(E) (peak in j(E)) at the Fermi energy and that the two curves have a similar
shape except for a constant shift ∆E in energy between the relaxed and unrelaxed
values for J(E). The steep slope shows that the coupling constant strongly depends
on changes in the DOS. More precisely, as the Fe DOS moves slightly higher in energy
due to hybridization with the substrate in the relaxed position, the curve J(E) is
dragged along. Since J(EF ) is at a steep slope of J(E), close to zero, the slight shift
of J(E) results in a strong reduction for the Heisenberg exchange coupling for relaxed
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positions.

The nearest-neighbor Heisenberg exchange coupling can be explained via two mech-
anisms [66, 85]: the kinetic and the double exchange. These mechanisms involve
hybridization effects between orbitals of neighboring atoms. The two are competing
since the kinetic exchange gives a tendency towards an anti-ferromagnetic and the
double exchange towards a ferromagnetic coupling. It is of interest to find out if the
small Heisenberg exchange value can be explained by competing double and kinetic
exchange. To clarify this, a numerical experiment was performed. The kinetic ex-
change arises from hybridization effects of orbital in different spin-channels, which can
lower the single-particle energies. This effect is, in second order perturbation theory
proportional to the energy difference between the orbitals. Thus, by lowering the
majority band artificially, the anti-ferromagnetic mechanism of the kinetic exchange
is expected to be reduced, while the double exchange should remain. This effect can
be observed in calculations, where the potential of the majority band was lowered
by 5 eV. The resulting exchange coupling was found to be −9.82 meV and, thus,
increased by a factor of 10. This supports the previous interpretation that the drastic
reduction of the exchange coupling is due to a strongly increased kinetic exchange for
the relaxed atomic positions, which almost totally compensates the double exchange.

The DM coupling constants are on the other hand slightly increased up to a magnitude
of about 6 meV for the outer spins. The drastic decrease of the exchange coupling
constant below 1 meV makes the DM-interaction the dominating interaction for the
inner atoms of the cluster. This helps explaining the strong non-collinear formation
of spins for the inner atoms. The DM interaction between two sites i and j favors a
perpendicular alignment of spins inside a plane defined by the normal to the vector
~Dij , which can indeed be observed in the ground state structure A (figure 8.26). This
can be analyzed in more detail considering figure 8.27b that shows the relative angles
between the spins. There the spins inside as well as most spins at the edge of the
nano-island relax to an almost rectangular nearest neighbor formation. There are
some exceptions, like the angle between spins (6, 18) and (4, 16), which are almost
ferromagnetically aligned.

To analyze these effects in more detail, a model Hamiltonian has been set up including
all parameters of table 8.7. The resulting Hamiltonian has then been minimized via
ASD simulations. The structure resulting from the ab initio minimization (figure 8.26)
could not be observed, with or without including the 4-spin interaction which has
been extracted from the Fe on Ir(111) monolayer calculation. The resulting minimum
including the 4-spin interaction constant K = 1.25 meV for a nearest neighbor coupling
is shown in figure 8.29d. The resulting structure is following no rotational symmetry
in contrast to all other ab initio and model calculations, carried out before, including
the 7 Fe and 19 Fe nano-island calculation for the relaxed and unrelaxed positions. At
this point, the question arises, if either the model Hamiltonian does not sufficiently
describe the magnetic system or if the ab initio or even the model minimization does
not correctly find the global energy minimum. One idea that has to be discussed
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is, if a magnetic formation which is initially rotationally invariant, might keep that
symmetry during the minimization. First of all, this does not apply for the ASD
method, since, there, the influence of temperature breaks this symmetry. This method
has been tested to find reliably the global energy minimum for a given set of model
parameters. Secondly, the ab initio calculation could in principle show such a behavior.
However, this is assumed to be unlikely, since in previous calculation, tilting angles of
the central spin could be observed, like in figure 8.25, where the blue structure breaks
the symmetry.

Figure 8.28.: Total energy of different spin structures as a function of the DFT self-
consistency iterations

a) A-structure b) B-structure c) C-structure d) ASD
-minimization

Figure 8.29.: Spin-state structures for a 19 Fe nano-island on Ir(111) (relaxed positions).
a), b) and c) correspond to spin-structures obtained by ab initio non-
collinear energy minimizations. d) Spin-structure obtained by a model

Hamiltonian. The model parameters Jij and ~Dij have been calculated
by ab initio . The 4-spin coupling value of the Fe monolayer according
to [84] has been used.

To clarify this point, additional ab initio calculations have been performed, where the
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starting angles have been chosen such that they break the rotational symmetry. The
resulting spin-structure is referred to as structure C and is shown in figure 8.29c, having
no rotational symmetry. Comparing structure C with the ground state structure of
the ASD minimization (figure 8.29d), show that these structures look surprisingly
alike. There are certainly differences, however, the overall structure is similar. This
basically shows that the model Hamiltonian, which has been derived to describe the
magnetic structure is not totally unrelated and can describe certain features of the
actual spin structure.

To identify which structure corresponds to the total energy minimum, total energies of
the different structures have been compared. Figure 8.28 shows the total energy with
respect to the iteration number of different spin structures, including structure A, B,
and C, where A1, A2, A3 refer to different initial conditions, which finally relax to the
same spin state. It can be observed that the A structure with rotational symmetry,
which corresponds to figure 8.26 is energetically lower than the structures without
rotational symmetry, showing that the later do not correspond to the global energy
minimum. Here, one can come to the conclusion that the provided set of model
parameters does not predict the correct ground state. This may have several reasons.
First, the 4-spin interaction has been estimated from the monolayer calculation data
of [84]. Here, it has been assumed that the coupling is constant for all atoms pairs.
For a finite cluster, this is a rough approximation. Since all other parameters are
drastically different for the outer atoms, it should also be expected to happen for
the 4-spin interaction. A method to calculate the 4-spin iteration might improve
this. Another reason might be that the magnetic model Hamiltonian does not contain
sufficiently many terms and needs to be extended by other higher order interaction
terms. Finding a model Hamiltonian, which correctly describes the correct ground state
properties, especially for such a complex system is a demanding task. In particular,
systems that exhibit a strong 4-spin interaction are expected to have a complex
magnetic structure, since the 4-spin interaction introduces a variety of local minima.
Nevertheless, an interesting magnetic structure has been found for the 19 Fe nano-
island on Ir, including relaxation effects. This differs from the magnetic structure for
unrelaxed atomic positions, making the importance of structural relaxations necessary.

There are strong indications that this is the actual magnetic ground state. To verify
this, different initial conditions have been used and the total energies, referring to
the magnetic ground state structures have been compared. It could be shown that a
combination of a method to extract coupling constants combined with an atomistic
spin-dynamics solver, based on a model Hamiltonian, can help to understand the
complex magnetism of Fe nano-islands on Ir(111).
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a)

b)

c)

Figure 8.30.: Density of states for the majority and the minority spin channel for a)
the central Fe atom and b) a neigherst neighboring atom of the central
Fe atom for the relaxed and unrelaxed atomic positions. In c) the energy
dependent Heisenberg coupling density j(E) between the two atoms is
plotted as a solid line (arbitrary units) and the integrated Heisenberg

coupling J(E) =
∫ E

dE ′j(E ′) is displayed as a dashed line. The peak of
J(E) at (1) is due to the anti-ferromagnetic kinetic exchange, the peak
at (2) due to ferromagnetic double exchange.
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9 Summary and Outlook

In this thesis, the magnetic properties of complex magnetic nano-structures on surfaces
have been analyzed. To achieve this aim, a real-space density-functional theory code
to study finite nano-structures in the bulk of materials and on their surfaces has
been developed. The KKR impurity Green function method has been chosen as a
theoretical framework, since it provides an accurate description of finite-size embedded
defects into an otherwise perfect host, contrary to most DFT methods that rely on
Bloch’s theorem implying periodically repeated images of the nano-structure that
influence the physical results. Within the KKR method one gains direct access to
the Green function in a multiple scattering approach. The determination of the
Green function requires the solution of the single-site scattering problem to obtain the
scattering properties for each atom, which are then used to calculate the structural
Green function via a Dyson equation. Additional effort has been spent to conceptually
improve the KKR method for both the single-site and the multiple-scattering part, in
order to accurately study complex magnetic structures. In the following, the results
of all essential developments and the application to the study of magnetic properties
of Fe islands on Ir(111) are summarized and an outlook is presented.

Method development

A single-site solver has been developed and implemented, which is able to treat the
coupling between different scattering channels accurately. This solver uses a new
ansatz by solving the set of coupled Lippmann-Schwinger integral equations. Since this
problem is numerically too demanding to treat in a straightforward way, techniques
were developed to reduce this effort drastically. By using the sub-interval method,
splitting the problem into locally defined Lippmann-Schwinger equations, combined
with the use of Chebyshev polynomials as interpolating functions, an accurate and time-
efficient numerical scheme was developed. The resulting solver is a general-purposed
one for the Schrödinger, the scalar-relativistic or the Dirac-equation case. The need
for a new numerical technique arose since state-of-the-art perturbative approaches did
not satisfy all requirements to describe the systems of interest sufficiently well. Using
the new method it is possible to obtain all single-site properties for non-spherical
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potentials even close to the nucleus including spin-orbit coupling effects, which is
essential for an accurate description of the magnetic properties. The self-consistent
treatment of spin-orbit coupling required a modification of the expansion procedure
of the Green function, by explicitly calculating the left-hand solution of the single-
site equations. The resulting method turns out to be numerically somewhat more
demanding, compared to a perturbative approach. To compensate, a parallelization
scheme has been implemented, which distributes the calculation of the Green function
to up to 100 cores with an almost ideal speed up.

The KKR impurity method is known to treat isolated defects efficiently. However, its
usual implementation lacks a proper treatment of structural relaxation effects, since
impurity positions are, due to the expansion of the host Green function, bound to host
lattice sites. An efficient method for impurity position, placed at arbitrary off-lattice
sites has been implemented and successfully tested within this thesis.

The magnetic texture is not restricted to collinear formations, allowing a non-collinear
treatment of spin structures for complex magnetic nano-structures, which can be used
to find the magnetic ground state by ab initio energy minimization. In addition, a
formalism to calculate model parameters for the exchange as well as the Dzyaloshinskii-
Moriya interaction has been implemented and tested, which can on-the-fly extract
coupling constants between the magnetic moments of atomic sites on the basis of a
classical model Hamiltonian. The resulting method allows for an energy-dependent
study of the coupling constants, making it a unique method for the treatment of
magnetic systems. The resulting model can, in a multi-scale approach, be used to
further analyze magnetic properties on the atomic level by using an atomistic spin-
dynamics method, which has been extended to treat complex magnetic structures
within this thesis. This method has been used to analyze and understand results,
which have been obtained by ab initio calculations.

Magnetic structure of Fe islands on Ir(111)

The work on Fe nano-islands on Ir(111) started with calculations of Heinze et.al. [8],
studying monolayers on Ir(111). This thesis contributed by studying the magnetic
properties of the Fe monolayer on the basis of a classical model Hamiltonian. For the
first-time, a magnetic skyrmion-like structure could be stabilize by using atomistic
spin-dynamics, independent of the initial condition. The results have been compared
to Fourier transformation peaks as well as experimental and theoretical STM pictures
and found to be in a good agreement.

These experiments motivated the calculation of finite nano-islands on Ir(111) in order
to predict if the complex magnetic structures would persist at such small scale. The
KKR impurity code, developed within this thesis has been used to study 7- and 19-
atom disc-shaped nano-islands. Including the neighboring sites for a correct description
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of the displaced charge and induced moments, the calculation treated up to 100 sites
in total. As expected from results of monolayer calculations, a rich magnetic texture
was found, however, the magnetic structure was different than in the monolayer case.
It could be shown that the formation of the magnetic pattern of the 7-atom Fe island
is mainly governed by two terms: the isotropic exchange interaction and the DM
interaction. By ab initio energy minimization and the analysis of coupling parameters
it could be verified that structural relaxation effects have a strong impact on the
magnetic ground state structure, which tends to weaken the isotropic coupling and
increase the DM interaction, leading to an increased non-collinearity in the magnetic
formation.

A highly non-collinear formation has been found also for the 19-Fe-atom island. For
the unrelaxed 19-atom Fe nano-island, a strongly non-collinear star-like spin structure
is found, where most of the atomic magnetic moments lie almost in-plane, while the
central moment points out-of-plane. It was found though that these model Hamiltonian
calculations can only be understood by including the 4-spin interaction into the model.
The resulting model ground-state structure qualitatively reproduces the ab initio
results. For the relaxed island of 19 Fe atoms, a strong non-collinear formation of
spins was also found, but qualitatively different in the sense that most spins relax
to an almost rectangular alignment to their neighbors. This can be explained by a
drastic reduction of the exchange interaction, which makes the DM interaction the
dominating contribution to the model Hamiltonian.

Overall, it could be shown that the developed code is capable of describing complex
magnetic properties of nano-structures and applications have shown that all measures
implemented in this thesis to extend the KKR impurity method have been essential
to describe this particular system of interest. The capability of extracting model
parameters combined with an atomistic spin-dynamics code gives new possibilities to
study magnetic interactions in finite systems, which helps to understand the formation
of spin-textures. It has been shown, however, that the model Hamiltonian used so far
is not sufficient. Especially the 4-spin interaction is essential to describe the magnetic
structure of Fe islands on Ir(111). It could also be shown that explicit edge effects for
nano-islands significantly influence the coupling parameters and that an embedding
code is absolutely necessary to study magnetic nano-structures.
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Outlook

There are many routes how this work can be extended, considering new implementa-
tions or further calculations. The most interesting and promising ideas are presented
here.

Outlook concerning method development

For simple magnetic systems, the 4-spin interaction term is neglected on the level
of model-Hamiltonian considerations. However, as the present thesis shows, this
term needs to be accounted for Fe nano-islands on Ir(111). Since a finite system
is considered, this interaction will be highly site-dependent and it is not clear if a
nearest-neighbor approximation is sufficient. So far, the coupling constants cannot yet
be extracted from ab initio calculations although they are implicitly included in the
ab initio results. Further developments are planned to calculate the 4-spin coupling
parameters even beyond the nearest neighbor approximation by extending the method
of infinitesimal rotations. The resulting values are expected to give further insights in
coupling phenomena and improve the accuracy of the model. To our knowledge, the
proposed analysis has not yet been explored.

The charge variations outside the impurity region are not taken into account while
calculating the single-particle energies. These can, however, influence total energy
calculations, which need to be accounted accurately for magnetic calculations. By
using Lloyd’s formula, it is possible to correct for this error and take into account
charge oscillations induced by the perturbed region in accordance to Friedel’s sum rule.
Recently a new scheme [86, 87] to efficiently apply Lloyd’s formula for many atoms
have been developed and is to be applied to impurity calculations and the resulting
effect on magnetic properties to be analyzed.

Calculations show a drastic slowing down of convergence, while carrying out non-
collinear energy minimization. This can lead to hundreds of iterations until convergence
is achieved. The method that is used to mix the density is based on separately mixing
the magnitude and the angles of the magnetization. Furthermore, the method of
infinitesimal rotations gives access to the first and second derivatives of the single-
particle energies with respect to angular rotations of the atomistic magnetic moments.
Besides the implementations that have already drastically improved the convergence,
the information of the first and second derivative combined with a separate mixing for
the angular angular part of the potential might be used to develop other sophisticated
convergence schemes. Some ideas have already been presented in section 6.3.

Even with all introduced techniques to reduce the numerical complexity, the relativistic
calculation of single-site properties including spin-orbit is numerical cumbersome,
making the single-site problem the most time-consuming part. There are strong
indications that the computational time can be further reduced, since the resulting
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matrix equations have a special structure. Using specialized LU-decomposition solvers
or an iterative scheme to solve the resulting equations might help to reduce the
computational time and will be investigated in the future.

Outlook concerning the investigation of the Fe/Ir(111) system

The ground-state structure of a single Fe monolayer on Ir(111) has been well understood.
However, thermodynamic properties have not been analyzed yet. Calculations show
that by applying a magnetic field field or temperature, new phases can be found
which are conceptually different. It can be observed that, apart from a square-like
formation of skyrmions, also hexagonal structures can be found at finite temperature,
which have a different topological number. Not many systems are known, where
two ordered multi-dimensional states can be found. It turns out that rich physics
can be found while analyzing the thermo-dynamical properties of Fe monolayers on
Ir(111). Work has already been started to determine the thermodynamical properties,
by atomistic spin-dynamic methods as well as Monte-Carlo methods. These turn out
to be complicated since, due to different topological numbers, a high energy barrier is
found between the ordered states. Sophisticated methods are in development to be
able to overcome this restriction. Up to now, there are many open questions for this
particular system, which are to be investigated.

Nanoislands on surfaces provide a unique playground to study quantum mechanical
finite size effects since, on the one hand, the theoretical techniques are available
and, on the other hand, such structures are experimentally accessible, providing
the possibility to study different sized and shaped magnetic nanostructures. This
thesis shows that an explicit ab initio calculation of finite sized islands is essential
to accurately describe the formation of non-collinear magnetic configurations. It
also shows that the coupling constants differ drastically and are highly influenced by
the boundary of the nano-island. However, at a sufficiently large island a transition
to a monolayer-like behavior is expected. The combination of model and ab initio
calculations provide a perfect framework to study this transition, which would be
interesting to be investigated.

This work helps to get a fundamental understanding of magnetic interactions on
a local scale for finite nano-structures. Technological breakthroughs are frequently
based on basic science by first understanding new physical phenomena. Since the
size of electronic devices reaches already the nanometer scale, magnetic effects on the
atomic scale could be used in applications, which attracts a lot of attention, and the
understanding of the magnetic properties of nano-islands might influence our daily
life.

This discussion shows that “there’s plenty of room at the bottom” [88].
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A
Details on model parame-
ters by infinitesimal rota-
tions

Conversion to a Green function type expression

In subsection 6.3.3 terms are appearing, which are of the form:

Tr
[
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where τ
12

is the scattering path operator between the site 1 and 2 and m
1

is the
differential of the m-matrix of site 1. The scattering path operator can be rewritten
to an expression containing the Green function for two sites i 6= j by:
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Comparing with equation A.1, the expression can be written in terms of the Green
function, by substituting ∂m

i
with ∂t

i
, where additionally a factor of (−1)N has to

be included.
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B Numerical treatment

Algorithm

The differential equation which needs to be solved can be reformulated as an integral
equation:

UL′L(r) = jl(κr)δL′L + κnl′(κr)

∫ r

0

dr′r′2jl′(κr
′)
∑
L′′

VL′L′′(r′)UL′′L(r′) (B.1)

− κjl′(κr)

∫ r

0

dr′r′2nl′(κr
′)
∑
L′′

VL′L′′(r′)UL′′L(r′) (B.2)

The L-value indicating different functions in the coupled system of integral equations
labels the combined index L = (l,m) resulting from an expansion of the dependence
on r in spherical harmonics. The combined index is later on extended to include the
spin and the small component of the Dirac/SR wavefunction. Typically values for the
number of L-values are 16 to 64.

Division into panels

Step 1: Local Lippmann-Schwinger Solutions Divide the radial mesh in M
panel, where each panel is defined between rm−1 and rm. Then the two local solutions
are given by:
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U
(j)
L′L(r;m) = jl(κr)δL′L + κhl′(κr)

∫ r

rm

dr′r′2jl′(κr
′)
∑
L′′

VL′L′′(r′)U
(j)
L′′L(r′;m)(B.3)

− κjl′(κr)

∫ r

rm

dr′r′2hl′(κr
′)
∑
L′′

VL′L′′(r′)U
(j)
L′′L(r′;m)(B.4)

U
(h)
L′L(r;m) = hl(κr)δL′L + κhl′(κr)

∫ r

rm

dr′r′2jl′(κr
′)
∑
L′′

VL′L′′(r′)U
(h)
L′′L(r′;m)(B.5)

− κjl′(κr)

∫ r

rm

dr′r′2hl′(κr
′)
∑
L′′

VL′L′′(r′)U
(h)
L′′L(r′;m)(B.6)

The local solutions can then be used to calculate:

M
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rm
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dr′r′2jl′(κr
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∑
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VL′L′′(r′)U
(n)
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Step 2: Recursive calculation of the matching coefficients Starting from the
origin the coefficients A and B can be calculated recursively by:

AL′L(m+ 1) = AL′L(m)−
∑
L′′′

M
(nj)
L′L′′′AL′′′L(m)−

∑
L′′′

M
(nn)
L′L′′′BL′′′L(m) (B.11)

BL′L(m+ 1) = BL′L(m) +
∑
L′′′

M
(jj)
L′L′′′AL′′′L(m) +

∑
L′′′

M
(jn)
L′L′′′BL′′′L(m) (B.12)

The initial conditions are given by:

AL′L(0) = δLL′ (B.13)

BL′L(0) = 0 (B.14)

(B.15)

Step 3: Calculation of the global solution Given the matrices AL′L(m) and
BL′L(m) the global solution can be expressed by:

UL′L(r) =
∑
L′′

[
U

(j)
L′L′′(r;m)AL′′L(m) + U

(n)
L′L′′(r;m)BL′′L(m)

]
(B.16)
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Numerical treatment of the radial integration

The system of integral equations is solved numerically by an expansion of the radial
index in Chebyshev polynomials. By doing so all functions and operators (including
the integration operator) can be transformed to matrix expressions. The resulting
matrix equation can then easily be solved by a matrix inversion.

~U = j′ + j

∫
hV ~U − h

∫
j V ~U (B.17)

⇒

(
1− j

∫
hV + h

∫
j V

)
︸ ︷︷ ︸

M

U ′ = j′ (B.18)

Here, all matrices contain the information about the angular momentum expansion
(L) and the radial mesh (r).
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