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• solves electrostatics using Green's function

• reduces complexity of N-body problems from O(N2)

to O(N log N)

• charges combined into hierarchic groups of

multipole moments

Barnes-Hut [1]

Input: Source positions & charges, sink positions

1. Domain decomposition

• thread particles onto a space-filling curve (Morton, Hilbert, ...)

• redistribute particles on parallel processors

2. Tree construction

• compute multipole moments at lowest level and propagate upwards

• identify and exchange branch nodes

• construct global tree

3. Tree traversal

• find interaction partners using a multipole

acceptance criterion

• gather remote sub-branch nodes if necessary

• compute interactions

Output: Potential & electric field at sink positions

Algorithm phases [2]

Parallel treecode PEPC [3]

• parallel Barnes-Hut algorithm implemented in

treecode PEPC

• freely available for:

• JUQUEEN (Blue Gene/Q, 458,752 cores)

• JUROPA (Intel Nehalem, 17,664 cores)

• GNU/Linux workstations

• Mac OS X

• innovative hybrid

parallelisation

scheme using MPI

and POSIX threads

• very promising scaling behaviour to reasonably

utilise up to 450,000 CPUs running 1,600,000

threads in simulations with up to 65 billion

particles

• supports several interaction kernels: Coulomb 2D &

3D, vortex fluid dynamics, ...

Kelvin-Helmholtz instabilities at plasma-vacuum interfaces

Evolution (right)

1. initial phase,

homogeneous gradient

2. linear phase,

exponentially growing

perturbation

3. nonlinear phase,

forming of vortex

structures

Growth rates (below)

Driving mechanism

1. magnetised plasma

slab, n = const., in

contact with vacuum

2. different Larmor radii

lead to different

density gradient scales

3. charge separation

creates a sheared

electric field

sheared E x B flow feeds

KH instability

Boundary Element Method (BEM) [4]

Electrostatics with boundary conditions:

Green's function representation:

• discretise boundary into elements (lines, triangles,

quadrilaterals, ...)

• treecode treats elements as pseudo-particles

Complex wall structures

• usually, and only known on parts of

• construct system of equations by collocation

• solve iteratively, treecode accelerates matrix-vector

product

Supported boundary conditions:

• (mixed) Dirichlet and Neumann

• periodic

• metal wall with floating potential

• treecode and BEM allow electrostatic modeling of

interaction between plasma and complex wall

structures, e.g., castellated tiles

• real world

geometries can

be modeled in a

CAD program

like Gmsh
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PEPC is freely available at

http://fz-juelich.de/ias/jsc/pepc




